Rare Earth Elements
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Baddeleyite Microstructures in Variably Shocked Martian Meteorites: an Opportunity to Link Shock Barometry and Robust Geochronology
51st Lunar and Planetary Science Conference (2020) 2302.pdf BADDELEYITE MICROSTRUCTURES IN VARIABLY SHOCKED MARTIAN METEORITES: AN OPPORTUNITY TO LINK SHOCK BAROMETRY AND ROBUST GEOCHRONOLOGY. L. G. Staddon1*, J. R. Darling1, N. R. Stephen2, J. Dunlop1, and K. T. Tait3,4. 1School of Environment, Geography and Geoscience, University of Portsmouth, UK; *[email protected], 2Plymouth Electron Microscopy Centre, Plymouth University, UK, 3Department of Earth Sciences, University of Toronto, Canada, 4Royal Ontario Museum, Toronto, Canada. Introduction: Baddeleyite (monoclinic ZrO2; m- [6]. Shergottites in which plagioclase has undergone ZrO2) has recently been shown to be capable of provid- complete transformation to maskelynite (S4), suggest- ing robust crystallisation ages for shergottites via in- ing shock pressures of at least ~29 GPa [6], are repre- situ U-Pb isotopic analyses [1,2]. However, in contrast sented by enriched shergottites NWA 8679 and NWA to experimental work [3], these studies also highlight 7257. Both samples are similarly evolved lithologies, that U-Pb isotope systematics of baddeleyite can be abundant in late stage phases such as Fe-Ti oxides, Cl- strongly modified by shock metamorphism. Up to apatite and Si- and K- rich mesostasis, though NWA ~80% radiogenic Pb loss was recorded within North- 7257 is doleritic [9,10]. Enriched basaltic shergottite west Africa (NWA) 5298 [1], with close correspond- NWA 5298 represents the most heavily shocked mar- ence of U-Pb isotopic ratios and baddeleyite micro- tian meteorite studied here (S6), containing both structures [4]. Combined microstructural analysis and maskelynite and vesicular plagioclase melt [4]. U-Pb geochronology of baddeleyite therefore offers Baddeleyite grains >2 µm in length were located tremendous potential to provide robust constraints on via a combination of automated backscattered electron crystallisation and impact ages for martian meteorites. -
19660017397.Pdf
.. & METEORITIC RUTILE Peter R. Buseck Departments of Geology and Chemistry Arizona State University Tempe, Arizona Klaus Keil Space Sciences Division National Aeronautics and Space Administration Ames Research Center Mof fett Field, California r ABSTRACT Rutile has not been widely recognized as a meteoritic constituent. show, Recent microscopic and electron microprobe studies however, that Ti02 . is a reasonably widespread phase, albeit in minor amounts. X-ray diffraction studies confirm the Ti02 to be rutile. It was observed in the following meteorites - Allegan, Bondoc, Estherville, Farmington, and Vaca Muerta, The rutile is associated primarily with ilmenite and chromite, in some cases as exsolution lamellae. Accepted for publication by American Mineralogist . Rutile, as a meteoritic phase, is not widely known. In their sunanary . of meteorite mineralogy neither Mason (1962) nor Ramdohr (1963) report rutile as a mineral occurring in meteorites, although Ramdohr did describe a similar phase from the Faxmington meteorite in his list of "unidentified minerals," He suggested (correctly) that his "mineral D" dght be rutile. He also ob- served it in several mesosiderites. The mineral was recently mentioned to occur in Vaca Huerta (Fleischer, et al., 1965) and in Odessa (El Goresy, 1965). We have found rutile in the meteorites Allegan, Bondoc, Estherville, Farming- ton, and Vaca Muerta; although nowhere an abundant phase, it appears to be rather widespread. Of the several meteorites in which it was observed, rutile is the most abundant in the Farmington L-group chondrite. There it occurs in fine lamellae in ilmenite. The ilmenite is only sparsely distributed within the . meteorite although wherever it does occur it is in moderately large clusters - up to 0.5 mn in diameter - and it then is usually associated with chromite as well as rutile (Buseck, et al., 1965), Optically, the rutile has a faintly bluish tinge when viewed in reflected, plane-polarized light with immersion objectives. -
Washington State Minerals Checklist
Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite -
Rediscovery of the Elements — a Historical Sketch of the Discoveries
