Review of Basic Severe Thunderstorm & Tornado Spotting Concepts
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
From Improving Tornado Warnings: from Observation to Forecast
Improving Tornado Warnings: from Observation to Forecast John T. Snow Regents’ Professor of Meteorology Dean Emeritus, College of Atmospheric and Geographic Sciences, The University of Oklahoma Major contributions from: Dr. Russel Schneider –NOAA Storm Prediction Center Dr. David Stensrud – NOAA National Severe Storms Laboratory Dr. Ming Xue –Center for Analysis and Prediction of Storms, University of Oklahoma Dr. Lou Wicker –NOAA National Severe Storms Laboratory Hazards Caucus Alliance Briefing Tornadoes: Understanding how they develop and providing early warning 10:30 am – 11:30 am, Wednesday, 21 July 2010 Senate Capitol Visitors Center 212 Each Year: ~1,500 tornadoes touch down in the United States, causing over 80 deaths, 100s of injuries, and an estimated $1.1 billion in damages Statistics from NOAA Storm Prediction Center Supercell –A long‐lived rotating thunderstorm the primary type of thunderstorm producing strong and violent tornadoes Present Warning System: Warn on Detection • A Warning is the culmination of information developed and distributed over the preceding days sequence of day‐by‐day forecasts identifies an area of high threat •On the day, storm spotters deployed; radars monitor formation, growth of thunderstorms • Appearance of distinct cloud or radar echo features tornado has formed or is about to do so Warning is generated, distributed Present Warning System: Warn on Detection Radar at 2100 CST Radar at 2130 CST with Warning Thunderstorms are monitored using radar A warning is issued based on the detected and -
From the Line in the Sand: Accounts of USAF Company Grade Officers In
~~may-='11 From The Line In The Sand Accounts of USAF Company Grade Officers Support of 1 " 1 " edited by gi Squadron 1 fficer School Air University Press 4/ Alabama 6" March 1994 Library of Congress Cataloging-in-Publication Data From the line in the sand : accounts of USAF company grade officers in support of Desert Shield/Desert Storm / edited by Michael P. Vriesenga. p. cm. Includes index. 1. Persian Gulf War, 1991-Aerial operations, American . 2. Persian Gulf War, 1991- Personai narratives . 3. United States . Air Force-History-Persian Gulf War, 1991 . I. Vriesenga, Michael P., 1957- DS79 .724.U6F735 1994 94-1322 959.7044'248-dc20 CIP ISBN 1-58566-012-4 First Printing March 1994 Second Printing September 1999 Third Printing March 2001 Disclaimer This publication was produced in the Department of Defense school environment in the interest of academic freedom and the advancement of national defense-related concepts . The views expressed in this publication are those of the authors and do not reflect the official policy or position of the Department of Defense or the United States government. This publication hasbeen reviewed by security andpolicy review authorities and is clearedforpublic release. For Sale by the Superintendent of Documents US Government Printing Office Washington, D.C . 20402 ii 9&1 gook L ar-dicat£a to com#an9 9zacL orflcF-T 1, #ait, /2ZE4Ent, and, E9.#ECLaL6, TatUlLE. -ZEa¢ra anJ9~ 0 .( THIS PAGE INTENTIONALLY LEFT BLANK Contents Essay Page DISCLAIMER .... ... ... .... .... .. ii FOREWORD ...... ..... .. .... .. xi ABOUT THE EDITOR . ..... .. .... xiii ACKNOWLEDGMENTS . ..... .. .... xv INTRODUCTION .... ..... .. .. ... xvii SUPPORT OFFICERS 1 Madzuma, Michael D., and Buoniconti, Michael A. -
Tornadoes & Funnel Clouds Fake Tornado
