CP-Verletzung Und Die CKM-Matrix

Total Page:16

File Type:pdf, Size:1020Kb

CP-Verletzung Und Die CKM-Matrix Fakultät für Physik Universität Bielefeld Seminarvortrag Elementarteilchenphysik Die Verletzung der CP-Symmetrie Zweiter Vortrag, Benjamin Jurke∗ (Stand: 20. Mai 2005) Die Verletzung der CP-Symmetrie ist für das Verständnis der Elementarteilchenphysik von entscheidender Bedeutung, insbesondere zur Erklärung des Materieüberschusses und der Teilchenentstehung im primordialen Universum (Baryogenese). Die Auswirkungen der verletzten CP-Symmetrie auf Zerfallsprozesse liefern in jüngerer Zeit ein wichtiges Auswahl- kriterium für Theorien der großen Vereinheitlichung (GUT). Im Rahmen des Standardmo- dells lässt sich die CP-Verletzung weitestgehend über eine nichttriviale Phasenverschie- bung der CKM-Quarkmischungs-Matrix beschreiben, die nach einer kurzen Wiederholung der Quark-Massenerzeugung eingeführt wird. Neben der Untersuchung von K-, D- und B- Mesonen-Zerfällen wird auf Unitaritätsdreiecke der CKM-Matrix eingegangen. Die starke CP-Verletzung und supersymmetrische Erweiterungen werden nur kurz behandelt. 1 Das Problem der CP-Verletzung Neben den gewöhnlichen Erhaltungsgrößen wie Energie, Impuls, etc., die nach dem Noether- Theorem zu kontinuierlichen Symmetrien der Lagrange-Dichte gehören, existieren auch diskrete Symmetrien in der Physik. Aus der Raumspiegelung ~x → ~x0 := −~x erhält man die diskrete Symmetrie der Parität P. Die Umwandlung |ψi → |ψ0i := |ψ¯i eines Teilchens in sein zugehö- riges Antiteilchen führt zur Ladungskonjugation C, analog ist die Zeitumkehr T durch die Transformation t → t0 := −t definiert. Die Hintereinanderschaltung dieser drei Symmetrien führt zum CPT-Theorem, nach dem zu jedem physikalischen Vorgang auch der gespiegelte, zeitumgekehrte und durch Austausch von Materie und Antimaterie konstruierte Vorgang denselben Gesetzen folgt (siehe Abbildung 1). Das CPT-Theorem ist ein vorausgesetztes Element aller relativistischen Quantenfeldtheorien, so dass aus einer Verletzung der CP-Symmetrie automatisch eine kompensierende Verletzung der T-Symmetrie aus Sicht der Theorie folgt. Bisher hat sich die CPT-Symmetrie in allen Experimenten als exakt herausgestellt, d.h. CPT ist nicht verletzt. Während Gravitation und die elektromagnetischen Vorgänge diesen drei Symmetrien gehor- chen, ist dies für die starke Wechselwirkung noch nicht eindeutig bekannt - es existieren aller- dings bisher keine experimentellen Hinweise für eine Verletzung. 1956 zeigten Lee und Yang die Verletzung der Raumspiegelungssymmetrie im β-Zerfall über die schwache Wechselwirkung: Die Natur scheint dabei die linkshändigen den rechtshändigen Teilchen vorzuziehen und man ∗E-Mail: [email protected]; Elementarteilchen-Seminar SS 2005; Leiter: Dr. York Schröder 1 v(t) ¡ ¡ v(−t) ¢¡¢¡¢ v(−t) x(t) Tˆ Pˆ Cˆ £¡£¡£¡£¡£ ¤¡¤¡¤¡¤ ¥¡¥¡¥¡¥¡¥¡¥ −x(−t) ¡ ¡ ¢¡¢¡¢ −x(−t) Zeitumkehr Parität Ladungsumkehr x(−t) Das CPT-Theorem besagt, dass sich Materie =⇒ und Antimaterie vollkommen gleich verhalten −v(−t) Abbildung 1: Illustration der Anwendung von Parität P, Ladungsumkehr C und Zeitumkehr T in der Zusammenstellung des CPT-Theorems aus Sicht eines außenstehenden Beobachters. erhält die P-Verletzung. Ähnlich entdeckte man, dass unter Einfluss der