Acoustically-Levitated Drop Reactor (Ldr) Employable for Kinetics Measurements of Biochemical Networks

Total Page:16

File Type:pdf, Size:1020Kb

Acoustically-Levitated Drop Reactor (Ldr) Employable for Kinetics Measurements of Biochemical Networks ACOUSTICALLY-LEVITATED DROP REACTOR (LDR) EMPLOYABLE FOR KINETICS MEASUREMENTS OF BIOCHEMICAL NETWORKS BY ZAKIAH NACHÈ PIERRE DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemistry in the Graduate College of the University of Illinois at Urbana-Champaign, 2011 Urbana, Illinois Doctoral Committee: Professor Alexander Scheeline, Chair Professor Jonathan Sweedler Professor Andrzej Wieckowski Professor Arne J. Pearlstein ABSTRACT Accurate measurement of enzyme kinetics is an essential part of understanding the mechanisms of biochemical reactions. The typical means of studying such systems use stirred cuvettes, stopped-flow apparatus, microfluidic systems, or other small sample containers. These reaction-kinetics measurements reactors are usually made of quartz, glass, or an easily-moldable polymer such as polydimethylsiloxane. For studying enzyme kinetics or free radical chemistry, using small volumes with high concentrations is desirable, but interactions of biochemical moieties with these materials can be problematic. The main obstacle is that, as the system volume shrinks, the ratio of surface area to volume increases. As a result, the importance of adsorption can increase, and proteins sticking to walls, biofilms grow on walls, and radicals annihilating on walls can become significant. Thus, under these circumstances, typical microfluidic systems are incompatible with the demands of accurate study of many biochemical systems. Over the past five years, acoustic levitation has become a technique uniquely suited to studying biochemical reactions. Acoustic levitation offers several advantages over typical reaction systems, including small sample volume (and mass), the prevention of chemical contamination between drops and external objects, rapid mixing within the drop as a result of circulation driven by the levitating ultrasound, and freedom from wall interactions. We have developed an Acoustically-Levitated Drop Reactor (LDR) to study enzyme-catalyzed reaction kinetics related to free-radical and oxidative stress chemistry. ii Microliter-scale droplet generation, reactant introduction, maintenance, and fluid removal are all important aspects in conducting reactions in a levitated drop. Therefore, we developed a three-capillary bundle system to address these needs. Since the capillary system is used to introduce drops to the levitation cavity, our LDR system is not 100% wall-less, but the ratio of solid surface area to drops surface area is less than 20%, which is low compared to all the other reaction systems. The largest interface seen by reactants is a liquid/gas interface. Herein, I report kinetic measurements for both luminol chemiluminescence and the reaction of pyruvate with nicotinamide adenine dinucleotide, catalyzed by lactate dehydrogenase in a levitated drop. Observations of the chemiluminescence experiment showed second-order kinetics were detected within experimental error prior to deviations seen after 10 s. For the enzyme-catalyzed reaction kinetic measurements, it was found that the KM for lactate dehydrogenase matched literature values to better than one standard deviation of the literature experiment. Also studied were the effects of laser exposure on the stability of Myeloperoxidase at the liquid/gas interface. It was found that although myeloperoxidase degrades over several hours in buffer, there is no indication that the degradation is due to either denaturation at the free surface or to two-photon photolysis. Based on our accomplishments, we demonstrate the feasibility of using a levitated drop as a microreactor. The reactions discussed utilized in-house developed fiber optic and laser-based optical detection systems to monitor reaction kinetics inside a levitated drop via chemiluminescence and fluorescence. Outgrowths of these accomplishments will hopefully lead to the use of additional detection systems (including electrochemical and mass iii spectrometry) with the LDR to study a wide variety of biochemical reaction kinetics. iv This thesis is dedicated to my husband, Sober Pierre, for standing firm with me through it all. v ACKNOWLEDGEMENTS What a journey this has been. I thank God for the energy and foresight to see this through to completion and I thank all of you for