Reclassification of Eubacterium Formicigenerans Holdeman And

Total Page:16

File Type:pdf, Size:1020Kb

Reclassification of Eubacterium Formicigenerans Holdeman And International Journal of Systematic and Evolutionary Microbiology (2002), 52, 423–428 DOI: 10.1099/ijs.0.01874-0 Reclassification of Eubacterium NOTE formicigenerans Holdeman and Moore 1974 as Dorea formicigenerans gen. nov., comb. nov., and description of Dorea longicatena sp. nov., isolated from human faeces 1 Department of David Taras,1 Rainer Simmering,1 Matthew D. Collins,2 Paul A. Lawson2 Gastrointestinal 1 Microbiology, German and Michael Blaut Institute of Human Nutrition, Arthur- Scheunert-Allee 114-116, Author for correspondence: Michael Blaut. Tel: j49 33200 88470. Fax: j49 33200 88407. 14558 Bergholz- e-mail: blaut!www.dife.de Rehbru$ cke, Germany 2 School of Food Biosciences, University of Reading, Two strains of a Gram-positively staining, obligately anaerobic, non-spore- Reading RG6 6AP, UK forming, rod-shaped bacterium, designated strains 111-13A and 111-35T, were isolated from human faeces. Analysis of the 16S rRNA gene sequences indicated that these strains were members of the Clostridium coccoides rRNA group of organisms. The nearest relatives of the unknown bacterium were Eubacterium formicigenerans (having a sequence similarity of 94%) and an uncultured bacterium (similarity " 99%). Characterization studies indicated that the unidentified faecal bacterium was biochemically distinct from Eubacterium formicigenerans, members of the Clostridium coccoides group and all other described Eubacterium species. On the basis of the data from these studies, it is proposed that the hitherto unknown rod-shaped bacterium be designated a species of a novel genus, namely Dorea longicatena gen. nov., sp. nov., and that Eubacterium formicigenerans be transferred to this genus as Dorea formicigenerans gen. nov., comb. nov. Keywords: Dorea longicatena, Dorea formicigenerans, 16S rRNA, taxonomy, phylogeny The intestinal microbiota of humans consists of more human gut (Suau et al., 1999). During an investigation than 400 bacterial species (Finegold et al., 1974; Moore of the human faecal flora, we isolated two strains & Holdeman, 1974). Despite extensive efforts to of a strictly anaerobic, non-spore-forming, Gram- characterize the intestinal microflora, it is now recog- positively staining, rod-shaped organism that dis- nized that a significant proportion of the dominant played " 99% 16S rRNA gene sequence similarity to flora has so far eluded scientific description (Lan- one of the uncultured species reported by Suau et al. gendijk et al., 1995; Zoetendal et al., 1998). Recently, (1999). On the basis of the results of a polyphasic taxo- Suau et al. (1999) conducted a molecular genetic nomic investigation, we propose that these strains be analysis of rDNA amplicons generated directly from a classified, alongside their nearest phylogenetic rela- human faecal sample and showed that more than 90% tive, Eubacterium formicigenerans, in a novel genus, of the flora could be assigned to three major phylo- Dorea gen. nov. genetic lineages (the Bacteroides, Clostridium coccoides T and Clostridium leptum groups). It was evident from Strains 111-13A and 111-35 were isolated from a this molecular taxonomic inventory that the vast screening programme (for hydrogen-producing micro- majority of rDNA sequences generated (76%) did not organisms) using faecal samples from a healthy vol- correspond to known organisms and were clearly unteer who had not undergone antibiotic therapy for derived from hitherto unknown species within the the preceding 6 months. For this purpose, fresh faecal samples were transferred into an anaerobic work- station (MK3; DW Scientific) and diluted serially 10- ................................................................................................................................................. "# The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene fold up to 10 in Wilkins–Chalgren anaerobic broth sequence of strain DSM 13814T is AJ132842. (WCA; Oxoid), a peptone- and yeast extract-con- 01874 # 2002 IUMS Printed in Great Britain 423 D. Taras and others (a) (b) ................................................................................................................................................................................................................................................................................................................. Fig. 