schwachen Wech- selwirkung auch die Ladungsumkehr C und Zeitinversion T verletzt wird. In Tabelle 1 findet sich eine Übersicht von physikalische Größen bzw. Symmetrien und ihrer Erhaltung/Verletzung innerhalb der Wechselwirkungen. Kombiniert man aber Ladungsumkehr C und Raumspiegelung P so erhält man eine Sym- metrie, die aus Sicht der Theorie von der starken und schwachen Wechselwirkung respektiert wird. Doch schon 1964 entdeckten die amerikanischen Physiker Christenson, Cronin, Fitch und Turlay eine winzige Unregelmäßigkeit beim K-Mesonen-Zerfall, d.h. eine Verletzung der CP-Symmetrie im Zerfallsprozess, wie später explizit hergeleitet wird - die beiden letzteren der Genannten erhielten für diese Entdeckung 1980 den Nobelpreis. Auf weitere Arten der CP- Verletzung wird in Abschnitt 3 eingegangen. Bereits in den 60er-Jahren schlug Sakharov vor, dass die CP-Verletzung eine entscheidende Rolle in der Entstehungsgeschichte des Universums spielen könnte. Gemäß der Urknalltheorie brachte die primordiale Singularität die gleiche Menge an Teilchen wie auch Antiteilchen hervor, die sich gegenseitig hätten annihilieren sollen. Durch die sogenannte Baryogenese, die sich möglicherweise durch die CP-Verletzung erklären lässt, entstand das heute zu beobachtende Ungleichgewicht, in dem nur noch Materie übrig blieb. Erhaltungsgröße / Symmetrie stark el.-magn. schwach Energie E, Impuls ~p, Drehimpuls ~l ••• elektrische Ladung q, Leptonen-/Baryonen-Zahl nL/nB ••• Strangeness s • • × Charmness (Charm) c • • × Bottomness (Beauty) b, Topness (Truth) t • • × Isospin Is • × × Parität Pˆ • • × Ladungskonjugation Cˆ • • × Zeitumkehr Tˆ • • × Raum-/Ladungumkehr-Symmetrie CˆPˆ • • × Zeit-/Raum-/Ladungsumkehr-Symmetrie CˆPˆTˆ ••• Tabelle 1: Übersicht der Erhaltung „•“ bzw. Verletzung „ד von Symmetrien und physikalischen Größen im Zusammenhang mit den einzelnen Wechselwirkungen. 2 K¯ 0 0 Λ p+ K K+ s d¯ s¯ s u d d d u s¯ u u u u d d ¯ u u¯ u u d d + − π + π p+ p Abbildung 2: Erzeugung neutraler K0- und K¯ 0-Mesonen durch die starke Wechselwirkung, wobei nur diejenigen Gluonen mit punktierten Vertizes am Erzeugungsprozess beteiligt sind. 2 CP-Verletzung in Mesonen-Zerfällen 2.1 Eigenschaften der Kaonen Der Begriff „Meson“ (griech. Mitte) wurde in den 30er Jahren für Teilchen mittlerer Masse (im Vergleich zu leichten Leptonen und schweren Baryonen) eingeführt. Das Kriterium der Masse erwies sich allerdings schnell als unzureichend als sich heraus stellte, dass das erste nachgewiesene Meson eigentlich ein Lepton ist. Zudem ist etwa das Tauon-Lepton (1.777 GeV) wesentlich schwerer als das Proton (938.2 MeV) oder Neutron (939.5 MeV). Das positiv geladene Kaon K+ wurde 1947 über den Prozess π+ + n → K+ + Λ ent- deckt, ihre besondere Bedeutung erlangten die Kaonen aber erst durch die Entdeckung der CP-Verletzung in ihren Zerfallsprozessen. Die Auswirkungen der CP-Verletzung werden explizit an diesem historischen Beispiel der neutralen Kaonen K0 bzw. K¯ 0 gezeigt. Da dem K0-Meson eine Strangeness s = +1 zugeschrieben wird, kann es nicht sein eigenes Antiteilchen sein, so dass es zwei Zustände K0 und K¯ 0 des neutralen K-Mesons gibt. Die Erzeugung neutraler Kaonen findet durch π− +p+ → K0 +Λ und π+ +p+ → K+ +K¯ 0 +p+ über die starke Wechselwirkung statt, die