E Edulis ATION TRENDS and GAPS in SCIENTIFIC PRODUCTION ON
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Redalyc.Environmental Factors Related to the Production of a Complex Set of Spicules in a Tropical Freshwater Sponge
Anais da Academia Brasileira de Ciências ISSN: 0001-3765 [email protected] Academia Brasileira de Ciências Brasil MATTEUZZO, MARCELA C.; VOLKMER-RIBEIRO, CECÍLIA; VARAJÃO, ANGÉLICA F.D.C.; VARAJÃO, CÉSAR A.C.; ALEXANDRE, ANNE; GUADAGNIN, DEMETRIO L.; ALMEIDA, ARIANA C.S. Environmental factors related to the production of a complex set of spicules in a tropical freshwater sponge Anais da Academia Brasileira de Ciências, vol. 87, núm. 4, octubre-diciembre, 2015, pp. 2013-2029 Academia Brasileira de Ciências Rio de Janeiro, Brasil Available in: http://www.redalyc.org/articulo.oa?id=32743236010 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Anais da Academia Brasileira de Ciências (2015) 87(4): 2013-2029 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 http://dx.doi.org/10.1590/0001-3765201520140461 www.scielo.br/aabc Environmental factors related to the production of a complex set of spicules in a tropical freshwater sponge MARCELA C. MatteuZZO1,2, CECÍLIA Volkmer-RIBEIRO3, ANGÉLICA F.D.C. VarajÃO1, CÉSAR A.C. VarajÃO1, ANNE ALEXANDRE2, DEMETRIO L. GUADAGNIN4 and ARIANA C.S. ALMEIDA5 1Departamento de Geologia, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, s/n, Bauxita, 35400-000 Ouro Preto, MG, Brasil 2Université Aix-Marseille, CNRS, IRD, CEREGE UM34, Technopôle de l’Arbois- Méditerranée, BP80, 13545 Aix en Provence cedex 4, France 3Museu de Ciências Naturais da Fundação Zoobotânica do Rio Grande do Sul, Rua Dr. -
Proposal for a Revised Classification of the Demospongiae (Porifera) Christine Morrow1 and Paco Cárdenas2,3*
Morrow and Cárdenas Frontiers in Zoology (2015) 12:7 DOI 10.1186/s12983-015-0099-8 DEBATE Open Access Proposal for a revised classification of the Demospongiae (Porifera) Christine Morrow1 and Paco Cárdenas2,3* Abstract Background: Demospongiae is the largest sponge class including 81% of all living sponges with nearly 7,000 species worldwide. Systema Porifera (2002) was the result of a large international collaboration to update the Demospongiae higher taxa classification, essentially based on morphological data. Since then, an increasing number of molecular phylogenetic studies have considerably shaken this taxonomic framework, with numerous polyphyletic groups revealed or confirmed and new clades discovered. And yet, despite a few taxonomical changes, the overall framework of the Systema Porifera classification still stands and is used as it is by the scientific community. This has led to a widening phylogeny/classification gap which creates biases and inconsistencies for the many end-users of this classification and ultimately impedes our understanding of today’s marine ecosystems and evolutionary processes. In an attempt to bridge this phylogeny/classification gap, we propose to officially revise the higher taxa Demospongiae classification. Discussion: We propose a revision of the Demospongiae higher taxa classification, essentially based on molecular data of the last ten years. We recommend the use of three subclasses: Verongimorpha, Keratosa and Heteroscleromorpha. We retain seven (Agelasida, Chondrosiida, Dendroceratida, Dictyoceratida, Haplosclerida, Poecilosclerida, Verongiida) of the 13 orders from Systema Porifera. We recommend the abandonment of five order names (Hadromerida, Halichondrida, Halisarcida, lithistids, Verticillitida) and resurrect or upgrade six order names (Axinellida, Merliida, Spongillida, Sphaerocladina, Suberitida, Tetractinellida). Finally, we create seven new orders (Bubarida, Desmacellida, Polymastiida, Scopalinida, Clionaida, Tethyida, Trachycladida). -
Freshwater Adaptation at the Molecular Scale in the Unique Sponges of Lake Baikal