REDISCOVERY OF THE ELEMENTS — A HISTORICAL SKETCH OF THE DISCOVERIES TABLE OF CONTENTS incantations. The ancient Greeks were the first to Introduction ........................1 address the question of what these principles 1. The Ancients .....................3 might be. Water was the obvious basic 2. The Alchemists ...................9 essence, and Aristotle expanded the Greek 3. The Miners ......................14 philosophy to encompass a obscure mixture of 4. Lavoisier and Phlogiston ...........23 four elements — fire, earth, water, and air — 5. Halogens from Salts ...............30 as being responsible for the makeup of all 6. Humphry Davy and the Voltaic Pile ..35 materials of the earth. As late as 1777, scien- 7. Using Davy's Metals ..............41 tific texts embraced these four elements, even 8. Platinum and the Noble Metals ......46 though a over-whelming body of evidence 9. The Periodic Table ................52 pointed out many contradictions. It was taking 10. The Bunsen Burner Shows its Colors 57 thousands of years for mankind to evolve his 11. The Rare Earths .................61 thinking from Principles — which were 12. The Inert Gases .................68 ethereal notions describing the perceptions of 13. The Radioactive Elements .........73 this material world — to Elements — real, 14. Moseley and Atomic Numbers .....81 concrete basic stuff of this universe. 15. The Artificial Elements ...........85 The alchemists, who devoted untold Epilogue ..........................94 grueling hours to transmute metals into gold, Figs. 1-3. Mendeleev's Periodic Tables 95-97 believed that in addition to the four Aristo- Fig. 4. Brauner's 1902 Periodic Table ...98 telian elements, two principles gave rise to all Fig. 5. Periodic Table, 1925 ...........99 natural substances: mercury and sulfur. -
Titanium Dioxide Nanoparticles: Prospects and Applications in Medicine
nanomaterials Review Titanium Dioxide Nanoparticles: Prospects and Applications in Medicine Daniel Ziental 1 , Beata Czarczynska-Goslinska 2, Dariusz T. Mlynarczyk 3 , Arleta Glowacka-Sobotta 4, Beata Stanisz 5, Tomasz Goslinski 3,* and Lukasz Sobotta 1,* 1 Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; [email protected] 2 Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; [email protected] 3 Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; [email protected] 4 Department and Clinic of Maxillofacial Orthopedics and Orthodontics, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland; [email protected] 5 Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; [email protected] * Correspondence: [email protected] (T.G.); [email protected] (L.S.) Received: 4 January 2020; Accepted: 19 February 2020; Published: 23 February 2020 Abstract: Metallic and metal oxide nanoparticles (NPs), including titanium dioxide NPs, among polymeric NPs, liposomes, micelles, quantum dots, dendrimers, or fullerenes, are becoming more and more important due to their potential use in novel medical therapies. Titanium dioxide (titanium(IV) oxide, titania, TiO2) is an inorganic compound that owes its recent rise in scientific interest to photoactivity. After the illumination in aqueous media with UV light, TiO2 produces an array of reactive oxygen species (ROS). The capability to produce ROS and thus induce cell death has found application in the photodynamic therapy (PDT) for the treatment of a wide range of maladies, from psoriasis to cancer. -
Mineral Processing
Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19 -
Electronic Structure and Optical Properties of Prominent Phases of Tio2: First-Principles Study
Pramana – J. Phys. (2017) 89:5 © Indian Academy of Sciences DOI 10.1007/s12043-017-1400-5 Electronic structure and optical properties of prominent phases of TiO2: First-principles study SANTOSH SINGH and MADHVENDRA NATH TRIPATHI∗ Department of Pure and Applied Physics, Guru Ghasidas Vishwavidyalaya (Central University), Koni, Bilaspur 495 009, India ∗Corresponding author. E-mail: [email protected] Published online 19 June 2017 Abstract. First-principles study based on density functional theory (DFT) of two prominent phases, the rutile and the anatase phases, of titanium dioxide (TiO2) are reported within the generalized gradient approximation (GGA). Our calculated band structure shows that there is a significant presence of O-2p and Ti-3d hybridization in the valence bands. These bands are well separated from the conduction bands by a direct band gap value of 1.73 eV in the rutile phase and an indirect band gap value of 2.03 eV in the anatase phase, from to X. Our calculations reproduced the peaks in the conduction and valence band, are in good agreement with experimental observations. Our structural optimization for the rutile and anatase phase led to lattice parameter values of 4.62 Å and 2.99 Å rutile and 3.80 Å and 9.55 Å for anatase for a and c. The static dielectric values 7.0 and 5.1 for the rutile and anatase phases respectively are in excellent agreement with experimental results. Our calculation of optical properties reveals that maximum value of the transmittance in anatase phase of TiO2 may be achieved by considering the anisotropic behaviour of the optical spectra in the optical region for transparent conducting application. -