zugehörigen Feynman-Diagramme sind in Abbildung 2 zu sehen. Eine bemerkenswerte Eigenschaft ist die Kaonen-Mischung K0 ↔ 2π ↔ K¯ 0 zwischen K0 und K¯ 0, zumeist über den Zwischenzustand 2π. Diese Mischung geschieht durch einen schwachen Prozess zweiter Schleifen-Ordnung, so dass die Übergangsrate sehr klein ist. 2.2 Zerfallsprozesse in der Weisskopf-Wigner-Approximation Empirisch zeigt sich, dass nahezu alle Zerfallsprozesse der Natur in exponentieller zeitlicher Ab- hängigkeit stattfinden. Trotzdem ist die Beschreibung eines exponentiellen Zerfallspro- zesses im Rahmen der Quantenmechanik kein triviales Problem. Die Schrödinger-Gleichung d s d s u, c, t W − WW u,¯ c,¯ t¯ u, c, t u,¯ c,¯ t¯ W + s¯ d¯ s¯ d¯ Abbildung 3: K0-K¯ 0-Kaonen-Mischung bzw. -Oszillation durch Einfluß der schwachen Wechselwirkung. 3 Pionen / Λ K-Mesonen D-Mesonen B-Mesonen π0 = uu¯ − dd¯ K0 = ds¯ K¯ 0 = sd¯ D0 = cu¯ D¯ 0 = uc¯ B0 = d¯b B¯0 = bd¯ π+ = ud¯ K+ = us¯ K− = su¯ D+ = cd¯ D− = dc¯ B+ = u¯b B− = bu¯ − + − + ¯ − π = du¯ Ds = cs¯ Ds = sc¯ Bc = cb Bc = bc¯ + ¯ − Λ = uds Bs = sb Bs = bs¯ Tabelle 2: Quark-Zusammensetzung der im Weiteren verwendeten Teilchen. impliziert für einen stationären Zustand durch die formale Lösung ˆ |ψ(t)i = e−iHt|ψ(0)i = e−iE0t|ψ(0)i =⇒ A(t) = hψ(0)|ψ(t)i = hψ(0)|e−iE0t|ψ(0)i für den exponentiellen Abfall der Amplitude einen komplexwertigen Energie-Eigenwert E0. Ein komplexer Eigenwert kann aber nicht zu einem hermiteschen bzw. selbstadjungierten Hamilton- Operator gehören. Die Weisskopf-Wigner-Approximation ignoriert dieses Problem, wie im weiteren Verlauf zu sehen ist. Allerdings ist es auch möglich, neutrale Kaonen ohne diese Nä- herung zu beschreiben (siehe [Azi95]). Daher ist ein plausibler Ansatz zur Beschreibung eines exponentiellen Zerfalls für Zeiten t > 0 (negative Zeiten würden zu Wahrscheinlichkeitsamplituden größer als Eins führen) durch den Zustandsvektor Γ Γ |ψ(τ)i := exp −i m − i τ |ψ(0)i = exp −im − τ |ψ(0)i 2 2 gegeben, wo m die Masse, Γ die totale Zerfallsrate und τ die Eigenzeit ist. Diese zeitliche Evolution führt zu dem gewünschten exponentiellen Abklingen der Wahrscheinlichkeit, da hψ(τ)|ψ(τ)i = e−Γτ gilt. Dieser Zustandsvektor |ψ(τ)i genügt dann einer effektiven Schrödinger-Gleichung ∂ Γ i |ψ(τ)i = m − i |ψ(τ)i ∂τ 2 Γ mit der komplexen Masse m − i 2 . + − 0 π− π π+ π π0 π ¯ u¯ d u u u¯ d d u¯ u d d¯ d¯ W + W − Z0 d s¯ d¯ s d¯ s K0 K¯ 0 K¯ 0 Abbildung 4: Feynman-Diagramme der Zerfallprozesse K0 → π−π+ und K¯ 0 → π−π+ der neutralen Kaonen durch die schwache Wechselwirkung. 4 2.3 Beschreibung des Kaonen-Zerfallsprozesses Die zeitliche Entwicklung der Kaonen-Oszillation zwischen K0 und K¯ 0 lässt sich durch die Superposition |ψ(t)i := α(t)|K0i + β(t)|K¯ 0i beschreiben. Eine Untersuchung der starken Prozesse der neutralen K-Mesonen zeigt, dass K0 und K¯ 0 pseudoskalare Teilchen sind. Unter Anwendung des Raumspiegelungsoperators verhalten sie sich also gemäß Pˆ|K0i = −|K0i bzw. Pˆ|K¯ 0i = −|K¯ 0i . Über die Ladungskonjugation wird das neutrale Kaon K0 in sein Antiteilchen K¯ 0 überführt. Durch eine passende Phasenwahl gilt Cˆ|K0i = |K¯ 0i bzw. Cˆ|K¯ 0i = |K0i , so dass für die Zusammenschaltung
Recommended publications
  • Nutzung Der Gefundenen Werte Far F(1) | | Und P a Bestimmt Worden