bioRxiv preprint doi: https://doi.org/10.1101/416230; this version posted March 27, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Article: Discoveries Freshwater Adaptation at the Molecular Scale in the Unique Sponges of Lake Baikal Nathan J Kenny1 [email protected] Bruna Plese1,2 [email protected] Ana Riesgo1* [email protected] Valeria B. Itskovich3* [email protected] 1 Life Sciences Department, The Natural History Museum, Cromwell Road, London SW7 5BD, UK 2 Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia 3 Limnological Institute, Siberian Branch of the Russian Academy of Science, Ulan-Batorskaya, 3, Irkutsk, 664033 Russia 1 bioRxiv preprint doi: https://doi.org/10.1101/416230; this version posted March 27, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract: The Lake Baikal ecosystem is unique. The largest, oldest and deepest lake in the world presents a variety of rare evolutionary opportunities and ecological niches to the species that inhabit it, and as a result the lake is a biodiversity hotspot. More than 80% of the animals found there are endemic, and they often exhibit unusual traits. The freshwater sponge Lubomirskia baicalensis and its relatives are good examples of these idiosyncratic organisms. -
Order to Further Assess the Parameters Responsible of The
Matteuzzo et al. manuscript “Assessing the relationship between the d18O signatures of siliceous sponge spicules and water in a tropical lacustrine environment (Minas Gerais, Brazil)” Supplementary material : Point by point answers to comments from Anonymous Referee #1 and corrected draft (with modified section in blue). General comments Corrected d18Osilica values: This is my first concern for this study. It seems that the applied correction functions are partly reliable for the shown trends (cf. Table 1, column d18Osilica vs. corrected d18Osilica measured). As most of the result and the discussion section is based on thevalues from corrected d18Osilica measured and as this method of corrections has large uncertainties the results are questionable (see comments for the sections “Methods” and “Results”). At least the uncertainties should be mentioned and the theoretic results for the uncorrected data should be discussed and if they provide a similar picture. This correction was previously discussed in Chapligin et al., 2011 and Alexandre et al., 2012. Although this methodological bias remained unexplained, it is reproducible and could thus be quantified. As pointed out by referee #1, this correction can lead to large uncertainties (Chapligin et al., 2011), although its consistency was verified on independent datasets (Alexandre et al., 2012). In the present case, the simulated uncertainty (calculated using Monte 18 Carlo simulation with the R software) on final corrected δ Osilica values ranges from 0.5 and 0.8 ‰ (cf Table 1 of the corrected draft). 18 18 18 Moreover corrected δ Osilica values are linearly correlated with measured δ Osilica values (corrected δ Osilica 18 2 =1.006 * measured δ Osilica -2.96; r =0.96). -
Formation of Spicules During the Long-Term Cultivation of Primmorphs from the Freshwater Baikal Sponge Lubomirskia Baikalensis L.I
ry: C ist urr m en e t h R C Chernogor et al. Organic Chem Current Res 2011, S:2 e c s i e n a DOI: 10.4172/2161-0401.S2-001 a r c g r h O Organic Chemistry ISSN: 2161-0401 Current Research ResearchResearch Article Article OpenOpen Access Access Formation of Spicules During the Long-term Cultivation of Primmorphs from the Freshwater Baikal Sponge Lubomirskia baikalensis L.I. Chernogor1*, N.N. Denikina1, S.I. Belikov1 and A.V. Ereskovsky2,3 1Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, Irkutsk 664033, Russia 2Department of Embryology, Faculty of Biology and Soils, Saint-Petersburg State University, Universitetskaja nab. 7/9, St. Petersburg 199034, Russia 3Centre d’Océanologie de Marseille, Station marine d’Endoume - CNRS UMR 6540-DIMAR, rue de la Batterie des Lions, 13007 Marseille, France Abstract Sponges (phylum Porifera) are phylogenetically ancient Metazoa that use silicon to form their skeletons. The process of biomineralization in sponges is one of the important problems being examined in the field of research focused on sponge biology. Primmorph cell culture is a convenient model for studying spiculogenesis. The aim of the present work was to produce a long-term primmorph culture from the freshwater Baikal sponge Lubomirskia baikalensis (class Demospongiae, order Haplosclerida and family Lubomirskiidae) in both natural Baikal water and artificial Baikal water to study the influence of silicate concentration on formation and growth of spicules in primmorphs. Silicate concentration plays an important role in formation and growth of spicules, as well as overabundance of silica leads to destruction of cell culture primmorphs. -