Rare Earth Elements in Planetary Crusts: Insights from Chemically Evolved Igneous Suites on Earth and the Moon
minerals Article Rare Earth Elements in Planetary Crusts: Insights from Chemically Evolved Igneous Suites on Earth and the Moon Claire L. McLeod 1,* and Barry J. Shaulis 2 1 Department of Geology and Environmental Earth Sciences, 203 Shideler Hall, Miami University, Oxford, OH 45056, USA 2 Department of Geosciences, Trace Element and Radiogenic Isotope Lab (TRaIL), University of Arkansas, Fayetteville, AR 72701, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-513-529-9662 Received: 5 July 2018; Accepted: 8 October 2018; Published: 16 October 2018 Abstract: The abundance of the rare earth elements (REEs) in Earth’s crust has become the intense focus of study in recent years due to the increasing societal demand for REEs, their increasing utilization in modern-day technology, and the geopolitics associated with their global distribution. Within the context of chemically evolved igneous suites, 122 REE deposits have been identified as being associated with intrusive dike, granitic pegmatites, carbonatites, and alkaline igneous rocks, including A-type granites and undersaturated rocks. These REE resource minerals are not unlimited and with a 5–10% growth in global demand for REEs per annum, consideration of other potential REE sources and their geological and chemical associations is warranted. The Earth’s moon is a planetary object that underwent silicate-metal differentiation early during its history. Following ~99% solidification of a primordial lunar magma ocean, residual liquids were enriched in potassium, REE, and phosphorus (KREEP). While this reservoir has not been directly sampled, its chemical signature has been identified in several lunar lithologies and the Procellarum KREEP Terrane (PKT) on the lunar nearside has an estimated volume of KREEP-rich lithologies at depth of 2.2 × 108 km3. -
The Stability, Electronic Structure, and Optical Property of Tio2 Polymorphs
The stability, electronic structure, and optical property of TiO2 polymorphs Tong Zhu and Shang-Peng Gaoa) Department of Materials Science, Fudan University, Shanghai 200433, P. R. China Phonon density of states calculation shows that a new TiO2 polymorph with tridymite structure is mechanically stable. Enthalpies of 9 TiO2 polymorphs under different pressure are presented to study the relative stability of the TiO2 polymorphs. Band structures for the TiO2 polymorphs are calculated by density functional theory with generalized gradient approximation and the band energies at high symmetry k-points are corrected using the GW method to accurately determine the band gap. The differences between direct band gap energies and indirect band gap energies are very small for rutile, columbite and baddeleyite TiO2, indicating a quasi-direct band gap character. The band gap energies of baddeleyite (quasi-direct) and brookite (direct) TiO2 are close to that of anatase (indirect) TiO2. The band gap of the newly predicted tridymite-structured TiO2 is wider than the other 8 polymorphs. For optical response calculations, two-particle effects have been included by solving the Bethe-Salpeter equation for Coulomb correlated electron-hole pairs. TiO2 with cotunnite, pyrite, and fluorite structures have optical transitions in the visible light region. I. INTRODUCTION 1,2 Even after half a century of research, investigation of the fundamental properties of TiO2 crystal phases remains very important properly due to their important role to effectively utilize solar energy. For instance, 3 4 photocatalytic splitting of water into H2 and O2, photovoltaic generation of electricity, degradation of 5,6 7 environmentally hazard materials, and reduction of CO2 into hydrocarbon fuels. -
Breakthrough Chemistry Simulations for Lithium Processing Contents
