Hindlimb Function in the Alligator: Integrating Movements, Motor Patterns, Ground Reaction Forces and Bone Strain of Terrestrial Locomotion Stephen M

Total Page:16

File Type:pdf, Size:1020Kb

Hindlimb Function in the Alligator: Integrating Movements, Motor Patterns, Ground Reaction Forces and Bone Strain of Terrestrial Locomotion Stephen M Clemson University TigerPrints Publications Biological Sciences 2004 Hindlimb function in the alligator: integrating movements, motor patterns, ground reaction forces and bone strain of terrestrial locomotion Stephen M. Reilly Jeffrey S. Wiley Audrone R. Biknevicius Richard W. Blob Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/bio_pubs Recommended Citation Please use publisher's recommended citation. This Article is brought to you for free and open access by the Biological Sciences at TigerPrints. It has been accepted for inclusion in Publications by an authorized administrator of TigerPrints. For more information, please contact [email protected]. The Journal of Experimental Biology 208, 993-1009 993 Published by The Company of Biologists 2005 doi:10.1242/jeb.01473 Hindlimb function in the alligator: integrating movements, motor patterns, ground reaction forces and bone strain of terrestrial locomotion Stephen M. Reilly1,*, Jeffrey S. Willey1, Audrone R. Biknevicius3 and Richard W. Blob2 1Department of Biological Sciences, Ohio University, Athens, OH 45701, USA, 2Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA and 3Department of Biomedical Sciences, Ohio University College of Osteopathic Medicine, Athens, OH 45701, USA *Author for correspondence (e-mail: [email protected]) Accepted 21 December 2004 Summary Alligator hindlimbs show high torsional loads during during stance phase in sprawling and erect quadrupeds terrestrial locomotion, in sharp contrast to the bending or act in isometric or even eccentric contraction in alligators, axial compressive loads that predominate in animals that stabilizing the knee and ankle during the support-and- use parasagittal limb movements. The present study propulsion phase. Motor patterns in alligators reveal the integrates new data on hindlimb muscle function with presence of local and temporal segregation of muscle previously obtained data on hindlimb kinematics, motor functions during locomotion with muscles that lie side by patterns, ground reaction forces and bone strain in order side dedicated to performing different functions and only to (1) assess mechanisms underlying limb bone torsion one of 16 muscles showing clear bursts of activity during during non-parasagittal locomotion in alligators and (2) both stance and swing phases. Data from alligators add to improve understanding of hindlimb dynamics during other recent discoveries that homologous muscles across terrestrial locomotion. Three dynamic stance phase quadrupeds often do not move joints the same way as is periods were recognized: limb-loading, support-and- commonly assumed. Although alligators are commonly propulsion, and limb-unloading phases. Shear stresses due considered models for early semi-erect tetrapod to torsion were maximized during the limb-loading phase, locomotion, many aspects of hindlimb kinematics, muscle during which the ground reaction force (GRF) and activity patterns, and femoral loading patterns in caudofemoralis (CFL) muscles generated opposing alligators appear to be derived in alligators rather than moments about the femur. Hindlimb retraction during reflecting an ancestral semi-erect condition. the subsequent stance-and-propulsion phase involves substantial medial rotation of the femur, powered largely by coordinated action of the GRF and CFL. Several Key words: locomotion, kinematics, kinetics, bone strain, motor muscles that actively shorten to flex and extend limb joints patterns, alligator. Introduction Terrestrial tetrapods use diverse limb postures during broad patterns in the mechanics and dynamics of tetrapod limb locomotion, ranging from the highly sprawling posture of movements (e.g. Cavagna et al., 1977; Biewener 1989, 1990; salamanders and some lizards (in which the limbs are held out Alexander and Jayes, 1983; Hildebrand, 1976; Demes et al., to the side of the body; Ashley-Ross, 1994a,b; Reilly and 1994; Blickhan and Full, 1992). However, an increasing DeLancey; 1997a,b; Rewcastle, 1981) to the parasagittal number of studies on limb function in tetrapods using non- posture of birds and many mammals (in which the limbs are parasagittal limb postures have identified major differences in held more directly beneath the body; Jenkins, 1971; Reilly, limb mechanics between animals that use parasagittal limb 2000; Gatesy, 1990). Between these extremes, several species movements versus those that use non-parasagittal limb use intermediate postures (Jenkins, 1971; Gatesy, 1997; movements (Blob and Biewener, 1999, 2001; Reilly and Blob, Pridmore, 1985), and some, such as crocodilians and some 2003; Parchman et al., 2003; Willey et al., 2004). Among the lizards (e.g. iguanas), are capable of using a range of limb foremost of these differences is the contrasting loading regimes postures even over a