your support along the way. Without you, I am not sure I would have arrived. But I did and I owe much of it to you. To those who know me the best and believed in me the most, my family, I love and thank you. To Mom who always said, “Be the best Z you can be!” and Dad who said, “This thing is yours, so go get what belongs to you.”, those words of encouragement meant the world to me. Sober Pierre. My husband. My rock. The person who refused to let me give up. This PhD is probably more than 50% yours. When I wanted to run for the door, you advised otherwise. You helped me to see the light at the end of the tunnel when all I could see was an oncoming train. This journey has taken me for quite a ride but you always represented consistency. For all of your patience and understanding, I truly thank you. To the best group, or should I say extended family, a girl could ask for, thank you. To Professor Scheeline, I may not have always welcomed ALL (there was so much) of the feedback, remarks, critiques, words-o-advice, S-grams, etc., that came my way but I am so grateful to have had a boss who cared enough to provide such thorough guidance. I also thank you for allowing me to be me, allowing me to explore outside opportunities and not forcing me into a mold common for PhD Chemists. I have grown tremendously as a result. Thank you. To the group members, it was all worth it having you along for the ride. Dr. Christopher Ryan Field, you were one cool side-kick. The LDR and I both missed you when you left. Dr. Rebekah Koch Wilson, my right hand woman, through the laughs and the tears, vi you were always right there. You shared in the frustration like they were your own and always offered suggestions on how to move research forward. What a friend I found in you. Edward Chainani, the man with a heart of gold. If I needed anything you were always there with a helping hand leaving me to wonder, "Does he ever say No?" Your kindness and generosity were so greatly appreciated. To Haylee Thomas who, although long gone, still found the time to send words of encouragement. For being your amazing selves and allowing me to share in it, I thank you all. To those who made achieving this goal possible, thank you. For your time and support, throughout the years, I thank my other committee members, Professor Andrzej Wieckowski, Professor Jonathan Sweedler, Professor Arne Pearlstein, and Professor Neil Kelleher. For aiding with day-to-day research, I would like to acknowledge a number of people from various units on campus. Thank you, Mike Thompson and Jim Wentz of the School of Chemical Sciences (SCS) Electronics Shop for your hard work and expertise for various electrical needs. Thank you to Bill Knight and the others (Roger Smith, Ed Runyon, Tom Wilson, Mike Harland, and Dave Hire) that run the SCS Machine Shop, for building the levitator and a number of other items that I designed. Dorothy Loudermilk of the SCS Graphic Services, thank you for your hard work seeing to it that I had great graphics to put in my presentations and professional posters to present at conferences. A very special thank you goes to the mother of the Analytical Chemistry Area, Julie Sides, for always checking in on me to make sure that not only was I okay but also that all of my paperwork was in order so that when the time came, my transition out would be smooth. Thanks Julie. vii Last but definitely not least, thank you to all of the funding institutions that made not only the research discussed in this thesis possible but also provided for a roof over my head, food in my mouth and clothes on my back. To the National Institutes of Health (NIH, Ruth L. Kirschstein National Research Service Award 5 R01 GM067193-06) (Thank you again Professor Kelleher for the NIH support), National Science Foundation (NSF, Grant 08-52383 ARRA), Research Corporation (Grant RA0333), The National Consortium for Graduate Degrees for Minorities in Engineering and Science (GEM), and Proctor and Gamble (P&G), thank you so very much. viii TABLE OF CONTENTS CHAPTER 1: INTRODUCTION, OVERVIEW, AND RESEARCH OUTLINE…...1 1.1 Biochemical Context............................................................................................1 1.2 Systems Biology and Enzyme Kinetics................................................................1 1.3 Research Summary...............................................................................................3 1.4 References …........................................................................................................6 