think simulation | getting the chemistry right Breakthrough chemistry simulations for lithium processing Using simulation to maximize your investment return in lithium extraction and processing Contents Introduction ............................................................................................................................................ 2 Process simulation deficiencies ................................................................................................................ 2 OLI Systems electrolyte thermodynamics .................................................................................................2 OLI Systems lithium initiative .................................................................................................................... 2 Lithium phase 1 and potash chemistry is complete ................................................................................... 2 Fundamental sulfate – chloride systems .............................................................................................. 3 Fundamental hydroxide and carbonate systems .................................................................................. 3 Lithium in acid environments for processing and recycling ................................................................... 3 Lithium borate systems for Li production ............................................................................................. 4 Systems related to Li hydrometallurgical processing, purifications and recycling .................................. -
U-Pb (And U-Th) Dating of Micro-Baddeleyite
UU--PbPb (and(and UU--ThTh)) datingdating ofof micromicro--baddeleyitebaddeleyite 30 μm Axel K. Schmitt UCLA SIMS, NSF National Ion Microprobe Facility Collaborators:Collaborators: T.T. MaMarkrk HarrisonHarrison (UCLA)(UCLA) KevinKevin ChamberlainChamberlain (University(University ofof Wyoming)Wyoming) BaddeleyiteBaddeleyite (BAD(BAD--üü--LLĒĒ--iteite)*)* basicsbasics • chemical formula: ZrO2 • monoclinic (commonly twinned) • minor HfO2, TiO2, FeO, SiO2 • U between ~200 – 1000 ppm • low common Pb, Th/U <<0.2 • wide range of occurrences (terrestrial and extraterrestrial) • mafic and ultramafic rocks (basalt, gabbro, diabase) • alkali rocks (carbonatite, syenite) • mantle xenoliths (from kimberlites) • metacarbonates • impact-related rocks (tektites) Wingate and Compston, 2000 *National*National LibraryLibrary ServiceService forfor thethe BlindBlind andand PhysicallyPhysically HandicappeHandicappedd (NLS),(NLS), LibraryLibrary ofof CongressCongress BaddeleyiteBaddeleyite dating:dating: applicationsapplications andand examplesexamples BulkBulk analysisanalysis (TIMS)(TIMS) • Mafic dikes and layered intrusions (e.g., Heaman et al., 1992) • Detrital baddeleyite (e.g., Bodet and Schärer, 2000) InIn--situsitu methodsmethods (SIMS,(SIMS, LALA ICPICP MS,MS, EPMA)EPMA) • Mafic dikes and gabbros (e.g., Wingate et al., 1998; French et al., 2000) • SNC meteorites (Herd et al., 2007: 70±35 Ma and 171±35 Ma) MicroMicro--baddeleyitebaddeleyite analysis:analysis: inin--situsitu advantagesadvantages • Bulk analysis difficulties: • time-intensive, highly -
Alphab Etical Index
ALPHAB ETICAL INDEX Names of authors are printed in SMALLCAPITALS, subjects in lower-case roman, and localities in italics; book reviews are placed at the end. ABDUL-SAMAD, F. A., THOMAS, J. H., WILLIAMS, P. A., BLASI, A., tetrahedral A1 in alkali feldspar, 465 and SYMES, R. F., lanarkite, 499 BORTNIKOV, N. S., see BRESKOVSKA, V. V., 357 AEGEAN SEA, Santorini I., iron oxide mineralogy, 89 Boulangerite, 360 Aegirine, Scotland, in trachyte, 399 BRAITHWAITE, R. S. W., and COOPER, B. V., childrenite, /~kKERBLOM, G. V., see WILSON, M. R., 233 119 ALDERTON, D. H. M., see RANKIN, A. H., 179 Braunite, mineralogy and genesis, 506 Allanite, Scotland, 445 BRESKOVSKA, V. V., MOZGOVA, N. N., BORTNIKOV, N. S., Aluminosilicate-sodalites, X-ray study, 459 GORSHKOV, A. I., and TSEPIN, A. I., ardaite, 357 Amphibole, microstructures and phase transformations, BROOKS, R. R., see WATTERS, W. A., 510 395; Greenland, 283 BULGARIA, Madjarovo deposit, ardaite, 357 Andradite, in banded iron-formation assemblage, 127 ANGUS, N. S., AND KANARIS-SOTIRIOU, R., autometa- Calcite, atomic arrangement on twin boundaries, 265 somatic gneisses, 411 CANADA, SASKATCHEWAN, uranium occurrences in Cree Anthophyllite, asbestiform, morphology and alteration, Lake Zone, 163 77 CANTERFORD, J. H., see HILL, R. J., 453 Aragonite, atomic arrangements on twin boundaries, Carbonatite, evolution and nomenclature, 13 265 CARPENTER, M. A., amphibole microstructures, 395 Ardaite, Bulgaria, new mineral, 357 Cassiterite, SW England, U content, 211 Arfvedsonite, Scotland, in trachyte, 399 Cebollite, in kimberlite, correction, 274 ARVlN, M., pumpellyite in basic igneous rocks, 427 CHANNEL ISLANDS, Guernsey, meladiorite layers, 301; ASCENSION ISLAND, RE-rich eudialyte, 421 Jersey, wollastonite and epistilbite, 504; mineralization A TKINS, F.