restricted range of speeds (Gatesy, 1991; found in the limb bones. Although there are some exceptions Reilly and Elias, 1998; Blob and Biewener, 1999, 2001; Reilly (e.g. the femora of chickens; Carrano, 1998), the limb bones and Blob, 2003). Studies of several different aspects of of species using parasagittal limb movements are primarily terrestrial locomotion in mammalian and avian species using loaded in bending or axial compression (Alexander, 1974; parasagittal limb postures provided a foundation for discerning Rubin and Lanyon, 1982; Biewener et al., 1983, 1988). In THE JOURNAL OF EXPERIMENTAL BIOLOGY 994 S. M. Reilly and others contrast, torsional loads exceed bending loads in species using bipedal species (kangaroos, birds, humans). To date, no study non-parasagittal posture that have been examined to date has combined analyses of locomotor forces, limb bone loads, (alligators and iguanas; Blob and Biewener, 1999, 2001). motor patterns, kinematics and foot fall patterns to evaluate Though torsional loads are clearly present in the limb bones how a non-erect quadrupedal animal supports its body weight of the non-parasagittal species that have been tested, the and generates propulsive forces with its limbs. underlying causes of this torsion remain to be clarified. In the In this study, we present an integrative analysis of few vertebrates that have been found to exhibit strong torsional propulsive dynamics in the hindlimb of the American alligator loading of limb bones (e.g. walking chickens, flying bats and (Alligator mississippiensis Daudin). By integrating data on birds; Pennycuick, 1967; Swartz et al., 1992; Biewener and limb forces, bone loads, kinematics and motor patterns, we are Dial, 1995; Carrano, 1998), these torsional loads are believed able to evaluate specific questions about locomotor mechanics to be induced by locomotor forces acting at a distance from the in this species. In particular, we assess the potential long axis of the limb bone which, therefore, generate a mechanisms underlying limb bone torsion during non- torsional moment. In species using non-parasagittal terrestrial parasagittal locomotion in alligators. Additionally, our locomotion, two different forces are likely to act at a distance analyses allow us to refine evaluations of limb muscle function from limb bone long axes and potentially contribute to and the roles that these muscles play in supporting body weight torsional moments. First, because species using non- and retracting the limb. Based on limb movement, force and parasagittal locomotion hold their limbs out to the side of the motor pattern data, we distinguish three dynamic phases during body for much of limb support, the ground reaction force hindlimb stance: a limb-loading phase, a support-and- (GRF) will be directed either anterior or posterior to the long propulsive phase, and a limb-unloading phase. Comparisons of axis of limb bones for most of the step in these animals (Blob locomotor patterns among tetrapods suggest that limb function, and Biewener, 1999, 2001). At the same time, the GRF will be forces, and the use of femoral rotation in alligators may be directed more nearly perpendicular to the femur of non- quite different from patterns understood for other species that parasagittal animals than it will be in parasagittal animals. As use either more sprawling or more erect limb posture. These a result, the GRF will tend to rotate limb bones about their long results suggest that species using non-parasagittal posture may axis in these species, contributing to torsional loading. Second, exhibit considerable diversity in their locomotor mechanics. the major limb retractor muscle in many non-parasagittal Furthermore, tail dragging has been shown to have serious species (including alligators and iguanas) is the caudofemoralis consequences for locomotor mechanics in alligators (Willey et longus (CFL), which inserts on the ventral surface of the al., 2004) which are borne out in patterns of femoral function proximal femur (Snyder, 1962; Reilly, 1995; Gatesy, 1997). in this study. Thus, distinctive features of locomotor dynamics When this muscle contracts to retract the leg during the stance in alligators may be a consequence of dragging the tail rather phase of locomotion, it acts at a distance from the long axis of than general features of non-parasagittal postures. the femur equal to the radius of the bone, and this distance is a moment arm for long axis rotation of the femur. Thus, contraction of CFL should produce inward (medial) rotation of Materials and methods the femur and torsional loading. This analysis re-examines and synthesizes data that were Though both
Recommended publications
  • Forelimb Position Affects Facultative Bipedal Locomotion in Lizards Chase T