1.5 Chapter 1 Figures..................................................................................................7 CHAPTER 2: RESEARCH BACKGROUND................................................................8 2.1 Immunology: The Innate Immune Response .......................................................8 2.2 Myeloperoxidase: Its Role in Immunology, Reaction Mechanisms and Positive/Negative Implications...........................................................................10 2.3 Studying Enzyme Kinetics: Macro vs. Micro Reaction Methods.......................17 2.4 An Acoustically Levitated Drop Reactor (LDR)................................................22 2.5 Sample Handling
Recommended publications
  • Contactless Picking of Objects Using an Acoustic Gripper †
    actuators Article Contactless Picking of Objects Using an Acoustic Gripper † Marc Röthlisberger * , Marcel Schuck , Laurenz Kulmer and Johann W. Kolar Power Electronic Systems Laboratory, ETH Zurich, Switzerland, Physikstrasse 3, 8092 Zurich, Switzerland; [email protected] (M.S.); [email protected] (L.K.); [email protected] (J.W.K.) * Correspondence: [email protected] † This paper is an extended version of our paper published in the 1st International Electronic Conference on Actuator Technology: Materials, Devices and Applications (IeCAT), 23–27 November 2020. Abstract: Acoustic levitation forces can be used to manipulate small objects and liquids without mechanical contact or contamination. This work presents analytical models based on which concepts for the controlled insertion of objects into the acoustic field are developed. This is essential for the use of acoustic levitators as contactless robotic grippers. Three prototypes of such grippers are implemented and used to experimentally verify the lifting of objects into an acoustic pressure field. Lifting of high-density objects (r > 7 g/cm3) from acoustically transparent surfaces is demonstrated using a double-sided acoustic gripper that generates standing acoustic waves with dynamically adjustable acoustic power. A combination of multiple acoustic traps is used to lift lower density objects (r ≤ 0.25 g/cm3) from acoustically reflective surfaces using a single-sided arrangement. Furthermore, a method that uses standing acoustic waves and thin reflectors to lift medium-density objects (r ≤ 1 g/cm3) from acoustically reflective surfaces is presented. The provided results open up new possibilities for using acoustic levitation in robotic grippers, which has the potential to be applied in a variety of industrial use cases.
    [Show full text]
  • On the Acoustic Levitation Stability Behaviour of Spherical And
    J. Fluid Mech. (2012), vol. 709, pp. 581–592. c Cambridge University Press 2012 581 doi:10.1017/jfm.2012.350 On the acoustic levitation stability behaviour of https://doi.org/10.1017/jfm.2012.350 . spherical and ellipsoidal particles D. Foresti, M. Nabavi and D. Poulikakos† Department of Mechanical and Process Engineering, Institute of Energy Technology, Laboratory of Thermodynamics in Emerging Technologies, ETH Zurich, CH-8092, Zurich, Switzerland (Received 3 April 2012; revised 4 June 2012; accepted 3 July 2012; first published online 31 August 2012) We present here an in-depth analysis of particle levitation stability and the role of the https:/www.cambridge.org/core/terms radial and axial forces exerted on fixed spherical and ellipsoidal particles levitated in an axisymmetric acoustic levitator, over a wide range of particle sizes and surrounding medium viscosities. We show that the stability behaviour of a levitated particle in an axisymmetric levitator is unequivocally connected to the radial forces: the loss of levitation stability is always due to the change of the radial force sign from positive to negative. It is found that the axial force exerted on a sphere of radius Rs increases with increasing viscosity for Rs/λ < 0:0125 (λ is the acoustic wavelength), with the viscous contribution of this force scaling with the inverse of the sphere radius. The axial force decreases with increasing viscosity for spheres with Rs/λ > 0:0125. The radial force, on the other hand, decreases monotonically with increasing viscosity. The radial and axial forces exerted on an ellipsoidal particle are larger than those exerted on a volume-equivalent sphere, up to the point where the ellipsoid starts to act as an obstacle to the formation of the standing wave in the levitator chamber.