Lake Baikal Bibliography, 1989- 1999
UC San Diego Bibliography Title Lake Baikal Bibliography, 1989- 1999 Permalink https://escholarship.org/uc/item/7dc9945d Author Limnological Institute of RAS SB Publication Date 1999-12-31 eScholarship.org Powered by the California Digital Library University of California Lake Baikal Bibliography, 1989- 1999 This is a bibliography of 839 papers published in English in 1989- 1999 by members of Limnological Institute of RAS SB and by their partners within the framework of the Baikal International Center for Ecological Research. Some of the titles are accompanied by abstracts. Coverage is on different aspects of Lake Baikal. Adov F., Takhteev V., Ropstorf P. Mollusks of Baikal-Lena nature reserve (northern Baikal). // World Congress of Malacology: Abstracts; Washington, D.C.: Unitas Malacologica; 1998: 6. Afanasyeva E.L. Life cycle of Epischura baicalensis Sars (Copepoda, Calanoida) in Lake Baikal. // VI International Conference on Copepoda: Abstracts; July 29-August 3, 1996; Oldenburg/Bremerhaven, Germany. Konstanz; 1996: 33. Afanasyeva E.L. Life cycle of Epischura baicalensis Sars (Copepoda, Calanoida) in Lake Baikal. // J. Mar. Syst.; 1998; 15: 351-357. Epischura baicalensis Sars is a dominant pelagic species of Lake Baikal zooplankton. This is endemic to Lake Baikal and inhabits the entire water column. It produces two generations per year: the winter - spring and the summer. These copepods develop under different ecological conditions and vary in the duration of life stages, reproduction time, maturation of sex products and adult males and females lifespan. The total life period of the animals from each generation is one year. One female can produce 10 egg sacks every 10 - 20 days during its life time. -
Adaptive Morpho-Traits, Taxonomy and Biogeography of Metania Gray, 1867 (Porifera: Spongillina: Metaniidae) with the Description of a New Species from Madagascar
Zootaxa 3918 (1): 039–056 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3918.1.2 http://zoobank.org/urn:lsid:zoobank.org:pub:03928490-DD7C-4DB2-9470-C0417D05AF27 Adaptive morpho-traits, taxonomy and biogeography of Metania Gray, 1867 (Porifera: Spongillina: Metaniidae) with the description of a new species from Madagascar RENATA MANCONI1, BARBARA CADEDDU1 & ROBERTO PRONZATO2 1Dipartimento di Scienze della Natura e del Territorio, Università di Sassari, Via Muroni 25, 07100 Sassari, Italy. E-mail [email protected], [email protected] 2Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università di Genova, Corso Europa 26, 16132 Genova, Italy. E-mail: [email protected] Abstract A comparative analysis of gemmular architecture adaptive morpho-traits at family level is reported for Metaniidae togeth- er with the discovery and description of a new species from the River Mangoky (High Plateau), Madagascar. The new Malagasy species, ascribed to Metania for diagnostic traits of the skeleton and the gemmular architecture, differs from all the other known species of the genus in its unique combination of diagnostic traits. Metania madagascariensis sp. nov. is characterised by encrusting growth form, conulose surface, specialized ectosomal skeleton, alveolate-reticulate choano- somal skeleton, two types of megascleres as smooth oxeas (α) and acanthoxeas (β) ornamented with spines and/or tuber- cles, one type of microsclere as acanthoxeas with dense spines/tubercles bearing rosettes of microspines at tips; gemmules with or without cage of megascleres and frequently surrounded by microscleres; gemmular theca trilayered with pneumat- ic layer of fibrous spongin, boletiform (trumpet-like) gemmuloscleres with proximal true rotule large, smooth and with irregular blunt margins, and distal knob-like pseudorotule notably smaller, with a few hooks at the margins. -