    © 2018. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2018) 221, jeb185975. doi:10.1242/jeb.185975 RESEARCH ARTICLE Forelimb position affects facultative bipedal locomotion in lizards Chase T. Kinsey* and Lance D. McBrayer‡ ABSTRACT 2004; Clark and Higham, 2011; Tucker and McBrayer, 2012; Parker Recent work indicates that bipedal posture in lizards is advantageous and McBrayer, 2016). During predation events or social ’ during obstacle negotiation. However, little is known about how interactions, a terrestrial vertebrate s behavior, speed and stability bipedalism occurs beyond a lizard’s acceleratory threshold. traversing obstacles may impinge upon their survivorship and/or Furthermore, no study to date has examined the effects of forelimb fitness (Stiller and McBrayer, 2013; Schulte et al., 2004; Arnold, position on the body center of mass (BCoM) in the context of 1983; but see Garland and Losos, 1994). bipedalism. This study quantified the frequency of bipedalism when Stereotyped limb movement in quadrupedal locomotion, or gait, sprinting with versus without an obstacle at 0.8 m from the start of a has predictable footfalls across various speeds (Snyder, 1952, 1954, sprint. Forelimb positions were quantified during bipedal running at 1962; Irschick and Jayne, 1999; Farley and Ko, 1997). Some the start of a sprint and when crossing an obstacle. Two species with terrestrial lizards alter their gait and/or posture while sprinting contrasting body forms (and thus different BCoM) were studied (Schuett et al., 2009; for review, see Russell and Bels, 2001). (Sceloporus woodi and Aspidoscelis sexlineata) to assess potential Facultative bipedalism occurs in some quadrupeds when only the variation due to body plan and obstacle-crossing behavior.
    [Show full text]
  • Development and the Evolvability of Human Limbs
    Development and the evolvability of human limbs Nathan M. Younga,1, Günter P. Wagnerb, and Benedikt Hallgrímssonc aDepartment of Orthopaedic Surgery, University of California, San Francisco, CA 94110; bDepartment of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06405; and cDepartment of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada T2N4N1 Edited* by David Pilbeam, Harvard University, Cambridge, MA, and approved December 29, 2009 (received for review October 14, 2009) The long legs and short arms of humans are distinctive for a fore- and hindlimb modules was reduced, leading to a higher primate, the result of selection acting in opposite directions on degree of variational independence of limb size and shape. Our each limb at different points in our evolutionary history. This model predicts that selection for independent function of the mosaic pattern challenges our understanding of the relationship limbs should lead to alterations to limb covariational structure. of development and evolvability because limbs are serially homol- Specifically, humans and apes would be predicted to exhibit ogous and genetic correlations should act as a significant con- decreased phenotypic correlations between fore- and hindlimb straint on their independent evolution. Here we test a compared to quadrupeds. If decreases in integration between developmental model of limb covariation in anthropoid primates fore- and hindlimb are a product of selection for more inde- and demonstrate that both humans and apes exhibit significantly pendent function of limbs, then the timing of any change in reduced integration between limbs when compared to quadrupe- integration has implications for the reconstruction of ancestral dal monkeys.
    [Show full text]
  • New Transitional Fossil from Late Jurassic of Chile Sheds Light on the Origin of Modern Crocodiles Fernando E
    www.nature.com/scientificreports OPEN New transitional fossil from late Jurassic of Chile sheds light on the origin of modern crocodiles Fernando E. Novas1,2, Federico L. Agnolin1,2,3*, Gabriel L. Lio1, Sebastián Rozadilla1,2, Manuel Suárez4, Rita de la Cruz5, Ismar de Souza Carvalho6,8, David Rubilar‑Rogers7 & Marcelo P. Isasi1,2 We describe the basal mesoeucrocodylian Burkesuchus mallingrandensis nov. gen. et sp., from the Upper Jurassic (Tithonian) Toqui Formation of southern Chile. The new taxon constitutes one of the few records of non‑pelagic Jurassic crocodyliforms for the entire South American continent. Burkesuchus was found on the same levels that yielded titanosauriform and diplodocoid sauropods and the herbivore theropod Chilesaurus diegosuarezi, thus expanding the taxonomic composition of currently poorly known Jurassic reptilian faunas from Patagonia. Burkesuchus was a small‑sized crocodyliform (estimated length 70 cm), with a cranium that is dorsoventrally depressed and transversely wide posteriorly and distinguished by a posteroventrally fexed wing‑like squamosal. A well‑defned longitudinal groove runs along the lateral edge of the postorbital and squamosal, indicative of a anteroposteriorly extensive upper earlid. Phylogenetic analysis supports Burkesuchus as a basal member of Mesoeucrocodylia. This new discovery expands the meagre record of non‑pelagic representatives of this clade for the Jurassic Period, and together with Batrachomimus, from Upper Jurassic beds of Brazil, supports the idea that South America represented a cradle for the evolution of derived crocodyliforms during the Late Jurassic. In contrast to the Cretaceous Period and Cenozoic Era, crocodyliforms from the Jurassic Period are predomi- nantly known from marine forms (e.g., thalattosuchians)1.
