Efficient Lighting Using Compact Fluorescent Lamps and Fixtures
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Compact Fluorescent Light Bulbs
Compact Fluorescent Light Bulbs What is a compact fluorescent lamp (CFL) bulb? A CFL bulb is a type of fluorescent bulb that screws into a standard light socket, such as a lamp or ceiling light fixture. CFLs use much less energy and last up to 10 times longer than standard light bulbs. What is in a compact fluorescent lamp (CFL) bulb? A CFL bulb is made of glass, a ceramic and metal base, a luminous powder called phosphor, and a small amount of mercury. How much mercury is contained in a CFL bulb? Manufacturers report that the amount of mercury contained in a CFL bulb is five milligrams, which is less than two ten-thousandths of an ounce. The mercury could be in the form of an invisible vapor or in a bead the size of the period at the end of this sentence. A mercury fever thermometer contains about 100 times more mercury than a CFL bulb. Is it harmful is it to be in the room where a CFL bulb has broken? The amount of mercury vapor that is released from one broken bulb is not enough to make anyone sick. However, it is best to avoid any exposure to mercury. We recommend that you ventilate the room air to the outdoors by opening a window or a door and leave the room for a few hours before cleaning up the broken bulb. How should I clean up a broken CFL bulb? It is not necessary to hire a professional to clean up the bulb. By following the directions below, you can safely clean up a broken CFL bulb. -
Comparison of Life-Cycle Analyses of Compact Fluorescent and Incandescent Lamps Based on Rated Life of Compact Fluorescent Lamp
Comparison of Life-Cycle Analyses of Compact Fluorescent and Incandescent Lamps Based on Rated Life of Compact Fluorescent Lamp Laurie Ramroth Rocky Mountain Institute February 2008 Image: Compact Fluorescent Lamp. From Mark Stozier on istockphoto. Abstract This paper addresses the debate over compact fluorescent lamps (CFLs) and incandescents through life-cycle analyses (LCA) conducted in the SimaPro1 life-cycle analysis program. It compares the environmental impacts of providing a given amount of light (approximately 1,600 lumens) from incandescents and CFLs for 10,000 hours. Special attention has been paid to recently raised concerns regarding CFLs—specifically that their complex manufacturing process uses so much energy that it outweighs the benefits of using CFLs, that turning CFLs on and off frequently eliminates their energy-efficiency benefits, and that they contain a large amount of mercury. The research shows that the efficiency benefits compensate for the added complexity in manufacturing, that while rapid on-off cycling of the lamp does reduce the environmental (and payback) benefits of CFLs they remain a net “win,” and that the mercury emitted over a CFL’s life—by power plants to power the CFL and by leakage on disposal—is still less than the mercury that can be attributed to powering the incandescent. RMI: Life Cycle of CFL and Incandescent 2 Heading Page Introduction................................................................................................................... 5 Background................................................................................................................... -
Fluorescent Lighting About the Guide
RESPONSIBLE PURCHASING GUIDE fluorescent lighting About the Guide The Responsible Purchasing Guide for Lighting is published by the Responsible Purchasing Network in print, as a PDF file, and on the web. Print and PDF copies are available to the public for purchase. The online edi- tion includes additional resources available to members of the Responsible Purchasing Network, including: searchable product listings, multiple policy and specification samples, comparisons of standards, and related documents. Visit www.ResponsiblePurchasing.org to purchase a copy or to access the members-only web- based edition of the Guide. Responsible Purchasing Network © 2007 