The Evolution of the Mitochondrial Genomes of Calcareous Sponges and Cnidarians Ehsan Kayal Iowa State University
Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2012 The evolution of the mitochondrial genomes of calcareous sponges and cnidarians Ehsan Kayal Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Evolution Commons, and the Molecular Biology Commons Recommended Citation Kayal, Ehsan, "The ve olution of the mitochondrial genomes of calcareous sponges and cnidarians" (2012). Graduate Theses and Dissertations. 12621. https://lib.dr.iastate.edu/etd/12621 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. The evolution of the mitochondrial genomes of calcareous sponges and cnidarians by Ehsan Kayal A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Ecology and Evolutionary Biology Program of Study Committee Dennis V. Lavrov, Major Professor Anne Bronikowski John Downing Eric Henderson Stephan Q. Schneider Jeanne M. Serb Iowa State University Ames, Iowa 2012 Copyright 2012, Ehsan Kayal ii TABLE OF CONTENTS ABSTRACT .......................................................................................................................................... -
A Review of Marine Viruses in Coral Ecosystem
Journal of Marine Science and Engineering Review A Review of Marine Viruses in Coral Ecosystem Logajothiswaran Ambalavanan 1 , Shumpei Iehata 1, Rosanne Fletcher 1, Emylia H. Stevens 1 and Sandra C. Zainathan 1,2,* 1 Faculty of Fisheries and Food Sciences, University Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia; [email protected] (L.A.); [email protected] (S.I.); rosannefl[email protected] (R.F.); [email protected] (E.H.S.) 2 Institute of Marine Biotechnology, University Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia * Correspondence: [email protected]; Tel.: +60-179261392 Abstract: Coral reefs are among the most biodiverse biological systems on earth. Corals are classified as marine invertebrates and filter the surrounding food and other particles in seawater, including pathogens such as viruses. Viruses act as both pathogen and symbiont for metazoans. Marine viruses that are abundant in the ocean are mostly single-, double stranded DNA and single-, double stranded RNA viruses. These discoveries were made via advanced identification methods which have detected their presence in coral reef ecosystems including PCR analyses, metagenomic analyses, transcriptomic analyses and electron microscopy. This review discusses the discovery of viruses in the marine environment and their hosts, viral diversity in corals, presence of virus in corallivorous fish communities in reef ecosystems, detection methods, and occurrence of marine viral communities in marine sponges. Keywords: coral ecosystem; viral communities; corals; corallivorous fish; marine sponges; detec- tion method Citation: Ambalavanan, L.; Iehata, S.; Fletcher, R.; Stevens, E.H.; Zainathan, S.C. A Review of Marine Viruses in Coral Ecosystem. J. Mar. Sci. Eng. 1. -
A New Species of Baikal Endemic Sponges (Porifera, Demospongiae
A peer-reviewed open-access journal ZooKeys 906: 113–130 (2020) A new species of Baikal endemic sponges 113 doi: 10.3897/zookeys.906.39534 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research A new species of Baikal endemic sponges (Porifera, Demospongiae, Spongillida, Lubomirskiidae) Natalia A. Bukshuk1, Olga O. Maikova1 1 Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya Str. 3, 664 033 Irkutsk, Russia Corresponding author: Olga O. Maikova ([email protected]) Academic editor: Roberto Pronzato | Received 29 August 2019 | Accepted 16 December 2019 | Published 22 January 2020 http://zoobank.org/2EC18723-4B0F-43BF-B27A-AA5A9D752E27 Citation: Bukshuk NA, Maikova OO (2020) A new species of Baikal endemic sponges (Porifera, Demospongiae, Spongillida, Lubomirskiidae). ZooKeys 906: 113–130. https://doi.org/10.3897/zookeys.906.39534 Abstract This paper reports on a new species of the Baikal endemic sponge (fam. Lubomirskiidae) Swartschewskia khanaevi sp. nov. The description of this species is based on morphological and molecular data (ITS and mitochondrial IGRs). Morphologically, S. khanaevi