    [Show full text]
  • Frequency Selective Wave Beaming in Nonreciprocal Acoustic Phased Arrays Revant Adlakha1,3, Mohammadreza Moghaddaszadeh2,3, Mohammad A
    www.nature.com/scientificreports OPEN Frequency selective wave beaming in nonreciprocal acoustic phased arrays Revant Adlakha1,3, Mohammadreza Moghaddaszadeh2,3, Mohammad A. Attarzadeh1,3, Amjad Aref2 & Mostafa Nouh1* Acoustic phased arrays are capable of steering and focusing a beam of sound via selective coordination of the spatial distribution of phase angles between multiple sound emitters. Constrained by the principle of reciprocity, conventional phased arrays exhibit identical transmission and reception patterns which limit the scope of their operation. This work presents a controllable space–time acoustic phased array which breaks time-reversal symmetry, and enables phononic transition in both momentum and energy spaces. By leveraging a dynamic phase modulation, the proposed linear phased array is no longer bound by the acoustic reciprocity, and supports asymmetric transmission and reception patterns that can be tuned independently at multiple channels. A foundational framework is developed to characterize and interpret the emergent nonreciprocal phenomena and is later validated against benchmark numerical experiments. The new phased array selectively alters the directional and frequency content of the incident signal and imparts a frequency conversion between diferent wave felds, which is further analyzed as a function of the imposed modulation. The space–time acoustic phased array enables unprecedented control over sound waves in a variety of applications ranging from ultrasonic imaging to non-destructive testing and underwater SONAR telecommunication. In their most general form, phased arrays can be thought of as a coalescence of multiple wave transmitting/ receiving components—also known as transceivers—which share a common excitation/collection port. Te hallmark feature of phased arrays, setting them apart from antennas, is an additionally imparted phase angle on each of its individual transceivers.
    [Show full text]
  • 2021 Finalist Directory
    2021 Finalist Directory April 29, 2021 ANIMAL SCIENCES ANIM001 Shrimply Clean: Effects of Mussels and Prawn on Water Quality https://projectboard.world/isef/project/51706 Trinity Skaggs, 11th; Wildwood High School, Wildwood, FL ANIM003 Investigation on High Twinning Rates in Cattle Using Sanger Sequencing https://projectboard.world/isef/project/51833 Lilly Figueroa, 10th; Mancos High School, Mancos, CO ANIM004 Utilization of Mechanically Simulated Kangaroo Care as a Novel Homeostatic Method to Treat Mice Carrying a Remutation of the Ppp1r13l Gene as a Model for Humans with Cardiomyopathy https://projectboard.world/isef/project/51789 Nathan Foo, 12th; West Shore Junior/Senior High School, Melbourne, FL ANIM005T Behavior Study and Development of Artificial Nest for Nurturing Assassin Bugs (Sycanus indagator Stal.) Beneficial in Biological Pest Control https://projectboard.world/isef/project/51803 Nonthaporn Srikha, 10th; Natthida Benjapiyaporn, 11th; Pattarapoom Tubtim, 12th; The Demonstration School of Khon Kaen University (Modindaeng), Muang Khonkaen, Khonkaen, Thailand ANIM006 The Survival of the Fairy: An In-Depth Survey into the Behavior and Life Cycle of the Sand Fairy Cicada, Year 3 https://projectboard.world/isef/project/51630 Antonio Rajaratnam, 12th; Redeemer Baptist School, North Parramatta, NSW, Australia ANIM007 Novel Geotaxic Data Show Botanical Therapeutics Slow Parkinson’s Disease in A53T and ParkinKO Models https://projectboard.world/isef/project/51887 Kristi Biswas, 10th; Paxon School for Advanced Studies, Jacksonville,