About the Responsible Purchasing Network The Responsible Purchasing Network (RPN) was founded in 2005 as the first national network of procurement-related professionals dedicated to socially and environmentally responsible purchasing. RPN is a program of the Center for a New American Dream (www.newdream.org) and guided by a volunteer Steering Committee of leading procurement stakeholders from government, industry, educational institutions, standards setting organizations, and non-profit advocacy organizations. Acknowledgements The Responsible Purchasing Network (RPN) would like to thank the following people for assisting with the development of this Guide. Their expertise helped to ensure quality and accuracy, though RPN alone accepts responsibility for any errors or omissions. Affiliations listed below were current when input was provided to RPN and are listed for identification purposes -
Evaluation of Electric Lighting Products
U.S. CONSUMER PRODUCT SAFETY COMMISSION DIRECTORATE FOR ENGINEERING SCIENCES EVALUATION OF ELECTRIC LIGHTING PRODUCTS December 2007 Anna Luo Electrical Engineer Division of Electrical Engineering Directorate for Engineering Sciences This report has not been reviewed or approved by, and may not necessarily reflect the views of, the Commission. Table of Contents I. INTRODUCTION...................................................................................................................... 1 II. PROJECT OUTLINE................................................................................................................ 1 III. VOLUNTARY STANDARDS................................................................................................ 1 IV. TERMINOLOGY.................................................................................................................... 2 V. PRODUCT CHARACTERISTICS........................................................................................... 3 VI. TASK 1 – Review of Incident Data......................................................................................... 4 A. Portable Lighting Incidents ............................................................................................ 4 B. Installed Lighting Incidents............................................................................................ 5 C. Incidents Associated with Other Factors........................................................................ 6 VII. TASK 2 - Inspection of Collected Samples .......................................................................... -
Skylighter™ Brand Fluorescent Strobe Lighting
Skylighter™ Brand Fluorescent Strobe Lighting Operator’s Manual Skylighter CFF2 Skylighter CFF4 Skylighter CFF8 OPERATOR MANUAL FOR SKYLIGHTER Skylighter CFF2 Skylighter CFF4 Skylighter CFF8 Thank you for selecting the Photogenic Professional Skylighter CFF series. The CFF series incorporates the newest electronic components, lamps, reflectors, and diffusion panels providing improved lighting distribution and control. These products are built for the demanding operational needs of the professional photographer and it is our expectation that your Skylighter CFF will provide you with years of dependable service. INTRODUCTION The Skylighter CFF series are an extremely diffused light head and require an external power supply. They have one, two, or four professional, plug-in, linear flashtubes, and one, two, or four non-adjustable, linear, fluorescent modeling lamps. The Skylighter CFF series are stand mounted on a strong, rotating yoke, but may be ceiling hung, as required. Before using your new Skylighter CFF for the first time, please read this manual carefully and acquaint yourself with the controls and features. In this way, you can quickly get the greatest benefit from your new unit and maintain an efficient and safe operation. SAFETY PRECAUTIONS Despite the measures that have been taken to make electronic flash equipment safe, it must be recognized that high voltages and high temperatures do exist within the power supply / lighting unit. Certain precautions must be observed in handling the unit. Contact with internal high voltage may result in severe injury or death. 1. Before installing or removing the flashtubes and modeling lamps, be sure this appliance is turned off, cooled and unplugged from AC power source and external power supply. -