1. Scanning electron micrographs of isolate 111-35T grown in HA medium with 10 mM glucose and with 0n5g − Proteose-Peptone l 1 for 12 h at 37 mC. Bars, 5 (a) and 1 (b) µm. taining complex medium, supplemented with 20 mM pH of the medium. Cells were tested for catalase and 2-bromoethanesulfonate and 20 mM Na#MoO% (to oxidase as described previously (Smibert & Krieg, give medium mod-WCA). An aliquot (0n5 ml) of an 1994) after cultivation on WCA agar. Other bio- enrichment culture that developed from the highest chemical features were determined with the API 50 dilution and showed H# production and morphology CHL system (bioMe! rieux). Experiments with resting of long cell chains was plated onto mod-WCA agar cells were performed as described by Kamlage et al. (1n5% agar, w\v) plates. Single colonies were re- (1997). Hydrogen (Hartmann et al., 2000) and acetate, peatedly picked and streaked until pure cultures were butyrate, propionate, valerate and isovalerate (Kam- obtained. Unless indicated otherwise, all incubations lage et al., 1997) were determined by GC as described. were performed at 37 mC under a N#\CO# (80:20, v\v) Succinate, ethanol, formate, acetate, -lactate, - gas phase, using strictly anaerobic conditions (Hun- lactate and glucose were determined enzymically gate, 1969; Bryant, 1972). For morphological and (Bergmeyer & Graßl, 1984). DNA extraction was done physiological studies, both strains were grown on as described by Schwiertz et al. (2000). The GjC Columbia blood agar (bioMe! rieux), in ST medium content of the DNA was determined by HPLC (Schwiertz et al., 2000) or in a medium used for according to Mesbah et al. (1989) except that the culturing acetogenic bacteria (Kamlage et al., 1997) methanol content of the chromatographic buffer was but modified by the addition of 0n5 g Proteose-Peptone reduced to 8% and the temperature was raised to −" no. 2 (Difco) l (HA medium). Agar plates were 37 mC. Lambda DNA (Sigma) served as a standard. prepared by adding 1n5% agar to the appropriate DNA–DNA hybridization was carried out according liquid media, and the plates were poured inside an to Johnson (1994). The DNA–DNA hybrids were anaerobic workstation (N#\CO#\H#; 80:10:10, by detected with the DIG luminescent detection kit vol.). The morphology of the isolates was examined by (Roche) and quantified with an image analyser (Fuji- phase-contrast microscopy (Axioplan 2; Zeiss) and film LAS-1000). For the phylogenetic analysis, the 16S by scanning electron microscopy (model DSM 950; rRNA genes of the two isolates were amplified by PCR Zeiss) after growth on WCA or Columbia blood agar. and sequenced directly using a Taq Dye-Deoxy ter- The methods of Grund et al. (1995) were used for the minator cycle sequencing kit (Applied Biosystems) and scanning electron microscopy. Growth was monitored an automatic DNA sequencer (model 373A, Applied using changes in optical density (at 600 nm) and in the Biosystems). A phylogenetic tree was constructed 424 International Journal of Systematic and Evolutionary Microbiology 52 Dorea gen. nov., containing two species according to the neighbour-joining method, and the showed that the two strains had identical 16S rRNA confidence values of the groupings were estimated by gene sequences, and searches of the GenBank and bootstrap analysis (Felsenstein, 1989). Ribosomal Database Project databases revealed that the isolates were closely related to members of the The two faecal isolates (111-13A and 111-35T) were Clostridium coccoides rRNA group of organisms non-spore-forming, non-motile, strictly anaerobic, (rRNA cluster XIVa; Collins et al., 1994). The highest rod-shaped organisms. The cells were 0 5–0 6 µm wide n n level of sequence relatedness was shown with respect to by 2 0–4 3 µm long and occurred in chains of approxi- n n an rDNA clone derived from an uncultured faecal mately 4–200 cells (Fig. 1). In the exponential growth bacterium (Suau et al., 1999). The described species phase, cells stained Gram-positive, whereas stationary- nearest to the unknown isolates was Eubacterium phase cells exhibited Gram-negative staining behav- formicigenerans (94% sequence similarity). A tree iour. Cultures in ST medium and in HA medium had constructed by neighbour-joining and depicting the a ropy sediment with little or no turbidity. When ST phylogenetic position of the unknown bacterium medium was supplemented with 0 