    [Show full text]
  • Researchers Demonstrate Acoustic Levitation of a Large Sphere 12 August 2016, by Lisa Zyga
    Researchers demonstrate acoustic levitation of a large sphere 12 August 2016, by Lisa Zyga paper on the acoustic levitation demonstration in a recent issue of Applied Physics Letters. "Acoustic levitation of small particles at the acoustic pressure nodes of a standing wave is well-known, but the maximum particle size that can be levitated at the pressure nodes is around one quarter of the acoustic wavelength," Andrade told Phys.org. "This means that, for a transducer operating at the ultrasonic range (frequency above 20 kHz), the maximum particle size that can be levitated is around 4 mm. In our paper, we demonstrate that we can combine multiple ultrasonic transducers to levitate an object significantly larger than the acoustic wavelength. In our experiment, we could increase the maximum object size from one quarter of the wavelength to 50 mm, which is approximately Acoustic levitation of a polystyrene sphere, the first 3.6 times the acoustic wavelength." spherical object to be acoustically levitated that is larger than the acoustic wavelength. Credit: Andrade et al. Although there are several different ways to ©2016 AIP Publishing acoustically levitate an object, most methods use an ultrasonic transducer, which converts electrical signals into ultrasonic waves. The current setup uses three ultrasonic transducers arranged in a When placed in an acoustic field, small objects tripod fashion around the sphere. experience a net force that can be used to levitate the objects in air. In a new study, researchers have As the researchers explain, the angle and number experimentally demonstrated the acoustic levitation of transducers can be changed, and this does not of a 50-mm (2-inch) solid polystyrene sphere using interfere with the setup's ability to levitate a large ultrasound—acoustic waves that are above the object.
    [Show full text]
  • Volume 10, Issue 5, May 2021
    Volume 10, Issue 5, May 2021 International Journal of Innovative Research in Science, Engineering and Technology (IJIRSET) | e-ISSN: 2319-8753, p-ISSN: 2320-6710| www.ijirset.com | Impact Factor: 7.512| || Volume 10, Issue 5, May 2021 || DOI:10.15680/IJIRSET.2021.1005029 To Study Acoustic Tractor Beam 1 2 3 4 Prof. S. V. Sonkhaskar , Rutikpandit Bijwe , Rushikesh K. Pardhi , Deep S. Kale , Chand R. Gedam5, Anup D. Gawande6, Vaibhav S. Damle7 Assistant Professor, Department of Electrical Engineering, P R Pote college of Engineering and Management, Amravati, India1 Department of Electrical Engineering, P R Pote college of Engineering and Management, Amravati, India2-7 ABSTRACT: High frequency Sound waves can form rotating packets of compressed air which can create energy in particles that can withstand gravity. Many ultrasound capture devices were developed according to this principle, which works when sound waves of the same frequency are on opposite sides and are placed on top of each other. That is, they need two sets of converters to float the particles. Acoustic beam tractor is an innovative technology that can be used to fix and use objects in air, water and human tissues with a large number of ultrasound emitters. It requires sound waves from the other side to detect particles. Acoustic beam technology is promising in a variety of fields. It can be used to harvest and decompose particles within the body such as kidney stones, clots, tissues and even target delivery drugs. The technology has some promising systems in the outer space, where they can stop large objects with gravity and prevent them from moving unmanageable.