    Reconstruction of B D*°e ve Decays and Determination of \Vcb\ DISSERTATION zur Erlangung des akademischen Grades Doctor rerum naturalium (Dr.rer.nat.) vorgelegt der Fakultat Mathematik und Naturwissenschaften der Technischen Universitat Dresden von Diplom-Physiker Jens Schubert geboren am 11.03.1977 in Pirna 1. Gutachter : Prof. Dr. Klaus R. Schubert 2. Gutachter : Prof. Dr. Michael Kobel 3. Gutachter : Dr. Jochen C. Dingfelder Eingereicht am: 01.12.2006 Abstract In this analysis the decay B- ^ D* 0e-Ve is measured. The underlying data sample consists of about 226 million BB-pairs accumulated on the Y(4S) resonance by the BABAR detector at the asymmetric e+e- collider PEP-II. The reconstruction of the decay uses the channels D*° ^ D0n0, D° ^ K-n+ and n0 ^ 77. The neutrino is not reconstructed. Since the rest frame of the B meson is unknown, the boost w of the D*° meson in the B meson rest frame is estimated by w. The W spectrum of the data is described in terms of the partial decay width dr/dw given by theory and the detector simulation translating each spectrum dr/dw into an expectation of the measured w spectrum. dr/dw depends on a form factor F(w) parameterizing the strong interaction in the decay process. To find the best descriptive dr/dw a fit to the data determines the following two parameters of dr/dw: (i) F(1)|VCb|, the product between F at zero D* 0-recoil and the CKM matrix element |Vcb|; (ii) p A , a parameter of the form factor F(w).
    [Show full text]
  • 10 Progressing Beyond the Standard Models
    i i “proc16” — 2016/12/12 — 10:17 — page 177 — #193 i i BLED WORKSHOPS Proceedings to the 19th Workshop IN PHYSICS What Comes Beyond ::: (p. 177) VOL. 17, NO. 2 Bled, Slovenia, July 11–19, 2016 10 Progressing Beyond the Standard Models B.A. Robson ? The Australian National University, Canberra, ACT 2601, Australia Abstract. The Standard Model of particle physics (SMPP) has enjoyed considerable success in describing a whole range of phenomena in particle physics. However, the model is con- sidered incomplete because it provides little understanding of other empirical observations such as the existence of three generations of leptons and quarks, which apart from mass have similar properties. This paper examines the basic assumptions upon which the SMPP is built and compares these with the assumptions of an alternative model, the Generation Model (GM). The GM provides agreement with the SMPP for those phenomena which the SMPP is able to describe, but it is shown that the assumptions inherent in the GM allow progress beyond the SMPP. In particular the GM leads to new paradigms for both mass and gravity. The new theory for gravity provides an understanding of both dark matter and dark energy, representing progress beyond the Standard Model of Cosmology (SMC). Povzetek. Standardni Model elektrosibkeˇ in barvne interakcije zelo uspesnoˇ opiseˇ veliko pojavov v fiziki osnovnih delcev. Model imajo kljub temu za nepopoln, ker ne pojasni vrste empiricnihˇ dejstev, kot je obstoj treh generacij leptonov in kvarkov, ki imajo, razen razlicnihˇ mas, zelo podobne lastnosti. V prispevku obravnavamo osnovne predpostavke, na katerih so zgradili ta model in jih primerjamo s predpostavkami alternativnega modela, generacijskega modela.
