Sample Return from Primitive Asteroids and Comets
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1 Characterization of Cometary Activity of 67P/Churyumov-Gerasimenko
Characterization of cometary activity of 67P/Churyumov-Gerasimenko comet Abstract After 2.5 years from the end of the mission, the data provided by the ESA/Rosetta mission still leads to important results about 67P/Churyumov-Gerasimenko (hereafter 67P), belonging to the Jupiter Family Comets. Since comets are among the most primitive bodies of the Solar System, the understanding of their formation and evolution gives important clues about the early stages of our planetary system, including the scenarios of water delivery to Earth. At the present state of knowledge, 67P’s activity has been characterized by measuring the physical properties of the gas and dust coma, by detecting water ice patches on the nucleus surface and by analyzing some peculiar events, such as outbursts. We propose an ISSI International Team to build a more complete scenario of the 67P activity during different stages of its orbit. The retrieved results in terms of dust emission, morphology and composition will be linked together in order to offer new insights about 67P formation and evolution. In particular the main goals of the project are: 1. Retrieval of the activity degree of different 67P geomorphological nucleus regions in different time periods, by reconstructing the motion of the dust particles revealed in the coma; 2. Identification of the main drivers of cometary activity, by studying the link between cometary activity and illumination/local time, dust morphology, surface geomorphology, dust composition. The project will shed light on how (and if) cometary activity is related to surface geology and/or composition or is just driven by local illumination. -
Stardust Comet Flyby
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Stardust Comet Flyby Press Kit January 2004 Contacts Don Savage Policy/Program Management 202/358-1727 NASA Headquarters, Washington DC Agle Stardust Mission 818/393-9011 Jet Propulsion Laboratory, Pasadena, Calif. Vince Stricherz Science Investigation 206/543-2580 University of Washington, Seattle, WA Contents General Release ……………………………………......………….......................…...…… 3 Media Services Information ……………………….................…………….................……. 5 Quick Facts …………………………………………..................………....…........…....….. 6 Why Stardust?..................…………………………..................………….....………......... 7 Other Comet Missions ....................................................................................... 10 NASA's Discovery Program ............................................................................... 12 Mission Overview …………………………………….................……….....……........…… 15 Spacecraft ………………………………………………..................…..……........……… 25 Science Objectives …………………………………..................……………...…........….. 34 Program/Project Management …………………………...................…..…..………...... 37 1 2 GENERAL RELEASE: NASA COMET HUNTER CLOSING ON QUARRY Having trekked 3.2 billion kilometers (2 billion miles) across cold, radiation-charged and interstellar-dust-swept space in just under five years, NASA's Stardust spacecraft is closing in on the main target of its mission -- a comet flyby. "As the saying goes, 'We are good to go,'" said project manager Tom Duxbury at NASA's Jet -
Origin and Evolution of Carbonaceous Presolar Grains in Stellar Environments