15% agar, the n within the Clostridium coccoides group is shown in cultures exhibited turbidity with dense areas of a fluffy, Fig. 2. ‘woolly’ appearance. Both strains formed white– opaque, non-haemolytic colonies on Columbia blood From these results, it is evident that the two faecal agar and on WCA agar; the colonies were approxi- isolates belong to a hitherto undescribed species, mately 1–3 mm in diameter, circular, convex, smooth, probably related to an uncultured species detected shiny and mucoid. The strains behaved the same with previously in human faeces by direct PCR rDNA respect to all of the biochemical tests. Both isolates community analysis (Suau et al., 1999). The novel rod- produced acid from -glucose, -lactose, -maltose, shaped bacterium forms a distinct subline within the -galactose, amygdalin, -arabinose,
Recommended publications
  • Gut Microbiota and Inflammation
    Nutrients 2011, 3, 637-682; doi:10.3390/nu3060637 OPEN ACCESS nutrients ISSN 2072-6643 www.mdpi.com/journal/nutrients Review Gut Microbiota and Inflammation Asa Hakansson and Goran Molin * Food Hygiene, Division of Applied Nutrition, Department of Food Technology, Engineering and Nutrition, Lund University, PO Box 124, SE-22100 Lund, Sweden; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +46-46-222-8327; Fax: +46-46-222-4532. Received: 15 April 2011; in revised form: 19 May 2011 / Accepted: 24 May 2011 / Published: 3 June 2011 Abstract: Systemic and local inflammation in relation to the resident microbiota of the human gastro-intestinal (GI) tract and administration of probiotics are the main themes of the present review. The dominating taxa of the human GI tract and their potential for aggravating or suppressing inflammation are described. The review focuses on human trials with probiotics and does not include in vitro studies and animal experimental models. The applications of probiotics considered are systemic immune-modulation, the metabolic syndrome, liver injury, inflammatory bowel disease, colorectal cancer and radiation-induced enteritis. When the major genomic differences between different types of probiotics are taken into account, it is to be expected that the human body can respond differently to the different species and strains of probiotics. This fact is often neglected in discussions of the outcome of clinical trials with probiotics. Keywords: probiotics; inflammation; gut microbiota 1. Inflammation Inflammation is a defence reaction of the body against injury. The word inflammation originates from the Latin word ―inflammatio‖ which means fire, and traditionally inflammation is characterised by redness, swelling, pain, heat and impaired body functions.
    [Show full text]
  • Diarrhea Predominant-Irritable Bowel Syndrome (IBS-D): Effects of Different Nutritional Patterns on Intestinal Dysbiosis and Symptoms
    nutrients Review Diarrhea Predominant-Irritable Bowel Syndrome (IBS-D): Effects of Different Nutritional Patterns on Intestinal Dysbiosis and Symptoms Annamaria Altomare 1,2 , Claudia Di Rosa 2,*, Elena Imperia 2, Sara Emerenziani 1, Michele Cicala 1 and Michele Pier Luca Guarino 1 1 Gastroenterology Unit, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy; [email protected] (A.A.); [email protected] (S.E.); [email protected] (M.C.); [email protected] (M.P.L.G.) 2 Unit of Food Science and Human Nutrition, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy; [email protected] * Correspondence: [email protected] Abstract: Irritable Bowel Syndrome (IBS) is a chronic functional gastrointestinal disorder charac- terized by abdominal pain associated with defecation or a change in bowel habits. Gut microbiota, which acts as a real organ with well-defined functions, is in a mutualistic relationship with the host, harvesting additional energy and nutrients from the diet and protecting the host from pathogens; specific alterations in its composition seem to play a crucial role in IBS pathophysiology. It is well known that diet can significantly modulate the intestinal microbiota profile but it is less known how different nutritional approach effective in IBS patients, such as the low-FODMAP diet, could be Citation: Altomare, A.; Di Rosa, C.; responsible of intestinal microbiota changes, thus influencing the presence of gastrointestinal (GI) Imperia, E.; Emerenziani, S.; Cicala, symptoms. The aim of this review was to explore the effects of different nutritional protocols (e.g., M.; Guarino, M.P.L.