Fluorescent Lamp
FLUORESCENT LAMP SELECTION GUIDE FEBRUARY 2015 Keystone presents the easiest solution for high performance, high efficiency lamps. With long life and exceptional reliability, Keystone energy efficient lamps provide the same high quality you have come to expect from Keystone. When installing Keystone lamps and ballasts together, you experience the industry’s best warranty program and a lighting system that is guaranteed to perform. FEATURES AND BENEFITS • High Color Rendering Index • Lumen Maintenance of Up to 94% • Eco-Friendly and TCLP Compliant • Energy Efficient • Long Life: Up to 36,000 Hours • Reduced Maintenance and Disposal Costs KEYSTONE FLUORESCENT SYSTEM WARRANTY Keystone Standard Lamp Warranty Period Keystone Fluorescent System Warranty Period 24 months 36 months (Lamp Portion) We proudly stand behind all of our products. By pairing a Keystone lamp with a Keystone ballast, customers are eligible for a 36-month Keystone Fluorescent System Warranty. The Keystone Fluorescent System Warranty extends the standard 24-month warranty included with our lamps by an additional 12 months. In the event that you need to utilize our warranty, we’ll work with you to make it easy and hassle-free. Visit www.keystonelamp.com for more details. LIGHTING COLOR GUIDE Warm Light Neutral Light Cool Light Warm White Color, Warm Tones Neutral to Bright White Color, Neutral or Cooler Tones Cool White Color, Cooler Daylight Tones 2600K 3500K 4100K 5000K 6500K ELECTRICAL SPECIFICATIONS T5 Linear Rated Average Life3 Nominal Base Nominal Case Color Temp. Initial -
Compact Fluorescent Lamps
Office of Compliance fast facts advancing safety, health, and workplace rights in the legislative branch January 2009 Compact Fluorescent Lamps Environmental issues are a top priority for many Fluorescent lamps contain a organizations. These days, it's hard to watch TV small amount of mercury vapor without hearing how businesses and institutions can - approximately 5 milligrams - help the environment by "going green." One sealed within the glass tubing. increasingly popular way of contributing to the Mercury, at atmospheric pres- green movement is to install compact fluorescent sure, is a silver colored liquid lamps (CFLs), a fluorescent bulb designed to emit that tends to form balls. Mercury as much light as traditional light bulbs while using is a hazardous substance that can less energy. CFLs use about 75 percent less energy be inhaled, absorbed through the Figure 2:Burnt out CFL than standard incandescent bulbs and can last up to skin, and ingested. It is a neurotoxin that can cause - 10 times longer. CFLs also produce about 75 among many additional symptoms - tremors, insom- percent less heat, so they're safer to operate and can nia, lassitude, weight-loss, and emotional distur- cut building cooling bances. Because CFLs contain a small amount of costs. mercury, they should be recycled rather than thrown out in the trash. Fluorescent light bulbs (including compact Mercury is a critical component of CFLs and is the fluorescents) are more substance that allows the lamp to turn on. No mer- energy-efficient than cury is released when the lamps are intact or in use, regular bulbs because and if the lamp is disposed of properly, mercury in Figure 1: Compact Fluorescent Lamp of the different method CFLs shouldn't be an environmental, safety, or they use to produce health hazard. -
Light Bulbs + Sockets Light Bulbs + Sockets Prices See Main Assortment Shop.Griederbauteile.Ch Prices See Treasure Trove Shop.Griederbauteile.Ch