Bernatowicz et al.: Origin and Evolution of Presolar Grains 109 Origin and Evolution of Carbonaceous Presolar Grains in Stellar Environments Thomas J. Bernatowicz Washington University Thomas K. Croat Washington University Tyrone L. Daulton Naval Research Laboratory Laboratory microanalyses of presolar grains provide direct information on the physical and chemical properties of solid condensates that form in the mass outflows from stars. This informa- tion can be used, in conjunction with kinetic models and equilibrium thermodynamics, to draw inferences about condensation sequences, formation intervals, pressures, and temperatures in circumstellar envelopes and in supernova ejecta. We review the results of detailed microana- lytical studies of the presolar graphite, presolar silicon carbide, and nanodiamonds found in primitive meteorites. We illustrate how these investigations, together with astronomical obser- vation and theoretical models, provide detailed information on grain formation and growth that could not be obtained by astronomical observation alone. 1. INTRODUCTION versed the interstellar medium (ISM) prior to their incorpor- ation into the solar nebula, they serve as monitors of physi- In recent years the laboratory study of presolar grains has cal and chemical processing of grains in the ISM (Bernato- emerged as a rich source of astronomical information about wicz et al., 2003). stardust, as well as about the physical and chemical condi- In this review we focus on carbonaceous presolar grains. tions of dust formation in circumstellar -
Origins of Life: Transition from Geochemistry to Biogeochemistry
December 2016 Volume 12, Number 6 ISSN 1811-5209 Origins of Life: Transition from Geochemistry to Biogeochemistry NITA SAHAI and HUSSEIN KADDOUR, Guest Editors Transition from Geochemistry to Biogeochemistry Staging Life: Warm Seltzer Ocean Incubating Life: Prebiotic Sources Foundation Stones to Life Prebiotic Metal-Organic Catalysts Protometabolism and Early Protocells pub_elements_oct16_1300&icpms_Mise en page 1 13-Sep-16 3:39 PM Page 1 Reproducibility High Resolution igh spatial H Resolution High mass The New Generation Ion Microprobe for Path-breaking Advances in Geoscience U-Pb dating in 91500 zircon, RF-plasma O- source Addressing the growing demand for small scale, high resolution, in situ isotopic measurements at high precision and productivity, CAMECA introduces the IMS 1300-HR³, successor of the internationally acclaimed IMS 1280-HR, and KLEORA which is derived from the IMS 1300-HR³ and is fully optimized for advanced U-Th-Pb mineral dating. • New high brightness RF-plasma ion source greatly improving spatial resolution, reproducibility and throughput • New automated sample loading system with motorized sample height adjustment, significantly increasing analysis precision, ease-of-use and productivity • New UV-light microscope for enhanced optical image resolution (developed by University of Wisconsin, USA) ... and more! Visit www.cameca.com or email [email protected] to request IMS 1300-HR³ and KLEORA product brochures. Laser-Ablation ICP-MS ~ now with CAMECA ~ The Attom ES provides speed and sensitivity optimized for the most demanding LA-ICP-MS applications. Corr. Pb 207-206 - U (238) Recent advances in laser ablation technology have improved signal 2SE error per sample - Pb (206) Combined samples 0.076121 +/- 0.002345 - Pb (207) to background ratios and washout times. -
Lifetimes of Interstellar Dust from Cosmic Ray Exposure Ages of Presolar Silicon Carbide
Lifetimes of interstellar dust from cosmic ray exposure ages of presolar silicon carbide Philipp R. Hecka,b,c,1, Jennika Greera,b,c, Levke Kööpa,b,c, Reto Trappitschd, Frank Gyngarde,f, Henner Busemanng, Colin Madeng, Janaína N. Ávilah, Andrew M. Davisa,b,c,i, and Rainer Wielerg aRobert A. Pritzker Center for Meteoritics and Polar Studies, The Field Museum of Natural History, Chicago, IL 60605; bChicago Center for Cosmochemistry, The University of Chicago, Chicago, IL 60637; cDepartment of the Geophysical Sciences, The University of Chicago, Chicago, IL 60637; dNuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA 94550; ePhysics Department, Washington University, St. Louis, MO 63130; fCenter for NanoImaging, Harvard Medical School, Cambridge, MA 02139; gInstitute of Geochemistry and Petrology, ETH Zürich, 8092 Zürich, Switzerland; hResearch School of Earth Sciences, The Australian National University, Canberra, ACT 2601, Australia; and iEnrico Fermi Institute, The University of Chicago, Chicago, IL 60637 Edited by Mark H. Thiemens, University of California San