    [Show full text]
  • The Flavour Puzzle, Discreet Family Symmetries
    The flavour puzzle, discreet family symmetries 27. 10. 2017 Marek Zrałek Particle Physics and Field Theory Department University of Silesia Outline 1. Some remarks about the history of the flavour problem. 2. Flavour in the Standard Model. 3. Current meaning of the flavour problem? 4. Discrete family symmetries for lepton. 4.1. Abelian symmetries, texture zeros. 4.2. Non-abelian symmetries in the Standard Model and beyond 5. Summary. 1. Some remarks about the history of the flavour problem The flavour problem (History began with the leptons) I.I. Rabi Who ordered that? Discovered by Anderson and Neddermayer, 1936 - Why there is such a duplication in nature? - Is the muon an excited state of the electron? - Great saga of the µ → e γ decay, (Hincks and Pontecorvo, 1948) − − - Muon decay µ → e ν ν , (Tiomno ,Wheeler (1949) and others) - Looking for muon – electron conversion process (Paris, Lagarrigue, Payrou, 1952) Neutrinos and charged leptons Electron neutrino e− 1956r ν e 1897r n p Muon neutrinos 1962r Tau neutrinos − 1936r ν µ µ 2000r n − ντ τ 1977r p n p (Later the same things happen for quark sector) Eightfold Way Murray Gell-Mann and Yuval Ne’eman (1964) Quark Model Murray Gell-Mann and George Zweig (1964) „Young man, if I could remember the names of these particles, I „Had I foreseen that, I would would have been a botanist”, have gone into botany”, Enrico Fermi to advise his student Leon Wofgang Pauli Lederman Flavour - property (quantum numbers) that distinguishes Six flavours of different members in the two groups, quarks and
    [Show full text]
  • Lecture 5: Quarks & Leptons, Mesons & Baryons
    Physics 3: Particle Physics Lecture 5: Quarks & Leptons, Mesons & Baryons February 25th 2008 Leptons • Quantum Numbers Quarks • Quantum Numbers • Isospin • Quark Model and a little History • Baryons, Mesons and colour charge 1 Leptons − − − • Six leptons: e µ τ νe νµ ντ + + + • Six anti-leptons: e µ τ νe̅ νµ̅ ντ̅ • Four quantum numbers used to characterise leptons: • Electron number, Le, muon number, Lµ, tau number Lτ • Total Lepton number: L= Le + Lµ + Lτ • Le, Lµ, Lτ & L are conserved in all interactions Lepton Le Lµ Lτ Q(e) electron e− +1 0 0 1 Think of Le, Lµ and Lτ like − muon µ− 0 +1 0 1 electric charge: − tau τ − 0 0 +1 1 They have to be conserved − • electron neutrino νe +1 0 0 0 at every vertex. muon neutrino νµ 0 +1 0 0 • They are conserved in every tau neutrino ντ 0 0 +1 0 decay and scattering anti-electron e+ 1 0 0 +1 anti-muon µ+ −0 1 0 +1 anti-tau τ + 0 −0 1 +1 Parity: intrinsic quantum number. − electron anti-neutrino ν¯e 1 0 0 0 π=+1 for lepton − muon anti-neutrino ν¯µ 0 1 0 0 π=−1 for anti-leptons tau anti-neutrino ν¯ 0 −0 1 0 τ − 2 Introduction to Quarks • Six quarks: d u s c t b Parity: intrinsic quantum number • Six anti-quarks: d ̅ u ̅ s ̅ c ̅ t ̅ b̅ π=+1 for quarks π=−1 for anti-quarks • Lots of quantum numbers used to describe quarks: • Baryon Number, B - (total number of quarks)/3 • B=+1/3 for quarks, B=−1/3 for anti-quarks • Strangness: S, Charm: C, Bottomness: B, Topness: T - number of s, c, b, t • S=N(s)̅ −N(s) C=N(c)−N(c)̅ B=N(b)̅ −N(b) T=N( t )−N( t )̅ • Isospin: I, IZ - describe up and down quarks B conserved in all Quark I I S C B T Q(e) • Z interactions down d 1/2 1/2 0 0 0 0 1/3 up u 1/2 −1/2 0 0 0 0 +2− /3 • S, C, B, T conserved in strange s 0 0 1 0 0 0 1/3 strong and charm c 0 0 −0 +1 0 0 +2− /3 electromagnetic bottom b 0 0 0 0 1 0 1/3 • I, IZ conserved in strong top t 0 0 0 0 −0 +1 +2− /3 interactions only 3 Much Ado about Isospin • Isospin was introduced as a quantum number before it was known that hadrons are composed of quarks.
    [Show full text]
  • Pos(ICHEP2012)321
    Parity of Pions and CP Violation in Neutral Kaon System PoS(ICHEP2012)321 Brian Robson Department of Theoretical Physics, Research School of Physics and Engineering The Australian National University, Canberra, ACT 0200, Australia E-mail: [email protected] The parity of pions is discussed within the framework of the Generation Model of particle physics and it is shown that both the 1954 determination of the parity of the charged pions and the 2008 determination of the parity of the neutral pion are compatible with the mixed-parity nature of the pions predicted by a recent composite Generation Model. The development of the Generation Model as an alternative to the Standard Model of particle physics is discussed. It is demonstrated how the Generation Model leads to a unified classification of leptons and quarks and how this makes feasible a composite model of the fundamental particles of the Standard Model. In particular it is shown that the 1964 CP violating experiment of Christenson et al. may be understood without CP violation. 36th International Conference on High Energy Physics July 4-11, 2012 Melbourne, Australia Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it Parity of Pions and CP Violation in Neutral Kaon System Brian Robson 1. Introduction This paper summarizes the Generation Model (GM) of particle physics, which has been developed over the last decade [1-4]. Essentially, the GM is obtained from the Standard Model (SM) [5] by making two postulates, which together maintain the same transition probabilities for both hadronic and leptonic processes as the SM so that agreement with experiment is preserved.