    [Show full text]
  • Product Sheet Info
    Product Information Sheet for HM-300 Dorea formicigenerans, Strain Atmosphere: Anaerobic Propagation: 4_6_53AFAA 1. Keep vial frozen until ready for use, then thaw. 2. Transfer the entire thawed aliquot into a single tube of Catalog No. HM-300 broth. 3. Incubate the tube at 37°C for 1 to 2 days. For research use only. Not for human use. Citation: Contributor: Acknowledgment for publications should read “The following Emma Allen-Vercoe, Assistant Professor, Department of reagent was obtained through BEI Resources, NIAID, NIH as Molecular and Cellular Biology, University of Guelph, Guelph, part of the Human Microbiome Project: Dorea Ontario, Canada formicigenerans, Strain 4_6_53AFAA, HM-300.” Manufacturer: Biosafety Level: 1 BEI Resources Appropriate safety procedures should always be used with this material. Laboratory safety is discussed in the following Product Description: publication: U.S. Department of Health and Human Services, Bacteria Classification: Lachnospiraceae, Dorea Public Health Service, Centers for Disease Control and Species: Dorea formicigenerans Prevention, and National Institutes of Health. Biosafety in Microbiological and Biomedical Laboratories. 5th ed. Strain: 4_6_53AFAA Washington, DC: U.S. Government Printing Office, 2009; see Original Source: Dorea formicigenerans (D. formicigenerans), www.cdc.gov/biosafety/publications/bmbl5/index.htm. strain 4_6_53AFAA was isolated from human gastrointestinal tract biopsy sample.1,2 Comments: D. formicigenerans, strain 4_6_53AFAA (HMP ID Disclaimers: 9457) is a reference genome for The Human Microbiome You are authorized to use this product for research use only. Project (HMP). HMP is an initiative to identify and It is not intended for human use. characterize human microbial flora. The complete genome of D. formicigenerans, strain 4_6_53AFAA was sequenced Use of this product is subject to the terms and conditions of at the Broad Institute (GenBank: ADLU00000000).
    [Show full text]
  • Harvesting of Prebiotic Fructooligosaccharides by Nonbeneficial Human Gut Bacteria Zhi Wang, Alexandra S
    Harvesting of Prebiotic Fructooligosaccharides by Nonbeneficial Human Gut Bacteria Zhi Wang, Alexandra S. Tauzin, Elisabeth Laville, Pietro Tedesco, Fabien Letisse, Nicolas Terrapon, Pascale Lepercq, Myriam Mercade, Gabrielle Potocki-Veronese To cite this version: Zhi Wang, Alexandra S. Tauzin, Elisabeth Laville, Pietro Tedesco, Fabien Letisse, et al.. Harvesting of Prebiotic Fructooligosaccharides by Nonbeneficial Human Gut Bacteria. mSphere, 2020, 5 (1), 26 p. 10.1128/mSphere.00771-19. hal-02478442 HAL Id: hal-02478442 https://hal.archives-ouvertes.fr/hal-02478442 Submitted on 13 Feb 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License RESEARCH ARTICLE Molecular Biology and Physiology Harvesting of Prebiotic Fructooligosaccharides by Nonbeneficial Human Gut Bacteria a a a a a b,c a Zhi Wang, Alexandra S. Tauzin, Elisabeth Laville, Pietro Tedesco, Fabien Létisse, Nicolas Terrapon, Pascale Lepercq, Downloaded from Myriam Mercade,a Gabrielle Potocki-Veronesea aTBI, CNRS, INRA, INSAT, Université de Toulouse, Toulouse, France bAFMB, UMR 7257 CNRS, Aix-Marseille Université, Marseille, France cINRA, USC 1408 AFMB, Marseille, France ABSTRACT Prebiotic oligosaccharides, such as fructooligosaccharides, are increas- ingly being used to modulate the composition and activity of the gut microbiota.