sp. nov. differs fromS. papyracea by loose tracts arranged in an irregular network as well as the presence on strongyles of compound spines looking like tubercles densely ornamented with simple spines. Moreover, specimens of S. khanaevi sp. nov. show a peculiar structure of the aquiferous system at the body surface that may be an adaptive trait for environ- mental conditions. Phylogenetic analysis has revealed that S. khanaevi sp. nov. forms a well-supported (0.99) monophyletic clade with S. papyracea and is allocated as its sister taxa. Keywords ITS, mitochondrial IGRs, morphological analysis, Swartschewskia Introduction Baikal is the most ancient and deepest lake on the Earth with the huge water volume. -
10Th World Sponge Conference
10th World Sponge Conference NUI Galway 25-30 June 2017 Cover photographs - Bernard Picton. South Africa, 2008. Cover photographs - Bernard Picton. South CAMPUS MAP Áras na Mac Léinn and Bailey Allen Hall 1 The Quadrangle Accessible Route Across Campus (for the mobility 2 Áras na Gaeilge impaired) To Galway City 3 The Hardiman Building IT Building 4 Arts Millennium Building Cafés, restaurants and bars 5 Sports Centre A An Bhialann Cathedral 6 Arts / Science Building B Smokey Joe’s Café D 7 IT Building Martin Ryan Building C 8 10 8 Orbsen Building River D 9 9 Student Information Desk College Bar 7 12 Corrib (SID) / Áras Uí Chathail E Zinc Café C 10 Áras na Mac Léinn F 11 and Bailey Allen Hall Friars Restaurant Arts / Science Building 11 Human Biology Building 13 (under construction) Q Engineering Building U D I 12 Bank of Ireland Theatre N River A C O E R Corrib N 13 Martin Ryan Building 10th WSC Y T T I E B S N 14 Áras Moyola R N 2 E I V A I N 15 J.E. Cairnes School of L 6 U B A 3 Business and Economics R I D 16 Corrib Village Áras Moyola G E University Road (Student Accommodation) Entrance 17 Institute of Lifecourse and Society 18 Park and Ride 1 D 4 I S 19 Engineering Building T I LL E R 5 Y R O A NEWCA Under Construction D STL E ROAD Please excuse our temporary appearance. The Hardiman Building Institute of Lifecourse and Society 19 AD E O R LE ST 14 CA EW N Arts Millennium Building Newcastle Road 15 Entrance 16 F P&R 18 17 J.E. -
Genetic Analysis Confirms the Freshwater Origin of the Endemic Caspian Sponges (Demospongiae, Spongillida, Metschnikowiidae)
A peer-reviewed open-access journal ZooKeys 915: 1–16Genetic (2020) analysis confirms the freshwater origin of the endemic Caspian sponges 1 doi: 10.3897/zookeys.915.47460 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Genetic analysis confirms the freshwater origin of the endemic Caspian sponges (Demospongiae, Spongillida, Metschnikowiidae) Agniya M. Sokolova1,2, Dmitry M. Palatov2,3, Valeria B. Itskovich4 1 N. K. Koltzov Institute of Developmental Biology, Russian Academy of Science, Vavilova str., 26, Moscow, 119334, Russia 2 A. N. Severtsov Institute of Ecology and Evolution, Russian Academy of Science, Leninskij prosp. 33, Moscow, 119071, Russia 3 Biological faculty, Moscow State University, Leninskie Gory 1 / 12, Moscow, 119991, Russia 4 Limnological Institute of Siberian Branch of Russian Academy of Science, Ulan- Batorskaya, 3, Irkutsk, 664033, Russia Corresponding author: Agniya M. Sokolova ([email protected]) Academic editor: Pavel Stoev | Received 20 October 2019 | Accepted 20 January 2020 | Published 24 February 2020 http://zoobank.org/5F0413AC-A647-4D27-A91F-5A2A5618A51D Citation: Sokolova AM, Palatov DM, Itskovich VB (2020) Genetic analysis confirms the freshwater origin of the endemic Caspian sponges (Demospongiae, Spongillida, Metschnikowiidae). ZooKeys 915: 1–16. https://doi. org/10.3897/zookeys.915.47460 Abstract The Caspian Sea is a unique inland brackish waterbody inhabited by highly endemic fauna. This fauna consists of species of both marine and freshwater origin. Some Caspian invertebrates cannot be confidently referred to as animals of either origin. The endemic monophyletic family of sponges, Metschnikowiidae, is among them. Although these sponges are considered as fresh water in the modern literature, no researcher has seen them alive for many years, and its status is actually unconfirmed.