    [Show full text]
  • Isospin and Isospin/Strangeness Correlations in Relativistic Heavy Ion Collisions
    Isospin and Isospin/Strangeness Correlations in Relativistic Heavy Ion Collisions Aram Mekjian Rutgers University, Department of Physics and Astronomy, Piscataway, NJ. 08854 & California Institute of Technology, Kellogg Radiation Lab 106-38, Pasadena, Ca 91125 Abstract A fundamental symmetry of nuclear and particle physics is isospin whose third component is the Gell-Mann/Nishijima expression I Z =Q − (B + S) / 2 . The role of isospin symmetry in relativistic heavy ion collisions is studied. An isospin I Z , strangeness S correlation is shown to be a direct and simple measure of flavor correlations, vanishing in a Qg phase of uncorrelated flavors in both symmetric N = Z and asymmetric N ≠ Z systems. By contrast, in a hadron phase, a I Z / S correlation exists as long as the electrostatic charge chemical potential µQ ≠ 0 as in N ≠ Z asymmetric systems. A parallel is drawn with a Zeeman effect which breaks a spin degeneracy PACS numbers: 25.75.-q, 25.75.Gz, 25.75.Nq Introduction A goal of relativistic high energy collisions such as those done at CERN or BNL RHIC is the creation of a new state of matter known as the quark gluon plasma. This phase is produced in the initial stages of a collision where a high density ρ and temperatureT are produced. A heavy ion collision then proceeds through a subsequent expansion to lower ρ andT where the colored quarks and anti-quarks form isolated colorless objects which are the well known particles whose properties are tabulated in ref[1]. Isospin plays an important role in the classification of these particles [1,2].
    [Show full text]
  • Arxiv:1609.04034V1 [Physics.Gen-Ph] 8 Sep 2016 Asnme() 26.C 53.Q 98.80.Bp 95.30.Cq, 12.60.Rc, Number(S): PACS Atom
    The generation model of particle physics and the cosmological matter-antimatter asymmetry problem B.A. Robson∗ Department of Theoretical Physics, Research School of Physics and Engineering, The Australian National University, Acton ACT 2601, Australia ∗[email protected] The matter-antimatter asymmetry problem, corresponding to the virtual nonexis- tence of antimatter in the universe, is one of the greatest mysteries of cosmology. Within the framework of the Generation Model (GM) of particle physics, it is demon- strated that the matter-antimatter asymmetry problem may be understood in terms of the composite leptons and quarks of the GM. It is concluded that there is essen- tially no matter-antimatter asymmetry in the present universe and that the observed hydrogen-antihydrogen asymmetry may be understood in terms of statistical fluctu- ations associated with the complex many-body processes involved in the formation of either a hydrogen atom or an antihydrogen atom. Keywords: Generation model; antimatter; big bang. PACS Number(s): 12.60.Rc, 95.30.Cq, 98.80.Bp arXiv:1609.04034v1 [physics.gen-ph] 8 Sep 2016 1. Introduction The matter-antimatter asymmetry problem, corresponding to the virtual nonexis- tence of antimatter in the universe, is one of the greatest mysteries of cosmology, along with dark matter and dark energy.1 Recently, an understanding of both dark matter and dark energy has been provided by the development of a new quan- tum theory of gravity,2,3 which is based on the Generation Model (GM) of particle physics.4 In this paper it is demonstrated that the matter-antimatter asymmetry problem may also be understood in terms of the composite leptons and quarks of the GM, contrary to the elementary leptons and quarks of the Standard Model (SM) of particle physics.5 According to the SM of particle physics, the universe is made essentially of mat- ter comprising three kinds of elementary particles: electrons, up quarks and down quarks.