    [Show full text]
  • Clinical Study Effects of Surgical and Dietary Weight Loss Therapy for Obesity on Gut Microbiota Composition and Nutrient Absorption
    Hindawi Publishing Corporation BioMed Research International Volume 2015, Article ID 806248, 12 pages http://dx.doi.org/10.1155/2015/806248 Clinical Study Effects of Surgical and Dietary Weight Loss Therapy for Obesity on Gut Microbiota Composition and Nutrient Absorption Antje Damms-Machado,1 Suparna Mitra,2 Asja E. Schollenberger,1,3 Klaus Michael Kramer,4 Tobias Meile,3 Alfred Königsrainer,3 Daniel H. Huson,2,5 and Stephan C. Bischoff1 1 Department of Nutritional Medicine, University of Hohenheim, Fruwirthstraße 12, 70599 Stuttgart, Germany 2 Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551 3 Department of General, Visceral and Transplant Surgery, University of Tubingen,¨ 72076 Tubingen,¨ Germany 4 Department of General and Visceral Surgery, Chirurgische Klinik Munchen-Bogenhausen,¨ 81679 Munich, Germany 5 Center for Bioinformatics, University of Tubingen,¨ 72076 Tubingen,¨ Germany Correspondence should be addressed to Stephan C. Bischoff; [email protected] Received 27 August 2014; Accepted 10 October 2014 Academic Editor: Kuo-Sheng Hung Copyright © 2015 Antje Damms-Machado et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Evidence suggests a correlation between the gut microbiota composition and weight loss caused by caloric restriction. Laparoscopic sleeve gastrectomy (LSG), a surgical intervention for obesity, is classified as predominantly restrictive procedure. In this study we investigated functional weight loss mechanisms with regard to gut microbial changes and energy harvest induced by LSG and a very low calorie diet in ten obese subjects (=5per group) demonstrating identical weight loss during a follow-up period of six months.
    [Show full text]
  • Ketogenic Diet Enhances Neurovascular Function with Altered
    www.nature.com/scientificreports OPEN Ketogenic diet enhances neurovascular function with altered gut microbiome in young healthy Received: 14 September 2017 Accepted: 17 April 2018 mice Published: xx xx xxxx David Ma1, Amy C. Wang1, Ishita Parikh1, Stefan J. Green 2, Jared D. Hofman1,3, George Chlipala2, M. Paul Murphy1,4, Brent S. Sokola5, Björn Bauer5, Anika M. S. Hartz1,3 & Ai-Ling Lin1,3,6 Neurovascular integrity, including cerebral blood fow (CBF) and blood-brain barrier (BBB) function, plays a major role in determining cognitive capability. Recent studies suggest that neurovascular integrity could be regulated by the gut microbiome. The purpose of the study was to identify if ketogenic diet (KD) intervention would alter gut microbiome and enhance neurovascular functions, and thus reduce risk for neurodegeneration in young healthy mice (12–14 weeks old). Here we show that with 16 weeks of KD, mice had signifcant increases in CBF and P-glycoprotein transports on BBB to facilitate clearance of amyloid-beta, a hallmark of Alzheimer’s disease (AD). These neurovascular enhancements were associated with reduced mechanistic target of rapamycin (mTOR) and increased endothelial nitric oxide synthase (eNOS) protein expressions. KD also increased the relative abundance of putatively benefcial gut microbiota (Akkermansia muciniphila and Lactobacillus), and reduced that of putatively pro-infammatory taxa (Desulfovibrio and Turicibacter). We also observed that KD reduced blood glucose levels and body weight, and increased blood ketone levels, which might be associated with gut microbiome alteration. Our fndings suggest that KD intervention started in the early stage may enhance brain vascular function, increase benefcial gut microbiota, improve metabolic profle, and reduce risk for AD.