    [Show full text]
  • Analysis of Hindlimb Muscle Moment Arms in Tyrannosaurus Rex Using a Three-Dimensional Musculoskeletal Computer Model: Implications for Stance, Gait, and Speed
    Paleobiology, 31(4), 2005, pp. 676±701 Analysis of hindlimb muscle moment arms in Tyrannosaurus rex using a three-dimensional musculoskeletal computer model: implications for stance, gait, and speed John R. Hutchinson, Frank C. Anderson, Silvia S. Blemker, and Scott L. Delp Abstract.ÐMuscle moment arms are important determinants of muscle function; however, it is chal- lenging to determine moment arms by inspecting bone specimens alone, as muscles have curvilin- ear paths that change as joints rotate. The goals of this study were to (1) develop a three-dimen- sional graphics-based model of the musculoskeletal system of the Cretaceous theropod dinosaur Tyrannosaurus rex that predicts muscle-tendon unit paths, lengths, and moment arms for a range of limb positions; (2) use the model to determine how the T. rex hindlimb muscle moment arms varied between crouched and upright poses; (3) compare the predicted moment arms with previous assessments of muscle function in dinosaurs; (4) evaluate how the magnitudes of these moment arms compare with those in other animals; and (5) integrate these ®ndings with previous biome- chanical studies to produce a revised appraisal of stance, gait, and speed in T. rex. The musculo- skeletal model includes ten degrees of joint freedom (¯exion/extension, ab/adduction, or medial/ lateral rotation) and 33 main muscle groups crossing the hip, knee, ankle, and toe joints of each hindlimb. The model was developed by acquiring and processing bone geometric data, de®ning joint rotation axes, justifying muscle attachment sites, and specifying muscle-tendon geometry and paths. Flexor and extensor muscle moment arms about all of the main limb joints were estimated, and limb orientation was statically varied to characterize how the muscle moment arms changed.
    [Show full text]
  • 285 Metamorphic and Speed Effects on Hindlimb Kinematics During Terrestrial Locomotion in the Salamander Dicamptodon Tenebrosus
    J. exp. Biol. 193, 285–305 (1994) 285 Printed in Great Britain © The Company of Biologists Limited 1994 METAMORPHIC AND SPEED EFFECTS ON HINDLIMB KINEMATICS DURING TERRESTRIAL LOCOMOTION IN THE SALAMANDER DICAMPTODON TENEBROSUS MIRIAM A. ASHLEY-ROSS Department of Ecology and Evolutionary Biology, University of California at Irvine, Irvine, CA 92717, USA Accepted 26 April 1994 Summary The kinematics of the hindlimb during terrestrial treadmill locomotion in Dicamptodon tenebrosus were compared between larval and metamorphosed individuals at different speeds. Coordinates of marker points on the salamander’s midline, pelvic girdle and left hindlimb were digitized from high-speed videos (200 fields s21). These yielded kinematic variables describing trunk flexion, pelvic girdle rotation, femoral protraction/retraction and knee flexion/extension. A three-way analysis of variance tested for mean differences among individuals, speeds and metamorphic stages for each variable. No significant overall effects of metamorphosis were found, although several variables showed significant stage 3 individual effects. Multivariate analyses revealed that the variance in kinematics of the larvae was significantly greater than that of the metamorphosed salamanders. Several variables showed significant speed effects or strong trends, among them stride length (increases with speed), cycle duration (decreases), contact interval (decreases) and phase variables describing the relative timing between minimum/maximum angles and the beginning of stance/swing phase. Such changes with speed are consistent with those shown for diverse arthropods and tetrapods and suggest that changes in stride length and timing events during a stride represent a general mechanism for effecting an increase in locomotor speed. Introduction Amphibian metamorphosis has long been of interest to students of vertebrate and developmental biology because of the pronounced changes in bodily form and habits which occur over a relatively short span of time (Noble, 1931; Duellman and Trueb, 1986).