    [Show full text]
  • Introduction to Elementary Particle Physics
    Introduction to Elementary Particle Physics Néda Sadooghi Department of Physics Sharif University of Technology Tehran - Iran Elementary Particle Physics Lecture 9 and 10: Esfand 18 and 20, 1397 1397-98-II Leptons and quarks Lectrue 9 Leptons Lectrue 9 Remarks: I Lepton flavor number conservation: - Lepton flavor number of leptons Le; Lµ; Lτ = +1 - Lepton flavor number of antileptons Le; Lµ; Lτ = −1 Assumption: No neutrino mixing + + − + + Ex.: π ! µ + νµ; n ! p + e +ν ¯e; µ ! e + νe +ν ¯µ But, µ+ ! e+ + γ is forbidden I Two other quantum numbers for leptons - Weak hypercharge YW : It is 1 for all left-handed leptons - Weak isospin T3: ( ) ( ) e− − 1 ! 2 For each lepton generation, for example T3 = 1 νe + 2 I Type of interaction: - Charged leptons undergo both EM and weak interactions - Neutrinos interact only weakly Lectrue 9 Quarks Lectrue 9 Remarks I Hadrons are bound states of constituent (valence) quarks I Bare (current) quarks are not dressed. We denote the current quark mass by m0 I Dressed quarks are surrounded by a cloud of virtual quarks and gluons (Sea quarks) I This cloud explains the large constituent-quark mass M I For hadrons the constituent quark mass M = the binding energy required to make the hadrons spontaneously emit a meson containing the valence quark For light quarks (u,d,s): m0 ≪ M For heavy quarks (c,b,t): m0 ' M Lectrue 9 Remarks: I Type of interaction: - All quarks undergo EM and strong interactions I Mean lifetime (typical time of interaction): In general, - Particles which mainly decay through strong interactions have a mean lifetime of about 10−23 sec - Particles which mainly decay through electromagnetic interactions, signaled by the production of photons, have a mean lifetime in the range of 10−20 − 10−16 sec - Particles that decay through weak forces have a mean lifetime in the range of 10−10 − 10−8 sec Lectrue 9 Other quantum numbers (see Perkins Chapter 4) Flavor Baryon Spin Isospin Charm Strangeness Topness Bottomness El.
    [Show full text]
  • Particle Properties
    Particle Properties You don’t have to remember this information! In an exam the masses of the particles are given on the constant sheet. Any other required information will be given to you. What you should know, or be able to work out, is: • the quantum numbers, and if they are conserved are or not • the force responsible for a decay, from the lifetime • the main decay modes, using a Feynman diagram • that the +, − and 0 superscripts correspond to the electric charge of the particles • the relationship between a particle and its antiparticle. Anti-particles are not named in the tables. Anti-particles have the same mass, same lifetime, opposite quantum numbers from the particle. Anti-particles decay into the anti-particles of the shown modes. For example, an anti-muon, µ+, has a mass of 2 −6 105.7 MeV/c and a lifetime of 2.197 × 10 s. Its quantum numbers are Le = 0,Lµ = + + −1,Lτ = 0 and Q = +1. Its main decay mode is µ → e νeν¯µ. Quantum Numbers The following quantum numbers are conserved in all reactions: • Total quark number, Nq = N(q) − N(¯q). – Nq = +1 for all quarks – Nq = −1 for all anti-quarks – Nq = 0 for all leptons and anti-leptons – Nq = 3 for baryons and Nq = 0 for mesons. • The three lepton flavour quantum numbers: − + – Electron Number: Le = N(e ) − N(e ) + N(νe) − N(¯νe) − + – Muon Number: Lµ = N(µ ) − N(µ ) + N(νµ) − N(¯νµ) − + – Tau Number: Lτ = N(τ ) − N(τ ) + N(ντ ) − N(¯ντ ) • Electric charge, Q.