NOAA’s National Weather Service Basic Concepts of Severe Storm Spotting 2009 – Rusty Kapela Milwaukee/Sullivan weather.gov/milwaukee Housekeeping Duties • How many new spotters? - if this is your first spotter class & you intend to be a spotter – please raise your hands. • A basic spotter class slide set & an advanced spotter slide set can be found on the Storm Spotter Page on the Milwaukee/Sullivan web site (handout). • Utilize search engines and You Tube to find storm videos and other material. Class Agenda • 1) Why we are here • 2) National Weather Service Structure & Role • 3) Role of Spotters • 4) Types of reports needed from spotters • 5) Thunderstorm structure • 6) Shelf clouds & rotating wall clouds • 7) You earn your “Learner’s Permit” Thunderstorm Structure Those two cloud features you were wondering about… Storm Movement Shelf Cloud Rotating Wall Cloud Rain, Hail, Downburst winds Tornadoes & Funnel Clouds Fake Tornado It’s not rotating & no damage! Let’s Get Started! Video Why are we here? Parsons Manufacturing 120-140 employees inside July 13, 2004 Roanoke, IL Storm shelters F4 Tornado – no injuries or deaths. They have trained spotters with 2-way radios Why Are We Here? National Weather Service’s role – Issue warnings & provide training Spotter’s role – Provide ground-truth reports and observations We need (more) spotters!! National Weather Service Structure & Role • Federal Government • Department of Commerce • National Oceanic & Atmospheric Administration • National Weather Service 122 Field Offices, 6 Regional, 13 River Forecast Centers, Headquarters, other specialty centers Mission – issue forecasts and warnings to minimize the loss of life & property National Weather Service Forecast Office - Milwaukee/Sullivan Watch/Warning responsibility for 20 counties in southeast and south- central Wisconsin. -
911 Communicator Questions to Ask Of
911 Communicator Questions to ask of Severe Weather Spotters 1. Name, home address, and telephone number. 2. Is caller a trained severe weather spotter. 3. Time of call. 4. Time of severe weather event (may be different than call time). 5. Location of severe weather event, which may be different from location where spotter called from. (If spotter doesn’t say 1.2 miles southeast of Anytown, then request names of streets at nearest intersection). 6. Type of Weather Event – (most common to least common order) a. If it’s a wind report, ask if the reported speed is measured or estimated. b. If it’s a wind damage report, ask caller to estimate how many trees are damaged, uprooted, etc., or extent and severity of structural damage. c. If it’s a hail event, ask if the reported size is measured or estimated. (penny, nickel, quarter, golf ball, soft ball, etc.) d. If it’s a flood report, ask caller to estimate depth of water on roads or on lawns, ask if the water is stationary or moving, and extent or severity of damage. e. If it’s a “rotating wall-cloud” report, i. Persistent rotation (usually on backside of storm) = true rotating wall-cloud. ii. No rotation = scary-looking cloud (scud), or a non-rotating wall-cloud. f. If it’s a funnel-cloud report, ask caller if the funnel-shaped cloud is actually rotating. If the caller is too far away from the funnel-cloud they may not be able to see rotation. i. No rotation = just a scary-looking cloud (scud). -
The Lagrange Torando During Vortex2. Part Ii: Photogrammetry Analysis of the Tornado Combined with Dual-Doppler Radar Data
6.3 THE LAGRANGE TORANDO DURING VORTEX2. PART II: PHOTOGRAMMETRY ANALYSIS OF THE TORNADO COMBINED WITH DUAL-DOPPLER RADAR DATA Nolan T. Atkins*, Roger M. Wakimoto#, Anthony McGee*, Rachel Ducharme*, and Joshua Wurman+ *Lyndon State College #National Center for Atmospheric Research +Center for Severe Weather Research Lyndonville, VT 05851 Boulder, CO 80305 Boulder, CO 80305 1. INTRODUCTION studies, however, that have related the velocity and reflectivity features observed in the radar data to Over the years, mobile ground-based and air- the visual characteristics of the condensation fun- borne Doppler radars have collected high-resolu- nel, debris cloud, and attendant surface damage tion data within the hook region of supercell (e.g., Bluestein et al. 1993, 1197, 204, 2007a&b; thunderstorms (e.g., Bluestein et al. 1993, 1997, Wakimoto et al. 2003; Rasmussen and Straka 2004, 2007a&b; Wurman and Gill 2000; Alexander 2007). and Wurman 2005; Wurman et al. 2007b&c). This paper is the second in a series that pre- These studies have revealed details of the low- sents analyses of a tornado that formed near level winds in and around tornadoes along with LaGrange, WY on 5 June 2009 during the Verifica- radar reflectivity features such as weak echo holes tion on the Origins of Rotation in Tornadoes Exper- and multiple high-reflectivity rings. There are few iment (VORTEX 2). VORTEX 2 (Wurman et al. 5 June, 2009 KCYS 88D 2002 UTC 2102 UTC 2202 UTC dBZ - 0.5° 100 Chugwater 100 50 75 Chugwater 75 330° 25 Goshen Co. 25 km 300° 50 Goshen Co. 25 60° KCYS 30° 30° 50 80 270° 10 25 40 55 dBZ 70 -45 -30 -15 0 15 30 45 ms-1 Fig. -