Diego, La Jolla, CA, and approved December 17, 2019 (received for review March 15, 2019) We determined interstellar cosmic ray exposure ages of 40 large ago. These grains are identified as presolar by their large isotopic presolar silicon carbide grains extracted from the Murchison CM2 anomalies that exclude an origin in the Solar System (13, 14). meteorite. Our ages, based on cosmogenic Ne-21, range from 3.9 ± Presolar stardust grains are the oldest known solid samples 1.6 Ma to ∼3 ± 2 Ga before the start of the Solar System ∼4.6 Ga available for study in the laboratory, represent the small fraction ago. -
Appendix A: Scientific Notation
Appendix A: Scientific Notation Since in astronomy we often have to deal with large numbers, writing a lot of zeros is not only cumbersome, but also inefficient and difficult to count. Scientists use the system of scientific notation, where the number of zeros is short handed to a superscript. For example, 10 has one zero and is written as 101 in scientific notation. Similarly, 100 is 102, 100 is 103. So we have: 103 equals a thousand, 106 equals a million, 109 is called a billion (U.S. usage), and 1012 a trillion. Now the U.S. federal government budget is in the trillions of dollars, ordinary people really cannot grasp the magnitude of the number. In the metric system, the prefix kilo- stands for 1,000, e.g., a kilogram. For a million, the prefix mega- is used, e.g. megaton (1,000,000 or 106 ton). A billion hertz (a unit of frequency) is gigahertz, although I have not heard of the use of a giga-meter. More rarely still is the use of tera (1012). For small numbers, the practice is similar. 0.1 is 10À1, 0.01 is 10À2, and 0.001 is 10À3. The prefix of milli- refers to 10À3, e.g. as in millimeter, whereas a micro- second is 10À6 ¼ 0.000001 s. It is now trendy to talk about nano-technology, which refers to solid-state device with sizes on the scale of 10À9 m, or about 10 times the size of an atom. With this kind of shorthand convenience, one can really go overboard. -
Book of Abstracts
THE PHYSICS AND CHEMISTRY OF THE INTERSTELLAR MEDIUM Celebrating the first 40 years of Alexander Tielens' contribution to Science Book of Abstracts Palais des Papes - Avignon - France 2-6 September 2019 CONFERENCE PROGRAM Monday 2 September 2019 Time Speaker 10:00 Registration 13:00 Registration & Welcome Coffee 13:30 Welcome Speech C. Ceccarelli Opening Talks 13:40 PhD years H. Habing 13:55 Xander Tielens and his contributions to understanding the D. Hollenbach ISM The Dust Life Cycle 14:20 Review: The dust cycle in galaxies: from stardust to planets R. Waters and back 14:55 The properties of silicates in the interstellar medium S. Zeegers 15:10 3D map of the dust distribution towards the Orion-Eridanus S. Kh. Rezaei superbubble with Gaia DR2 15:25 Invited Talk: Understanding interstellar dust from polariza- F. Boulanger tion observations 15:50 Coffee break 16:20 Review: The life cycle of dust in galaxies M. Meixner 16:55 Dust grain size distribution across the disc of spiral galaxies M. Relano 17:10 Investigating interstellar dust in local group galaxies with G. Clayton new UV extinction curves 17:25 Invited Talk: The PROduction of Dust In GalaxIES C. Kemper (PRODIGIES) 17:50 Unravelling dust nucleation in astrophysical media using a L. Decin self-consistent, non steady-state, non-equilibrium polymer nucleation model for AGB stellar winds 19:00 Dining Cocktail Tuesday 3 September 2019 08:15 Registration PDRs 09:00 Review: The atomic to molecular hydrogen transition: a E. Roueff major step in the understanding of PDRs 09:35 Invited Talk: The Orion Bar: from ALMA images to new J. -
Laboratory Astrophysics: from Observations to Interpretation