    [Show full text]
  • 2S from Charmless Two-Body Decays of Beauty Mesons
    Alma Mater Studiorum · Università di Bologna Scuola di Scienze Dipartimento di Fisica e Astronomia Corso di Laurea in Fisica Determination of CKM phases γ and −2βs from charmless two-body decays of beauty mesons Relatore: Presentata da: Prof./Dott.Angelo Carbone Davide Fasolo Correlatore: (eventuale) Prof./Dott. Stefano Perazzini Year 2017/2018 Abstract An important task of the modern research in particle physics is to measure the properties of the Cabibbo-Kobayashi-Maskawa (CKM) matrix. The CKM matrix governs the mixing between mass and flavour eigenstates of quarks and is responsible of the breaking of the CP symmetry in the Standard Model (SM), hence, in the very end, of the imbalance between matter and anti-matter in the Universe. Probing the consistency and the unitarity of the CKM matrix is fundamental to verify the validity of the SM and to look for physics beyond. Using the measurements of CP-violation parameters and branching ratios 0 + − 0 0 0 + + 0 0 + − of the B → π π , B → π π , B → π π and Bs → K K de- cays, a bayesian analysis is performed to determine two parameters of 0 the CKM matrix: the angle γ and the mixing phase, −2βs, of the Bs meson. Contents 1 Standard Model 5 1.1 Introduction to the Standard Model5 1.2 The Feynman diagrams7 1.3 The CKM matrix8 1.4 Wolfenstein parameterization of the CKM matrix and unitary triangles 12 2 Hadronic two-body B decays 15 2.1 Direct CP asymmetries 16 2.2 Mixing of neutral B mesons 17 3 Bayesian analysis 21 3.1 Bayes theorem 21 3.2 Parametric inference 22 + 0− 4 Measurement of the CKM parameters γ and −2βs using B → h h decays 25 4.1 Decay amplitudes 26 0 + − 0 + − 4.2 Determination of γ and −2βs from B → π π and Bs → K K decays 28 4.3 Inclusion of B0 → π0π0 and B+ → π+π0 35 5 Conclusions 39 Introduction The study of the Cabibbo-Kobayashi-Maskawa (CKM) matrix is directly related to the flavour dynamics of quarks, and governs CP violation in the Standard Model (SM).
    [Show full text]
  • Quantum Mechanics Electric Charge
    Quantum Mechanics_Electric charge Electric field of a positive and a negative point charge. Electric charge is the physical property of matterthat causes it to experience a force when placed in an electromagnetic field. There are two types of electric charges – positive and negative. Positively charged substances are repelled from other positively charged substances, but attracted to negatively charged substances; negatively charged substances are repelled from negative and attracted to positive. An object will be negatively charged if it has an excess of electrons, and will otherwise be positively charged or uncharged. The SI derived unit of electric charge is the coulomb (C), although in electrical engineering it is also common to use theampere-hour (Ah), and in chemistry it is common to use the elementary charge (e) as a unit. The symbol Qis often used to denote a charge. The study of how charged substances interact is classical electrodynamics, which is accurate insofar asquantum effects can be ignored. The electric charge is a fundamental conserved property of some subatomic particles, which determines their electromagnetic interaction. Electrically charged matter is influenced by, and produces, electromagnetic fields. The interaction between a moving charge and an electromagnetic field is the source of the electromagnetic force, which is one of the four fundamental forces (See also: Magnetic field). Twentieth-century experiments demonstrated that electric charge is quantized; that is, it comes in integer multiples of individual small units called theelementary charge, e, approximately equal to1.602×10−19 coulombs (except for particles calledquarks, which have charges that are integer multiples of e/3). The proton has a charge of e, and the electron has a charge of −e.
    [Show full text]
  • Isospin and Isospin/Strangeness Correlations in Relativistic Heavy-Ion Collisions
    October 2007 EPL, 80 (2007) 22002 www.epljournal.org doi: 10.1209/0295-5075/80/22002 Isospin and isospin/strangeness correlations in relativistic heavy-ion collisions A. Mekjian Rutgers University, Department of Physics and Astronomy - Piscataway, NJ 08854, USA and California Institute of Technology, Kellogg Radiation Lab 106-38 - Pasadena, CA 91125, USA received 3 July 2007; accepted in final form 3 September 2007 published online 28 September 2007 PACS 25.75.-q – Relativistic heavy-ion collisions PACS 25.75.Gz – Particle correlations PACS 25.75.Nq – Quark deconfinement, quark-gluon plasma production, and phase transitions Abstract – A fundamental symmetry of nuclear and particle physics is isospin whose third component is the Gell-Mann/Nishijima expression IZ = Q − (B + S)/2. The role of isospin symmetry in relativistic heavy-ion collisions is studied. An isospin IZ , strangeness S correlation is shown to be a direct and simple measure of flavor correlations, vanishing in a Qg phase of uncorrelated flavors in both symmetric N = Z and asymmetric N = Z systems. By contrast, in a hadron phase, a IZ /S correlation exists as long as the electrostatic charge chemical potential µQ =0 asin N = Z asymmetric systems. A parallel is drawn with a Zeeman effect which breaks a spin degeneracy. Copyright c EPLA, 2007 W Introduction. – A goal of relativistic high-energy consequences [2]. IZ is also given by a Gell-Mann/ collisions such as those done at CERN or BNL RHIC is Nishijima expression. the creation of a new state of matter known as the quark For nuclei and particles made of u, d quarks only, gluon plasma.
    [Show full text]