June 18, 2017 Landspout Tornadoes
June 18, 2017 Landspout Tornadoes During the evening hours of Sunday, June 18, thunderstorms developed in the vicinity of a cold front over Reagan and Upton Counties.As a result of intense heating and an incredible amount of instability along this boundary, three EF0 landspout* (see definitionat bottom of report) tornadoes touched down in Reagan and southeast Upton Counties between 7 and 8 pm CDT. These tornadoes occurred in open country and no damage was reported. Tornado #1 – EF0: Southwest Reagan County to Southeast Upton County (~7:05-7:13 pm CDT) The first thunderstorm developed around 6:00 pm near Big Lake, TX and slowly moved west along and near US Hwy 67. Law enforcement officersand folks in the area viewed and took images of a tornado that developed 1-2 miles south of US Hwy 67 roughly 14 miles east of Big Lake and continued westward through open fields insouth east portions of Upton County. The tornado was narrow, perhaps 50-75 yards in width and no damage was reported with this tornado. Photo by Maybell Carrasco Photo by Greg Romero Tornado #2 – EF0: Central Reagan Photo by Shanna Gibson County (~8:00 pm CDT) Another thunderstorm moving west, entered eastern Reagan County around 7:30 pm. As this storm approached Big Lake, a second tornado was spotted around 8 pm roughly 6-7 miles northeast of Big Lake, 2-3 miles east of SH 137. This tornado was very short-lived and went undetected on radar. It occurred in open country and no damage was reported. Tornado #3 – EF0: Northeast Reagan County – approximately 20-25 miles north of Big Lake. -
Squall Lines: Meteorology, Skywarn Spotting, & a Brief Look at the 18
Squall Lines: Meteorology, Skywarn Spotting, & A Brief Look At The 18 June 2010 Derecho Gino Izzi National Weather Service, Chicago IL Outline • Meteorology 301: Squall lines – Brief review of thunderstorm basics – Squall lines – Squall line tornadoes – Mesovorticies • Storm spotting for squall lines • Brief Case Study of 18 June 2010 Event Thunderstorm Ingredients • Moisture – Gulf of Mexico most common source locally Thunderstorm Ingredients • Lifting Mechanism(s) – Fronts – Jet Streams – “other” boundaries – topography Thunderstorm Ingredients • Instability – Measure of potential for air to accelerate upward – CAPE: common variable used to quantify magnitude of instability < 1000: weak 1000-2000: moderate 2000-4000: strong 4000+: extreme Thunderstorms Thunderstorms • Moisture + Instability + Lift = Thunderstorms • What kind of thunderstorms? – Single Cell – Multicell/Squall Line – Supercells Thunderstorm Types • What determines T-storm Type? – Short/simplistic answer: CAPE vs Shear Thunderstorm Types • What determines T-storm Type? (Longer/more complex answer) – Lot we don’t know, other factors (besides CAPE/shear) include • Strength of forcing • Strength of CAP • Shear WRT to boundary • Other stuff Thunderstorm Types • Multi-cell squall lines most common type of severe thunderstorm type locally • Most common type of severe weather is damaging winds • Hail and brief tornadoes can occur with most the intense squall lines Squall Lines & Spotting Squall Line Terminology • Squall Line : a relatively narrow line of thunderstorms, often -
Downloaded 09/30/21 06:43 PM UTC JUNE 1996 MONTEVERDI and JOHNSON 247