Light Bulbs + Sockets Light Bulbs + Sockets Prices see Main Assortment shop.griederbauteile.ch Prices see Treasure Trove shop.griederbauteile.ch E10 Page 2 – 3 Multi LED Page 3 E5/8 + E5.5/16 Page 4 E14 E27 + E40 (Projection Lamps) Page 5 T2 Ba7s Ba9s Page 6 + 7 Ba15s + Ba15d Page 7 Ba20s + Ba20d Page 8 T¾ Page 8 + 9 T1 T¼ + T1½ + T1¾ Page 9 – 13 Special Bulbs + Wedge Base Page 14 LED Lamps + Projection Lamps Page 15 Halogen + Fluorescent Page 16 Festoon Page 17 Telecommunication Bulbs Page 17 – 20 Glow Lamps Page 20 Indicator Lights Page 21 Sockets Page 21 – 23 Subject to alterations and errors. www.griederbauteile.ch Pictures are a guide only. 1 Edition April 2017 Light Bulbs + Sockets Light Bulbs E10 Spherical Shape Order No Voltage Current Pow er Bailey Number EBA.0110 1.5V 100mA 150mW E24001090 EBA.0210 2.5V 100mA 250mW E24001100 EBA.0230 2.5V 300mA 750mW E24002300 EBA.0407 3.8V 80mA 266mW E24003070 EBA.0430 3.8V 300mA 1140mW E24003301 EBA.0605 6V 50mA 300mW E24006050 EBA.0610 6V 100mA 600mW E24006100 EBA.0630 6V 300mA 1800mW E24006300 EBA.1205 12V 50mA 600mW E24012050 EBA.1210 12V 100mA 1200mW E24012100 EBA.1225 12V 250mA 3W E24012250 EBA.2402 24V 20mA 480mW EBA.2405 24V 50mA 1200mW E24024050 EBA.2412 24V 125mA 3W E24024125 EBA.3602 36V 20mA 720mW EBA.3605 36V 50mA 1800mW E24036050 EBA.3608 36V 83mA 3W EBA.4802 48V 20mA 960mW EBA.4804 48V 40mA 1920mW EBA.4806 48V 63mA 3W EBA.6002 60V 20mA 1200mW EBA.6004 60V 40mA 2400mW Light Bulbs E10 Cylindrical Shape Order No Voltage Current Pow er Bailey Number EBB.0230 2.5V 300mA 850mW E28002300 -
History of Electric Light
SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 76. NUMBER 2 HISTORY OF ELECTRIC LIGHT BY HENRY SGHROEDER Harrison, New Jersey PER\ ^"^^3^ /ORB (Publication 2717) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION AUGUST 15, 1923 Zrtie Boxb QSaftitnore (prcee BALTIMORE, MD., U. S. A. CONTENTS PAGE List of Illustrations v Foreword ix Chronology of Electric Light xi Early Records of Electricity and Magnetism i Machines Generating Electricity by Friction 2 The Leyden Jar 3 Electricity Generated by Chemical Means 3 Improvement of Volta's Battery 5 Davy's Discoveries 5 Researches of Oersted, Ampere, Schweigger and Sturgeon 6 Ohm's Law 7 Invention of the Dynamo 7 Daniell's Battery 10 Grove's Battery 11 Grove's Demonstration of Incandescent Lighting 12 Grenet Battery 13 De Moleyns' Incandescent Lamp 13 Early Developments of the Arc Lamp 14 Joule's Law 16 Starr's Incandescent Lamp 17 Other Early Incandescent Lamps 19 Further Arc Lamp Developments 20 Development of the Dynamo, 1840-1860 24 The First Commercial Installation of an Electric Light 25 Further Dynamo Developments 27 Russian Incandescent Lamp Inventors 30 The Jablochkofif " Candle " 31 Commercial Introduction of the Differentially Controlled Arc Lamp ^3 Arc Lighting in the United States 3;^ Other American Arc Light Systems 40 " Sub-Dividing the Electric Light " 42 Edison's Invention of a Practical Incandescent Lamp 43 Edison's Three-Wire System 53 Development of the Alternating Current Constant Potential System 54 Incandescent Lamp Developments, 1884-1894 56 The Edison " Municipal -
Fluorescent Lamp Recycling and Disposal
Fluorescent Lamp Recycling and Disposal State of Hawaii, Department of Health 2020 Fluorescent Lamps Disclaimer: The listings of companies or services on this brochure are not complete and do not constitute an endorsement by the State of Hawaii Source Method Notes Regular household trash In case of breakage, wrap up bulbs in newspaper to prevent injury and mercury dispersion. Oahu, Maui, and Kauai Hawaii Island/Big Island please use County Household Hazardous Waste Drop-Off (see below) Accepts Compact Fluorescent Lamps (CFL) and tubes. For the next drop off day, please visit Oahu https://www.opala.org/solid_waste/Household_Hazardous_Waste.htm l City & County Household Hazardous Waste Maui Drop-off https://www.mauicounty.gov/742/Environmental-Protection- Sustainability- Household Kauai https://www.kauai.gov/hhw Hawaii Island/Big Island https://www.hawaiizerowaste.org/recycle/household-hazardous- waste/ Home Depot CFL drop boxes located inside the store. Place used/spent bulbs into prepaid shipping boxes. https://www.grainger.com/ https://www.aircycle.com/program/lamps/ Mail back system For additional mail back system options please visit: https://health.hawaii.gov/shwb/files/2014/10/Hauler-and-Recyclers- List-1008141.pdf Please use a hazardous or universal waste See Hazardous and universal waste haulers and recyclers list: Business hauler or recycler https://health.hawaii.gov/shwb/files/2014/10/Hauler-and-Recyclers- For questions please contact: State of Hawaii, Department of Health, Solid & Hazardous Waste Branch (808) 586-4226 . -