April 14th – 19th 2019 Jesus College Cambridge UK IAU Symposium 350 Laboratory Astrophysics: From Observations to Interpretation Poster design by: D. Benoit, A. Dawes, E. Sciamma-O’Brien & H. Fraser Scientific Organizing Committee: Local Organizing Committee: Farid Salama (Chair) ★ P. Barklem ★ H. Fraser ★ T. Henning H. Fraser (Chair) ★ D. Benoit ★ R Coster ★ A. Dawes ★ S. Gärtner ★ C. Joblin ★ S. Kwok ★ H. Linnartz ★ L. Mashonkina ★ T. Millar ★ D. Heard ★ S. Ioppolo ★ N. Mason ★ A. Meijer★ P. Rimmer ★ ★ O. Shalabiea★ G. Vidali ★ F. Wa n g ★ G. Del-Zanna E. Sciamma-O’Brien ★ F. Salama ★ C. Wa lsh ★ G. Del-Zanna For more information and to contact us: www.astrochemistry.org.uk/IAU_S350 [email protected] @iaus350labastro 2 Abstract Book Scheduley Sunday 14th April . Pg. 2 Monday 15th April . Pg. 3 Tuesday 16th April . Pg. 4 Wednesday 17th April . Pg. 5 Thursday 18th April . Pg. 6 Friday 19th April . Pg. 7 List of Posters . .Pg. 8 Abstracts of Talks . .Pg. 12 Abstracts of Posters . Pg. 83 yPlenary talks (40') are indicated with `P', review talks (30') with `R', and invited talks (15') with `I'. Schedule Sunday 14th April 14:00 - 17:00 REGISTRATION 18:00 - 19:00 WELCOME RECEPTION 19:30 DINNER BAR OPEN UNTIL 23:00 Back to Table of Contents 2 Monday 15th April 09:00 { 10:00 REGISTRATION 09:00 WELCOME by F. Salama (Chair of SOC) SESSION 1 CHAIR: F. Salama 09:15 E. van Dishoeck (P) Laboratory astrophysics: key to understanding the Universe From Diffuse Clouds to Protostars: Outstanding Questions about the Evolution of 10:00 A. -
Dust-To-Gas and Refractory-To-Ice Mass Ratios of Comet 67P
Dust-to-Gas and Refractory-to-Ice Mass Ratios of Comet 67P/Churyumov-Gerasimenko from Rosetta Observations Mathieu Choukroun, Kathrin Altwegg, Ekkehard Kührt, Nicolas Biver, Dominique Bockelée-Morvan, Joanna Drążkowska, Alain Hérique, Martin Hilchenbach, Raphael Marschall, Martin Pätzold, et al. To cite this version: Mathieu Choukroun, Kathrin Altwegg, Ekkehard Kührt, Nicolas Biver, Dominique Bockelée-Morvan, et al.. Dust-to-Gas and Refractory-to-Ice Mass Ratios of Comet 67P/Churyumov-Gerasimenko from Rosetta Observations. Journal Space Science Reviews, 2020, 10.1007/s11214-020-00662-1. hal- 03021621 HAL Id: hal-03021621 https://hal.archives-ouvertes.fr/hal-03021621 Submitted on 29 Aug 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Space Sci Rev (2020) 216:44 https://doi.org/10.1007/s11214-020-00662-1 Dust-to-Gas and Refractory-to-Ice Mass Ratios of Comet 67P/Churyumov-Gerasimenko from Rosetta Observations Mathieu Choukroun1 · Kathrin Altwegg2 · Ekkehard Kührt3 · Nicolas Biver4 · Dominique Bockelée-Morvan4 · Joanna Dra˙ ˛zkowska5 · Alain Hérique6 · Martin Hilchenbach7 · Raphael Marschall8 · Martin Pätzold9 · Matthew G.G.T. Taylor10 · Nicolas Thomas2 Received: 17 May 2019 / Accepted: 19 March 2020 / Published online: 8 April 2020 © The Author(s) 2020 Abstract This chapter reviews the estimates of the dust-to-gas and refractory-to-ice mass ratios derived from Rosetta measurements in the lost materials and the nucleus of 67P/Churyumov-Gerasimenko, respectively. -
Six Phases of Cosmic Chemistry
Six Phases of Cosmic Chemistry Lukasz Lamza The Pontifical University of John Paul II Department of Philosophy, Chair of Philosophy of Nature Kanonicza 9, Rm. 203 31-002 Kraków, Poland e-mail: [email protected] 1. Introduction The steady development of astrophysical and cosmological sciences has led to a growing appreciation of the continuity of cosmic history throughout which all known phenomena come to being. This also includes chemical phenomena and there are numerous theoretical attempts to rewrite chemistry as a “historical” science (Haken 1978; Earley 2004). It seems therefore vital to organize the immense volume of chemical data – from astrophysical nuclear chemistry to biochemistry of living cells – in a consistent and quantitative fashion, one that would help to appreciate the unfolding of chemical phenomena throughout cosmic time. Although numerous specialist reviews exist (e.g. Shaw 2006; Herbst 2001; Hazen et al. 2008) that illustrate the growing appreciation for cosmic chemical history, several issues still need to be solved. First of all, such works discuss only a given subset of cosmic chemistry (astrochemistry, chemistry of life etc.) using the usual tools and languages of these particular disciplines which does not facilitate drawing large-scale conclusions. Second, they discuss the history of chemical structures and not chemical processes – which implicitly leaves out half of the totality chemical phenomena as non-historical. While it may now seem obvious that certain chemical structures such as aromatic hydrocarbons or pyrazines have a certain cosmic “history”, it might cause more controversy to argue that chemical processes such as catalysis or polymerization also have their “histories”. -