    [Show full text]
  • Fins to Limbs: What the Fossils Say1
    EVOLUTION & DEVELOPMENT 4:5, 390–401 (2002) Fins to limbs: what the fossils say1 Michael I. Coates,a,* Jonathan E. Jeffery,b and Marcello Rutaa aDepartment of Organismal Biology and Anatomy, University of Chicago, 1027 E57th Street, Chicago, IL 60637, USA bInstitute of Evolutionary and Ecological Sciences, Leiden University, Kaiserstraat 63, Postbus 9516, 2300 RA Leiden, The Netherlands *Author for correspondence (email: [email protected]) 1From the symposium on Starting from Fins: Parallelism in the Evolution of Limbs and Genitalia. SUMMARY A broad phylogenetic review of fins, limbs, and highlight a large data gap in the stem group preceding the first girdles throughout the stem and base of the crown group is appearance of limbs with digits. It is also noted that the record needed to get a comprehensive idea of transformations unique of morphological diversity among stem tetrapods is somewhat to the assembly of the tetrapod limb ground plan. In the lower worse than that of basal crown group tetrapods. The pre-limbed part of the tetrapod stem, character state changes at the pecto- evolution of stem tetrapod paired fins is marked by a gradual re- ral level dominate; comparable pelvic level data are limited. In duction in axial segment numbers (mesomeres); pectoral fins of more crownward taxa, pelvic level changes dominate and re- the sister group to limbed tetrapods include only three. This re- peatedly precede similar changes at pectoral level. Concerted duction in segment number is accompanied by increased re- change at both levels appears to be the exception rather than gional specialization, and these changes are discussed with the rule.
    [Show full text]
  • Mobility and Gait Measure Instruments for the Hindlimb Functional Assessment of the Dog
    Luísa Carneiro Vasconcelos Basto Gonçalves Mobility and Gait Measure Instruments for the Hindlimb Functional Assessment of the Dog Tese de Candidatura ao grau de Doutor em Ciências Veterinárias submetida ao Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto. Orientador - Doutor Augusto José Ferreira de Matos Categoria - Professor Auxiliar Afiliação - Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto. Coorientador - Doutor Darryl L. Millis Categoria - Full Professor Afiliação - Small Animal Clinical Sciences University of Tennessee. Para ti, meu Avô, pela Nobreza da tua longa vida, pela presença sempre Forte mas subtil, pelo Sorriso aberto e Sincero que me aquecia o coração e abraçava a alma, pelo Amor sem medida a cada um de nós, por cada uma das lições despretensiosas de Carácter, de Rectidão, de Humildade, de Sacrifício e Dedicação à Família e ao trabalho, por teres feito de mim a Neta mais orgulhosa e feliz que corria para os teus braços a cada tempo livre, mas acima de tudo, agora, por continuares Comigo e eu ser capaz de o Sentir. DECLARATION The results from research and experimental work included in this thesis are part of the scientific articles and conference proceedings published in international journals, listed below. Scientific articles: Gonçalves, L., Simões, A. D., Millis, D. L., & Matos, A. J. (2016). Development of a scale to evaluate mobility in dogs. Ciência Rural, 46(12), 2210-2215. doi:10.1590/0103- 8478cr20160123 Conference proceedings: Gonçalves, L., Niza-Ribeiro, J., Millis, D. L., & Matos, A. J. (2016). Understanding the effect of individual characteristics on canine mobility: Dog Mobility Scale.