General Bulb
General Bulb Standard Ultra Bright 7 SMT LED Light-45859……………………………...…………………………..1 Standard Ultra Bright 6 Watt LED Light-78469……………………………………..…..……..………...1 Standard Ultra Bright Five 1 Watt LED Light-42522……..……………………………………………...2 Side Firing LED Light-45376………..……………………………………………………………………2 GU24 5 Watt LED Light-24325……………………………….……………………………………...…..2 Ultra Bright Candle LED Light-63452………………………...………………………………………….3 8 Watt LED Light Bulb-56963……………………………………………………………………………3 1.3 Watt LED Light Bulb-34678……………………...……………………………………………..……3 24 LED Light Bulb-48645……………………………………………………………………..………….4 3 Watt LED Light Bulb-75644……………….…………………………………………………………...4 104 LED 5 Watt LED Light Bulb-47208…………………………………………………………………4 Low Profile Candle E14 Base LED Light Bulb-34324………………………………………………..….5 Motion activated LED Light Bulb-45703…….…………………………………………………………..5 5 Watt LED Light-83428……………..…………………………………………………………………...5 8 ½ Watt L.E.D. Light Bulb-47856………………………………………………………………...……..6 13.5 Watt 88 Super Flux L.E.D. Light Bulb-43567…………………………………...………………….6 20 Watt 128 Super Flux L.E.D. Light Bulb-73215……………………………………………………….6 Globe LED Lamp E12 Base-19567…………….…………...………………………………………..…...7 High Power Appliance LED Light Bulb-83548…………………………….…………………………….7 1.5 Watt Appliance E17 Base LED Light Bulb-94753…………………………………………………...7 Standard 3 Watt LED Light Bulb-23430…………………………………………………………...……..8 7 Watt LED Light Bulb-74556……………….…………………………………………………………...8 11 Watt LED Light Bulb-34562…………………….……………...………..……………………………8 Globe LED Light Bulb-78427………………….…………………………………………………………9 -
Automotive Headlamp HID Ballast Reference Design Using the Dspic® DSC Device
AN1372 Automotive Headlamp HID Ballast Reference Design Using the dsPIC® DSC Device Compared with conventional halogen lamps, Xenon Author: Jin Wang lamps have features of high luminous efficacy, low Microchip Technology Inc. power consumption, good color rendering and long lamp life. Xenon lamp automotive headlamp systems INTRODUCTION greatly improve the safety of driving at night. In recent years, High Intensity Discharge (HID) lamps FIGURE 1: VOLTAGE AND CURRENT have been accepted as a good lighting source for OF HID LAMPS AT STEADY automotive headlight applications. However, the start- STATE up process of an automotive HID lamp is complex. It consists of six stages and each stage presents different V characteristics, which need different control strategies. A digitally controlled ballast has many advantages over the traditional analog approach: • Convenient implementation of sophisticated control algorithms • High performance operation • Effective protection • Very robust I • Low cost This application note focuses on the implementation of HID Electronic Ballast an automotive HID electronic ballast using a Microchip GS-series 16-bit Digital Signal Controller (DSC). HID lamps present a negative resistance characteristic, which is shown in Equation 1. HID Lamp EQUATION 1: NEGATIVE RESISTANCE Gas is a good insulator under normal conditions. CHARACTERISTIC However, special conditions such as a strong electric field, x-ray radiation, ion bombardment, and high dV lamp < temperature heat could lead to ionization of gas ----------------- 0 dIlamp molecules and produce free-charged particles. These charged particles can conduct current under an electric field, which is known as gas discharge. This means the ballast is unstable if the lamp was directly connected to a voltage source.