The Effect of Aqueous Alteration and Metamorphism in the Survival of Presolar Silicate Grains in Chondrites
THE EFFECT OF AQUEOUS ALTERATION AND METAMORPHISM IN THE SURVIVAL OF PRESOLAR SILICATE GRAINS IN CHONDRITES Josep Mª Trigo-Rodriguez Institut of Space Sciences (CSIC), Campus UAB, Facultat de Ciències, Torre C5-parell-2ª, 08193 Bellaterra, Barcelona, Spain. E-mail: [email protected] Institut d’Estudis Espacials de Catalunya (IEEC), Edif.. Nexus, c/Gran Capità, 2-4, 08034 Barcelona, Spain and Jürgen Blum Institut fürGeophysik und extraterrestrische Physik, Technische Universität Braunschweig, Mendelssohnstr. 3, 38106 Braunschweig, Germany. E-mail: [email protected] ABSTRACT Relatively small amounts (typically between 2-200 parts per million) of presolar grains have been preserved in the matrices of chondritic meteorites. The measured abundances of the different types of grains are highly variable from one chondrite to another, but are higher in unequilibrated chondrites that have experienced little or no aqueous alteration and/or metamorphic heating than in processed meteorites. A general overview of the abundances measured in presolar grains (particularly the recently identified presolar silicates) contained in primitive chondrites is presented. Here we will focus on the most primitive chondrite groups, as typically the highest measured abundances of presolar grains occur in primitive chondrites that have experienced little thermal metamorphism. Looking at the most aqueously altered chondrite groups, we find a clear pattern of decreasing abundance of presolar silicate grains with increasing level of aqueous alteration. We conclude that the measured abundances of presolar grains in altered chondrites are strongly biased by their peculiar histories. Scales quantifying the intensity of aqueous alteration and shock metamorphism in chondrites could correlate with the content in presolar silicates. -
Rosetta Observations of Plasma and Dust at Comet 67P
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1989 Rosetta Observations of Plasma and Dust at Comet 67P FREDRIK LEFFE JOHANSSON ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-513-1070-1 UPPSALA urn:nbn:se:uu:diva-425953 2020 Dissertation presented at Uppsala University to be publicly examined on Zoom, Friday, 15 January 2021 at 13:15 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Dr. Nicolas André (IRAP, Toulouse, France). Online defence: https://uu-se.zoom.us/j/67552597754 Contact person for questions about participation is Prof. Mats André 0707-792072 Abstract Johansson, F. L. 2020. Rosetta Observations of Plasma and Dust at Comet 67P. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1989. 35 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-1070-1. In-situ observations of cometary plasma are not made because they are easy. The historic ESA Rosetta mission was launched in 2004 and traversed space for ten years before arriving at comet 67P/Churyumov-Gerasimenko, which it studied in unprecedented detail for two years. For the Rosetta Dual Langmuir Probe Experiment (LAP), the challenge was increased by the sensors being situated on short booms near a significantly negatively charged spacecraft, which deflects low-energy charged particles away from our instrument. To disentangle the cometary plasma signature in our signal, we create a charging model for the particular design of the Rosetta spacecraft through 3D Particle-in-Cell/hybrid spacecraft-plasma interaction simulations, which also can be applicable to similarly designed spacecraft in cold plasma environments.