    [Show full text]
  • Functional Comparison of Bacteria from the Human Gut and Closely
    Functional comparison of bacteria from the human gut and closely related non-gut bacteria reveals the importance of conjugation and a paucity of motility and chemotaxis functions in the gut environment Dragana Dobrijevic, Anne-Laure Abraham, Alexandre Jamet, Emmanuelle Maguin, Maarten van de Guchte To cite this version: Dragana Dobrijevic, Anne-Laure Abraham, Alexandre Jamet, Emmanuelle Maguin, Maarten van de Guchte. Functional comparison of bacteria from the human gut and closely related non-gut bacte- ria reveals the importance of conjugation and a paucity of motility and chemotaxis functions in the gut environment. PLoS ONE, Public Library of Science, 2016, 11 (7), pp.e0159030. 10.1371/jour- nal.pone.0159030. hal-01353535 HAL Id: hal-01353535 https://hal.archives-ouvertes.fr/hal-01353535 Submitted on 11 Aug 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License RESEARCH ARTICLE Functional Comparison of Bacteria from the Human Gut and Closely Related Non-Gut Bacteria Reveals
    [Show full text]
  • A Low-Gluten Diet Induces Changes in the Intestinal Microbiome of Healthy Danish Adults
    Downloaded from orbit.dtu.dk on: Sep 30, 2021 A low-gluten diet induces changes in the intestinal microbiome of healthy Danish adults Hansen, Lea B. S.; Roager, Henrik M.; Søndertoft, Nadja B.; Gøbel, Rikke J.; Kristensen, Mette; Vallès- Colomer, Mireia; Vieira-Silva, Sara; Ibrügger, Sabine; Lind, Mads V.; Mærkedahl, Rasmus B. Total number of authors: 51 Published in: Nature Communications Link to article, DOI: 10.1038/s41467-018-07019-x Publication date: 2018 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Hansen, L. B. S., Roager, H. M., Søndertoft, N. B., Gøbel, R. J., Kristensen, M., Vallès-Colomer, M., Vieira- Silva, S., Ibrügger, S., Lind, M. V., Mærkedahl, R. B., Bahl, M. I., Madsen, M. L., Havelund, J., Falony, G., Tetens, I., Nielsen, T., Allin, K. H., Frandsen, H. L., Hartmann, B., ... Pedersen, O. (2018). A low-gluten diet induces changes in the intestinal microbiome of healthy Danish adults. Nature Communications, 9(1), [4630]. https://doi.org/10.1038/s41467-018-07019-x General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • Gastrointestinal Microbiota in Irritable Bowel Syndrome: Present State and Perspectives
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Wageningen University & Research Publications Microbiology (2010), 156, 3205–3215 DOI 10.1099/mic.0.043257-0 Review Gastrointestinal microbiota in irritable bowel syndrome: present state and perspectives Anne Salonen,1 Willem M. de Vos1,2 and Airi Palva1 Correspondence 1Department of Veterinary Biosciences, Veterinary Microbiology and Epidemiology, Anne Salonen University of Helsinki, PO Box 66, FI-00014 Helsinki, Finland [email protected] 2Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder that has been associated with aberrant microbiota. This review focuses on the recent molecular insights generated by analysing the intestinal microbiota in subjects suffering from IBS. Special emphasis is given to studies that compare and contrast the microbiota of healthy subjects with that of IBS patients classified into different subgroups based on their predominant bowel pattern as defined by the Rome criteria. The current data available from a limited number of patients do not reveal pronounced and reproducible IBS-related deviations of entire phylogenetic or functional microbial groups, but rather support the concept that IBS patients have alterations in the proportions of commensals with interrelated changes in the metabolic output and overall microbial ecology. The lack of apparent similarities in the taxonomy of microbiota in IBS patients may partially arise from the fact that the applied molecular methods, the nature and location of IBS subjects, and the statistical power of the studies have varied considerably. Most recent advances, especially the finding that several uncharacterized phylotypes show non-random segregation between healthy and IBS subjects, indicate the possibility of discovering bacteria specific for IBS.
    [Show full text]
  • The Controversial Role of Human Gut Lachnospiraceae
    microorganisms Review The Controversial Role of Human Gut Lachnospiraceae Mirco Vacca 1 , Giuseppe Celano 1,* , Francesco Maria Calabrese 1 , Piero Portincasa 2,* , Marco Gobbetti 3 and Maria De Angelis 1 1 Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; [email protected] (M.V.); [email protected] (F.M.C.); [email protected] (M.D.A.) 2 Clinica Medica “A. Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70121 Bari, Italy 3 Faculty of Science and Technology, Free University of Bozen, 39100 Bolzano, Italy; [email protected] * Correspondence: [email protected] (G.C.); [email protected] (P.P.); Tel.: +39-080-5442950 (G.C.); Tel.: +39-0805478892 (P.P.) Received: 27 February 2020; Accepted: 13 April 2020; Published: 15 April 2020 Abstract: The complex polymicrobial composition of human gut microbiota plays a key role in health and disease. Lachnospiraceae belong to the core of gut microbiota, colonizing the intestinal lumen from birth and increasing, in terms of species richness and their relative abundances during the host’s life. Although, members of Lachnospiraceae are among the main producers of short-chain fatty acids, different taxa of Lachnospiraceae are also associated with different intra- and extraintestinal diseases. Their impact on the host physiology is often inconsistent across different studies. Here, we discuss changes in Lachnospiraceae abundances according to health and disease. With the aim of harnessing Lachnospiraceae to promote human health, we also analyze how nutrients from the host diet can influence their growth and how their metabolites can, in turn, influence host physiology.