246 WEATHER AND FORECASTING VOLUME 11 A Supercell Thunderstorm with Hook Echo in the San Joaquin Valley, California JOHN P. MONTEVERDI Department of Geosciences, San Francisco State University, San Francisco, California STEVE JOHNSON Association of Central California Weather Observers, Fresno, California (Manuscript received 30 January 1995, in ®nal form 9 February 1996) ABSTRACT This study documents a damaging supercell thunderstorm that occurred in California's San Joaquin Valley on 5 March 1994. The storm formed in a ``cold sector'' environment similar to that documented for several other recent Sacramento Valley severe thunderstorm events. Analyses of hourly subsynoptic surface and radar data suggested that two thunderstorms with divergent paths developed from an initial echo that had formed just east of the San Francisco Bay region. The southern storm became severe as it ingested warmer, moister boundary layer air in the south-central San Joaquin Valley. A well-developed hook echo with a 63-dBZ core was observed by a privately owned 5-cm radar as the storm passed through the Fresno area. Buoyancy parameters and ho- dograph characteristics were obtained both for estimated conditions for Fresno [on the basis of a modi®ed morning Oakland (OAK) sounding] and for the actual storm environment (on the basis of a radiosonde launched from Lemoore Naval Air Station at about the time of the storm's passage through the Fresno area). Both the estimated and actual hodographs essentially were straight and suggested storm splitting. Although the actual CAPE was similar to that which was estimated, the observed magnitude of the low-level shear was considerably greater than the estimate. -
Skip Talbot Photography by Jennifer Brindley
STORM SPOTTING Skip Talbot SECRETS Photography by Jennifer Brindley Ubl and others Topics • Supercell Visualization • Radar Presentation • Structure Identification • Storm Properties • Walk Through Disclaimers • Attend spotter training • Your safety is more important than spotting, photos, video, or tornado reports Supercell Visualization Lemon and Doswell 1979 Supercell Visualization Supercell Visualization Photo: Chris Gullikson Supercell Visualization Photo: Chris Gullikson Anvil Anvil Backshear Mammatus Cumulonimbus Flanking Line Cloud Base Striations Precipitation Wall Cloud Precipitation-free Base Supercell Visualization Radar Presentation Classic Hook Echo Radar Presentation Android / iOS Android Windows GrLevel3 / GrLevel2 Radar Presentation Classic Hook Echo Radar Presentation Radar Presentation Radar Presentation Radar Presentation Storm Spotting Zoo • Bear’s Cage • Whale’s Mouth • Beaver Tail • Horseshoe • Ghost Train Base (Updraft Base) (Rain Free Base or RFB) Base (Updraft Base) (Rain Free Base or RFB) Base (Updraft Base) (Rain Free Base or RFB) Base (Updraft Base) (Rain Free Base or RFB) Base (Updraft Base) (Rain Free Base or RFB) Base (Updraft Base) (Rain Free Base or RFB) Horseshoe Horseshoe Horseshoe Horseshoe Horseshoe Horseshoe Horseshoe Horseshoe Horseshoe Horseshoe Horseshoe Horseshoe Horseshoe Horseshoe - Cyclical supercell with multiple tornadoes HorseshoeHorseshoe HorseshoeHorseshoe Horseshoe Horseshoe – Anticyclonic Funnel Horseshoe Horseshoe – Anticyclonic Funnel Horseshoe - No Wall Cloud Horseshoe - No Wall Cloud -
Mid-Latitude Dynamics and Atmospheric Rivers Session: Theory, Structure, Processes 1 Jason M
Mid-Latitude Dynamics and Atmospheric Rivers Session: Theory, Structure, Processes 1 Jason M. Cordeira Wednesday, 10 August 2016 Plymouth State University, CW3E/Scripps Contribution from: Heini Werni Peter Knippertz Harold Sodemann Andreas Stohl Francina Dominguez Huancui Hu 2016 International Atmospheric Rivers Conference 8–11 August 2016 Scripps Institution of Oceanography Objective and Outline Objective • What components of midlatitude circulation support formation and structure of atmospheric rivers? Outline • Part 1: ARs, midlatitude storm track, and cyclogenesis • Part 2: ARs, tropical moisture exports, and warm conveyor belt Objective and Outline Objective • What components of midlatitude circulation support formation and structure of atmospheric rivers? Outline • Part 1: ARs, midlatitude storm track, and cyclogenesis • Part 2: ARs, tropical moisture exports, and warm conveyor belt Mimic TPW (SSEC/Wisconsin) • Global water vapor distribution is concentrated at lower latitudes owing to warmer temperatures • Observations illustrate poleward extrusions of water vapor along “tropospheric rivers” or “atmospheric rivers” Zhu and Newell (MWR-1998) • >90% of meridional water vapor transports occurs along ARs • ARs part of midlatitude cyclones and move with storm track Climatology of Water Vapor Transport Global mean IVT 150 kg m−1 s−1 • ECMWF ERA Interim Reanalysis • Oct–Mar 99/00 to 08/09 (i.e., ten winters) • IVT calculated for isobaric layers between 1000 and 100 hPa Tropical–Extratropical Interactions Waugh and Fanutso (2003-JAS) Knippertz -