    [Show full text]
  • Acoustic Levitation of an Object Larger Than the Acoustic Wavelength
    Heriot-Watt University Research Gateway Acoustic levitation of an object larger than the acoustic wavelength Citation for published version: Andrade, MAB, Okina, FTA, Bernassau, A & Adamowski, J 2017, 'Acoustic levitation of an object larger than the acoustic wavelength', Journal of the Acoustical Society of America, vol. 141, no. 6, pp. 4148-4154. https://doi.org/10.1121/1.4984286 Digital Object Identifier (DOI): 10.1121/1.4984286 Link: Link to publication record in Heriot-Watt Research Portal Document Version: Peer reviewed version Published In: Journal of the Acoustical Society of America Publisher Rights Statement: Copyright 2017 Acoustical Society of America. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the Acoustical Society of America. The following article appeared in The Journal of the Acoustical Society of America 141, 4148 (2017); doi: 10.1121/1.4984286 and may be found at http://asa.scitation.org/doi/abs/10.1121/1.4984286 General rights Copyright for the publications made accessible via Heriot-Watt Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy Heriot-Watt University has made every reasonable effort to ensure that the content in Heriot-Watt Research Portal complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • DIPEN N. SINHA, Ph.D
    DIPEN N. SINHA, Ph.D. CTO and Co-Founder AWE Technologies LLC 261 W. Main Bay Shore, NY 11706 Email:[email protected] Phone: (631) 666-2414 Cell: (505) 670-4858 PERSONAL STATEMENT I recently retired from the Los Alamos National Laboratory (LANL) in New Mexico after 38 years as a physicist and a laboratory Fellow. My goal is to adapt the technologies I deVeloped oVer the years for US the goVernment for applications related to health-care, threat reduction, and Various industrial needs. I have a very wide range of interests and background that help me solVe difficult technical problems in many fields. I started my career as a postdoctoral fellow in the field of low-temperature physics. In 1983, I moVed to the Rockwell International Corporation in California where, as a senior scientist, where I deVeloped 2D infrared detector arrays for space applications. I returned to LANL in 1986 as a staff scientist and deVeloped ultra-high-speed measurement techniques, femtosecond lasers, thermionic integrated circuits, and sensors based on Langmuir-Blodgett films. Next, I switched my research career and taught myself acoustics. I ended up developing the Acoustic Resonance Spectroscopy and the Swept Frequency Acoustic Interferometry techniques specifically to solVe some challenging technical problems. These techniques serVed as the foundation for the deVelopment of sensors that range from detecting biological and chemical warfare agents to sensors for oil exploration. My recent research inVolved imaging objects with sound, deVeloping noninvasiVe measurement techniques, manipulation of particles with sound including both concentration and separation, creating noVel materials using sound, and nonlinear acoustics.
    [Show full text]
  • Particle Manipulation by a Non-Resonant Acoustic Levitator By: Azeem Iqbal Lab Instructor, Physics Department SBASSE, LUMS Acoustic Levitation
    Particle manipulation by a non-resonant acoustic levitator by: Azeem Iqbal Lab Instructor, Physics Department SBASSE, LUMS Acoustic levitation Let’s first watch a video … Contents • What is acoustic levitation? • Brief historical background • Current applications • Particle manipulation by a non-resonant acoustic levitator – Concept – Hardware & Construction – Mathematical Model – Simulation – Conclusion What is acoustic levitation? • Acoustic levitation (also: Acoustophoresis) is a method for suspending matter in a medium by using acoustic radiation pressure from intense sound waves in the medium. • “Acoustophoresis” means migration with sound, i.e., “phoresis” – migration and “acousto” – sound waves are the executors of the movement. What is acoustic levitation? • To understand how acoustic levitation works: – First know that gravity is a force that causes objects to be pulled towards the earth. – Second, air is a fluid and like liquids, air is made of microscopic particles that move in relation to one another. – Third, sound is a vibration from a sound's source and as it moves or changes shape very rapidly it creates oscillations creating sound. A series of compressions and rarefactions. Each repetition is one wavelength of the sound wave. • Acoustic levitation uses sound traveling through a fluid (air) to balance the force of gravity. Physics of Sound Levitation • A basic acoustic levitator has two main parts – – a transducer, which is a vibrating surface that makes sound, – and a reflector. • A sound wave travels away from the transducer and bounces off the reflector. Physics of Sound Levitation • The interaction between compressions and rarefactions causes interference. • Compressions that meet other compressions amplify one another, and compressions that meet rarefactions balance one another out.