    [Show full text]
  • Body and Limb Size Dissociation at the Origin of Birds: Uncoupling Allometric Constraints Across a Macroevolutionary Transition
    ORIGINAL ARTICLE doi:10.1111/evo.12150 BODY AND LIMB SIZE DISSOCIATION AT THE ORIGIN OF BIRDS: UNCOUPLING ALLOMETRIC CONSTRAINTS ACROSS A MACROEVOLUTIONARY TRANSITION T. Alexander Dececchi1,2 and Hans C. E. Larsson3 1Biology Department, University of South Dakota, 414 E Clark Street, Vermillion, South Dakota 57069 2E-mail: [email protected] 3Redpath Museum, McGill University, 859 Sherbrooke Street West, Montreal, Quebec H3A 2K6 089457 Received May 30, 2012 Accepted April 17, 2013 The origin of birds and powered flight is a classic major evolutionary transition. Research on their origin often focuses on the evolution of the wing with trends of forelimb elongation traced back through many nonavian maniraptoran dinosaurs. We present evidence that the relative forelimb elongation within avian antecedents is primarily due to allometry and is instead driven by a reduction in body size. Once body size is factored out, there is no trend of increasing forelimb length until the origin of birds. We report that early birds and nonavian theropods have significantly different scaling relationships within the forelimb and hindlimb skeleton. Ancestral forelimb and hindlimb allometric scaling to body size is rapidly decoupled at the origin of birds, when wings significantly elongate, by evolving a positive allometric relationship with body size from an ancestrally negative allometric pattern and legs significantly shorten by keeping a similar, near isometric relationship but with a reduced intercept. These results have implications for the evolution of powered flight and early diversification of birds. They suggest that their limb lengths first had to be dissociated from general body size scaling before expanding to the wide range of fore and hindlimb shapes and sizes present in today’s birds.
    [Show full text]
  • Terrestrial Force Production by the Limbs of a Semi-Aquatic Salamander Provides Insight Into The
    bioRxiv preprint doi: https://doi.org/10.1101/2021.05.01.442256; this version posted May 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Terrestrial force production by the limbs of a semi-aquatic salamander provides insight into the 2 evolution of terrestrial locomotor mechanics 3 4 Sandy M. Kawano1*, and Richard W. Blob2 5 6 1Department of Biological Sciences, The George Washington University, Washington, D.C. 7 20052, U.S.A. 8 2Department of Biological Sciences, Clemson University, Clemson, SC 29634, U.S.A. 9 10 *Corresponding author. E-mail: [email protected] 11 12 Running title: Kinetics of fins and limbs on land 13 Keywords: biomechanics, ground reaction force, terrestrial locomotion, salamander, fish, water- 14 to-land transition 15 16 # of tables: 7 # of figures: 3 17 Total word count (Intro, Results, Discussion, Acknowledgements, Funding, Conclusion, Figure 18 legends): 1107 + 4012 + 884 = 6003 19 20 Summary statement (15-30 words): Semi-aquatic salamanders had limb mechanics that were 21 intermediate in magnitude yet steadier than the appendages of terrestrial salamanders and 22 semi-aquatic fish, providing a framework to model semi-aquatic early tetrapods. Page 1 of 34 bioRxiv preprint doi: https://doi.org/10.1101/2021.05.01.442256; this version posted May 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 23 ABSTRACT 24 Amphibious fishes and salamanders are valuable functional analogs for vertebrates that 25 spanned the water-to-land transition.
    [Show full text]
  • Evolution, Homology, and Development of Tetrapod Limb Muscles
    diversity Review Evolution, Homology, and Development of Tetrapod Limb Muscles Julia L. Molnar 1,* and Rui Diogo 2 1 Department of Anatomy, New York Institute of Technology, College of Osteopathic Medicine, Northern Boulevard, Old Westbury, NY 11568, USA 2 Department of Anatomy, Howard University College of Medicine, 520 W St NW, Washington, DC 20059, USA; [email protected] * Correspondence: [email protected] Abstract: Since the early 1900s, researchers have attempted to unravel the origin and evolution of tetrapod limb muscles using a combination of comparative anatomy, phylogeny, and development. The methods for reconstructing soft tissues in extinct animals have been refined over time as our abil- ity to determine muscle homology and phylogenetic relationships between tetrapods has improved. Since many muscles do not leave osteological correlates, muscle reconstruction in extinct animals is largely based on anatomy and development in extant animals. While muscle anatomy in extant tetrapods is quite conservative, the homologies of certain muscles between taxonomic groups are still uncertain. Comparative developmental studies can help to resolve these controversies, as well as revealing general patterns of muscle morphogenesis across tetrapod groups. We review the methods, results, and controversies in the muscle reconstructions of early members of the amniote, mammalian, and lissamphibian lineages, including recent attempts to reconstruct limb muscles in members of the tetrapod stem group. We also review the contribution of recent comparative developmental studies toward understanding the evolution of tetrapod limb muscles, including morphogenic gradients, Citation: Molnar, J.L.; Diogo, R. the origin of paired fins, and the evolution of morphological complexity. Finally, we discuss the role Evolution, Homology, and of broad, comparative myological studies as part of an integrative research program on vertebrate Development of Tetrapod Limb evolutionary biology.