Analysis of `Miholjday Summer' for Belgrade and Serbia Region
INTERNATIONAL JOURNAL OF CLIMATOLOGY Int. J. Climatol. 26: 1489–1499 (2006) Published online in Wiley InterScience (www.interscience.wiley.com) DOI: 10.1002/joc.1390 ANALYSIS OF ‘MIHOLJDAY SUMMER’ FOR BELGRADE AND SERBIA REGION NEDELJKO TODOROVIC´ a* and DRAGANA VUJOVIC´ b* a Hydrometeorological Service of Serbia, Belgrade, Yugoslavia b Department of Meteorology, Faculty of Physics, Belgrade, Yugoslavia Received 30 May 2006 Revised 14 February 2006 Accepted 11 April 2006 ABSTRACT Typical weather conditions with dry and warm features occur in autumn months, with temperatures above the normal temperatures for this period of the year for the Belgrade and Serbia region. Temperatures have values like the ones for the end of summer. That period of fair weather is called Miholjday (St Michael) summer (MS). An analysis of temperature has been the most important criterion for defining MS. Synoptic situation and temperature conditions during that period are analyzed and typical and atypical MSs are defined for Belgrade and Serbia region. The frequency of MS in the period 1946–2004 for Belgrade region is also analyzed. The general definition (Glossary of Meteorology) is assumed and we gave the specific definition of MS for Belgrade and Serbia region on the basis of real weather for longer series of observations. Copyright 2006 Royal Meteorological Society. KEY WORDS: summer climate variability; weather singularity; weather classification; synoptic climatology 1. INTRODUCTION Miholjday summer (MS) appears in autumn, in the period from the middle of September to the beginning of November. The name is related with Miholjday, the Christian feast celebrated on 12 October in the Orthodox Church (29 September in the Catholic Church). -
Chapter 4 Atmospheric Moisture, Condensation, and Clouds
9/13/2012 Chapter 4 Atmospheric Moisture, Condensation, and Clouds. The sun’s electromagnetic spectrum and some of the descriptive names of each region. The numbers underneath the curve approximate the percent of energy the sun radiates in various regions. 0.4 μm = 400 nm 0.7 μm = 700 nm The daily variation in air temperature is controlled by incoming energy (primarily from the sun) and outgoing energy from the earth’s surface. Where incoming energy exceeds outgoing energy (orange shade), the air temperature rises. Where outgoing energy exceeds incoming energy (gray The hotter sun not only radiates more energy than that of the cooler earth (the area shade), the air under the curve), but it also radiates the majority of its energy at much shorter temperature falls. wavelengths. (The area under the curves is equal to the total energy emitted, and the scales for the two curves differ by a factor of 100,000.) 1 9/13/2012 The average annual incoming solar radiation (yellow line) absorbed by the earth and the atmosphere along with the average annual infrared radiation (red line) emitted by the earth and the atmosphere. Water can exist in 3 phases, depending Evaporation, Condensation, upon pressure and temperature. & Saturation • Evaporation is the change of liquid into a gas and requires heat. • Condensation is the change of a gas into a liquid and releases heat. • Condensation nuclei • Sublimation: solid to gaseous state without becoming a liquid. • Saturation is an equilibrium condition http://www.sci.uidaho.edu/scripter/geog100/l http://chemwiki.ucdavis.edu/Physical_Che in which for each molecule that ect/05‐atmos‐water‐wx/ch5‐part‐2‐water‐ mistry/Physical_Properties_of_Matter/Phas phases.htm e_Transitions/Phase_Diagrams_1 evaporates, one condenses.