    [Show full text]
  • Acoustic Levitation
    Acoustic Levitation Jason Yang, Michael Redlich Experiment March 13th through April 24th Abstract Acoustic Levitation is recently developed experiment based on acoustic pressure counteracting gravity. We used ultrasonic transducer to provide sound pressure because it is in inaudible range with optimized pressure. A reflector plate set opposite of the transducer provides a standing wave when located at the correct distance. Styrofoam bits are used as levitation material because they are relatively light and have larger surface. Using the described design we tested several properties of acoustic levitation systems. We discovered that the curvature of the reflector plate did little to change the system, that we could create up to seven nodes, and that new properties emerged when we used a double transducer setup. However, the pressure microphone was unable to record data on the ultrasonic device, so we used computer simulation called COMSOL to see the theoretical pressure field. I. Introduction With a transducer connected to a driver board placed on a table and a reflector plate overhead we had designed a simple mechanism for acoustically levitating small, low density, materials. Using (nonmetal) tweezers we carefully placed small bits of Styrofoam that we had shredded earlier into the acoustic beam. Most of the time we failed to levitate the object. Largely this was due to the empirical nature of the setup; without accurate measurements from the oscilloscope we were unable to determine whether or not we had a standing wave so we had to make small adjustments to the height of the reflector plate and continue placing objects into the beam with the tweezers until we were successful.
    [Show full text]
  • Acoustic Levitation Gokulraju
    ISSN XXXX XXXX © 2019 IJESC Research Article Volume 9 Issue No.3 Acoustic Levitation Gokulraju. R1, Kavinraj. N2, Subramaniyan. B3, Kulandaiyesy. P4 Department of Mechatronics Engineering Akshaya College of Engineering and Technology, India Abstract: Acoustic Levitation is a method of suspending matter in a medium of air using Acoustic radiation pressure from intense sound wave in the medium. An acoustic levitation system is presented in this paper which can levitate planar objects much larger than the wavelength of the applied sound wave. It uses standing wave field formed by the sound radiator and the levitated planar object. An experimental setup is developed, by which a compact disc is successfully levitated at frequency of 40 kHz. The sound field is modeled according to acoustic theory. The mean excess pressure experienced by the levitated object is calculated and compared with experiment results. Nonlinear absorption coefficient is introduced into the linear model to give a more precise description of the system. The levitation force is calculated for different levitation distances and driving frequencies. The calculation results show acceptable agreement with the measurement results. Keywords: Acoustic Levitation, Standing Wave, Large Object Levitation. I. INTRODUCTION levitate particles of a wide range of materials and sizes through air, water & biological tissues. This permits us to move cells, Levitation is a process by which an object is suspended in a compounds or living things without touching them. The stable position against gravity, without physical contact. principle behind this technology is high frequency sound waves Levitation can be realized by various physical means, such as can produce an acoustic force on objects capable of magnetic force, electrostatic force, aerodynamic force, acoustic counteracting the pull of gravity.
    [Show full text]
  • A Study on Acoustic Tractor Beam Technology
    IOSR Journal of Computer Engineering (IOSR-JCE) e-ISSN: 2278-0661,p-ISSN: 2278-8727 PP 24-28 www.iosrjournals.org A study on Acoustic Tractor Beam Technology Ms.Sudha T, Asst.Prof. Ms.Rini M K, Asst.Prof.Ms.Vincy DeviV.K Department of Computer Applications Sree Narayana Gurukulam College of Engineering, Kadayiruppu, Kolenchery,Ernakulam,Kerala,India. Abstract: High frequency Sound waves can create oscillating packets of pressurized air, which can generate a force on particles capable of counteracting the pull of gravity. Many ultrasound levitation devices are developed based on this principle, which are working when two sound waves of the same frequency are emitted from opposite directions and superimposed on one another. That is, they require two sets of transducers to float the particles. Acoustic tractor beam is an emerging technology that can be applied to levitate and manipulate objects in air, water and human tissues with a single array of ultrasound emitters. It requires sound waves from one side to levitate particles. Acoustic tractor beam technology holds promise in a variety of fields. It can be applied for levitating and manipulating particles inside the body like kidney stones, clots, tumors and even capsules for targeted drug delivery. The technology also has some promising applications in outer space, where it can suspend larger objects in lower gravity and prevent them from drifting around uncontrolled. Keywords: acoustic hologram, tractor beam, transducers, tweezers, trap I. Introduction When we stand in front of a loud speaker we can perceive the force from sound waves. We can experience our bodies shake with the loud sound.
    [Show full text]