    [Show full text]
  • Biomechanics and Structural Adaptations of the Rat Femur After Hindlimb Suspension and Treadmill Running
    330Brazilian Journal of Medical and Biological Research (2009) 42: 330-338 M.M. Shimano and J.B. Volpon ISSN 0100-879X Biomechanics and structural adaptations of the rat femur after hindlimb suspension and treadmill running M.M. Shimano and J.B. Volpon Laboratório de Bioengenharia, Departamento de Biomecânica, Medicina e Reabilitação do Aparelho Locomotor, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil Correspondence to: J.B. Volpon, Laboratório de Bioengenharia, FMRP, USP, Av. Bandeirantes, 3900, 14049-900 Ribeirão Preto, SP, Brasil Fax: +55-16-3633-3063. E-mail: [email protected] or [email protected] We microscopically and mechanically evaluated the femurs of rats subjected to hindlimb unloading (tail suspension) followed by treadmill training. Female Wistar rats were randomly divided into five groups containing 12-14 rats: control I (118 days old), control II (139 days old), suspended (tail suspension for 28 days), suspended-released (released for 21 days after 28 days of suspension), and suspended-trained (trained for 21 days after 28 days of suspension). We measured bone resistance by bending-compression mechanical tests of the entire proximal half of the femur and three-point bending tests of diaphyseal cortical bone. We determined bone microstructure by tetracycline labeling of trabecular and cortical bone. We found that tail suspension weakened bone (ultimate load = 86.3 ± 13.5 N, tenacity modulus = 0.027 ± 0.011 MPa·m vs ultimate load = 101.5 ± 10.5 N, tenacity modulus = 0.019 ± 0.006 MPa·m in control I animals). The tenacity modulus for suspended and released animals was 0.023 ± 0.010 MPa·m vs 0.046 ± 0.018 MPa·m for trained animals and 0.035 ± 0.010 MPa·m for control animals.
    [Show full text]
  • The Evolutionary Continuum of Limb Function from Early Theropods to Birds
    Naturwissenschaften DOI 10.1007/s00114-008-0488-3 REVIEW The evolutionary continuum of limb function from early theropods to birds John R. Hutchinson & Vivian Allen Received: 15 September 2008 /Revised: 19 November 2008 /Accepted: 20 November 2008 # Springer-Verlag 2008 Abstract The bipedal stance and gait of theropod dino- of neontological and palaeontological evidence and quan- saurs evolved gradually along the lineage leading to birds titative assessment of limb function cautiously applied with and at some point(s), flight evolved. How and when did validated techniques and sensitivity analysis of unknown these changes occur? We review the evidence from variables. neontology and palaeontology, including pectoral and pelvic limb functional morphology, fossil footprints/track- Keywords Dinosaur . Bird . Evolution . Flight . ways and biomechanical models and simulations. We Locomotion . Biomechanics . Theropod emphasise that many false dichotomies or categories have been applied to theropod form and function, and some- times, these impede research progress. For example, Introduction dichotomisation of locomotor function into ‘non-avian’ and ‘avian’ modes is only a conceptual crutch; the evidence Nineteenth-century scientists were quickly struck by the supports a continuous transition. Simplification of pelvic similarities between the pectoral (fore) and especially pelvic limb function into cursorial/non-cursorial morphologies or (hind) limbs of theropod dinosaurs such as Compsognathus flexed/columnar poses has outlived its utility. For the and Megalosaurus on one hand and living birds on the pectoral limbs, even the classic predatory strike vs. flight other (Gegenbaur 1864; Huxley 1868). This similarity to wing-stroke distinction and separation of theropods into them, as it still does us today, implied similar limb function non-flying and flying—or terrestrial and arboreal—catego- and even stance, gait or locomotor dynamics.
    [Show full text]