    [Show full text]
  • Gut Microbiota Composition in Health-Care Facility-And Community
    www.nature.com/scientificreports OPEN Gut microbiota composition in health‑care facility‑and community‑onset diarrheic patients with Clostridioides difcile infection Giovanny Herrera1, Laura Vega1, Manuel Alfonso Patarroyo2,3,4, Juan David Ramírez1 & Marina Muñoz1* The role of gut microbiota in the establishment and development of Clostridioides difcile infection (CDI) has been widely discussed. Studies showed the impact of CDI on bacterial communities and the importance of some genera and species in recovering from and preventing infection. However, most studies have overlooked important components of the intestinal ecosystem, such as eukaryotes and archaea. We investigated the bacterial, archaea, and eukaryotic intestinal microbiota of patients with health‑care‑facility‑ or community‑onset (HCFO and CO, respectively) diarrhea who were positive or negative for CDI. The CDI‑positive groups (CO/+, HCFO/+) showed an increase in microorganisms belonging to Bacteroidetes, Firmicutes, Proteobacteria, Ascomycota, and Opalinata compared with the CDI‑negative groups (CO/−, HCFO/−). Patients with intrahospital‑acquired diarrhea (HCFO/+, HCFO/−) showed a marked decrease in bacteria benefcial to the intestine, and there was evidence of increased Archaea and Candida and Malassezia species compared with the CO groups (CO/+, CO/−). Characteristic microbiota biomarkers were established for each group. Finally, correlations between bacteria and eukaryotes indicated interactions among the diferent kingdoms making up the intestinal ecosystem. We showed the impact of CDI on microbiota and how it varies with where the infection is acquired, being intrahospital‑acquired diarrhea one of the most infuential factors in the modulation of bacterial, archaea, and eukaryotic populations. We also highlight interactions between the diferent kingdoms of the intestinal ecosystem, which need to be evaluated to improve our understanding of CDI pathophysiology.
    [Show full text]
  • A Systematic Review of the Effect of Bariatric Surgery
    178:1 Y Guo, Z-P Hunag, C-Q Liu Microbiota and bariatric surgery 178:1 43–56 Clinical Study and others Modulation of the gut microbiome: a systematic review of the effect of bariatric surgery Yan Guo1,*, Zhi-Ping Huang2,3,*, Chao-Qian Liu3,*, Lin Qi4, Yuan Sheng3 and Da-Jin Zou1 Correspondence 1 2 Department of Endocrinology, Changhai Hospital, Shanghai, China, Third Department of Hepatic Surgery, should be addressed 3 Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China, Department of General Surgery, Shangai to Y Sheng or D-J Zou 4 Changhai Hospital, Shanghai, China, and Department of Orthopaedics, the Second Xiangya Hospital, Central Email South University, Changsha, Hunan, China shengyuan.smmu@aliyun. *(Y Guo, Z-P Hunag and C-Q Liu contributed equally to this work) com or zoudajin@hotmail. com Abstract Objective: Bariatric surgery is recommended for patients with obesity and type 2 diabetes. Recent evidence suggested a strong connection between gut microbiota and bariatric surgery. Design: Systematic review. Methods: The PubMed and OVID EMBASE were used, and articles concerning bariatric surgery and gut microbiota were screened. The main outcome measures were alterations of gut microbiota after bariatric surgery and correlations between gut microbiota and host metabolism. We applied the system of evidence level to evaluate the alteration of microbiota. Modulation of short-chain fatty acid and gut genetic content was also investigated. Results: Totally 12 animal experiments and 9 clinical studies were included. Based on strong evidence, 4 phyla (Bacteroidetes, Fusobacteria, Verrucomicrobia and Proteobacteria) increased after surgery; within the phylum Firmicutes, Lactobacillales and Enterococcus increased; and within the phylum Proteobacteria, Gammaproteobacteria, European Journal European of Endocrinology Enterobacteriales Enterobacteriaceae and several genera and species increased.
    [Show full text]