A Single Bacterial Genus Maintains Root Growth in a Complex Microbiome
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service. -
Anti-Staphylococcal Activity of Variovorax Paradoxus EPS
California State University, San Bernardino CSUSB ScholarWorks Electronic Theses, Projects, and Dissertations Office of aduateGr Studies 9-2017 Anti-Staphylococcal Activity of Variovorax paradoxus EPS Patricia Holt-Torres Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd Part of the Other Microbiology Commons Recommended Citation Holt-Torres, Patricia, "Anti-Staphylococcal Activity of Variovorax paradoxus EPS" (2017). Electronic Theses, Projects, and Dissertations. 584. https://scholarworks.lib.csusb.edu/etd/584 This Thesis is brought to you for free and open access by the Office of aduateGr Studies at CSUSB ScholarWorks. It has been accepted for inclusion in Electronic Theses, Projects, and Dissertations by an authorized administrator of CSUSB ScholarWorks. For more information, please contact [email protected]. 0 Anti-Staphylococcal Activity of Variovorax paradoxus EPS A Thesis Presented to the Faculty of California State University, San Bernardino In Partial Fulfillment of the Requirements for the Degree Master of Science in Biology by Patricia S. Holt-Torres September 2017 1 2 Table of Contents Page number Introduction 4 Evolution of Antibiotics and Antibiotic Resistance 4 in environmental and soil bacteria Antibiotic Classes and Mechanisms 4 Antimicrobial Resistance 6 Methicillin-Resistant Staphylococcus aureus (MRSA) 8 Novel antibiotics 10 Non-ribosomal peptide synthetases 10 Variovorax paradoxus EPS 11 Hypothesis 13 Methods and materials 14 Media and Culture Conditions 14 T-streak method to determine anti-staphylococcal activity 14 RNA extraction of Wild Type V. paradoxus EPS 15 Reverse Transcription of Wild type V. paradoxus EPS 16 Expression analysis of anti-staphylococcal activity of 16 Variovorax paradoxus EPS Quantitative analysis of anti-staphylococcal activity 17 Embedded S. -
Corynebacterium Sp.|NML98-0116
1 Limnochorda_pilosa~GCF_001544015.1@NZ_AP014924=Bacteria-Firmicutes-Limnochordia-Limnochordales-Limnochordaceae-Limnochorda-Limnochorda_pilosa 0,9635 Ammonifex_degensii|KC4~GCF_000024605.1@NC_013385=Bacteria-Firmicutes-Clostridia-Thermoanaerobacterales-Thermoanaerobacteraceae-Ammonifex-Ammonifex_degensii 0,985 Symbiobacterium_thermophilum|IAM14863~GCF_000009905.1@NC_006177=Bacteria-Firmicutes-Clostridia-Clostridiales-Symbiobacteriaceae-Symbiobacterium-Symbiobacterium_thermophilum Varibaculum_timonense~GCF_900169515.1@NZ_LT827020=Bacteria-Actinobacteria-Actinobacteria-Actinomycetales-Actinomycetaceae-Varibaculum-Varibaculum_timonense 1 Rubrobacter_aplysinae~GCF_001029505.1@NZ_LEKH01000003=Bacteria-Actinobacteria-Rubrobacteria-Rubrobacterales-Rubrobacteraceae-Rubrobacter-Rubrobacter_aplysinae 0,975 Rubrobacter_xylanophilus|DSM9941~GCF_000014185.1@NC_008148=Bacteria-Actinobacteria-Rubrobacteria-Rubrobacterales-Rubrobacteraceae-Rubrobacter-Rubrobacter_xylanophilus 1 Rubrobacter_radiotolerans~GCF_000661895.1@NZ_CP007514=Bacteria-Actinobacteria-Rubrobacteria-Rubrobacterales-Rubrobacteraceae-Rubrobacter-Rubrobacter_radiotolerans Actinobacteria_bacterium_rbg_16_64_13~GCA_001768675.1@MELN01000053=Bacteria-Actinobacteria-unknown_class-unknown_order-unknown_family-unknown_genus-Actinobacteria_bacterium_rbg_16_64_13 1 Actinobacteria_bacterium_13_2_20cm_68_14~GCA_001914705.1@MNDB01000040=Bacteria-Actinobacteria-unknown_class-unknown_order-unknown_family-unknown_genus-Actinobacteria_bacterium_13_2_20cm_68_14 1 0,9803 Thermoleophilum_album~GCF_900108055.1@NZ_FNWJ01000001=Bacteria-Actinobacteria-Thermoleophilia-Thermoleophilales-Thermoleophilaceae-Thermoleophilum-Thermoleophilum_album -
Dissertation Implementing Organic Amendments To
DISSERTATION IMPLEMENTING ORGANIC AMENDMENTS TO ENHANCE MAIZE YIELD, SOIL MOISTURE, AND MICROBIAL NUTRIENT CYCLING IN TEMPERATE AGRICULTURE Submitted by Erika J. Foster Graduate Degree Program in Ecology In partial fulfillment of the requirements For the Degree of Doctor of Philosophy Colorado State University Fort Collins, Colorado Summer 2018 Doctoral Committee: Advisor: M. Francesca Cotrufo Louise Comas Charles Rhoades Matthew D. Wallenstein Copyright by Erika J. Foster 2018 All Rights Reserved i ABSTRACT IMPLEMENTING ORGANIC AMENDMENTS TO ENHANCE MAIZE YIELD, SOIL MOISTURE, AND MICROBIAL NUTRIENT CYCLING IN TEMPERATE AGRICULTURE To sustain agricultural production into the future, management should enhance natural biogeochemical cycling within the soil. Strategies to increase yield while reducing chemical fertilizer inputs and irrigation require robust research and development before widespread implementation. Current innovations in crop production use amendments such as manure and biochar charcoal to increase soil organic matter and improve soil structure, water, and nutrient content. Organic amendments also provide substrate and habitat for soil microorganisms that can play a key role cycling nutrients, improving nutrient availability for crops. Additional plant growth promoting bacteria can be incorporated into the soil as inocula to enhance soil nutrient cycling through mechanisms like phosphorus solubilization. Since microbial inoculation is highly effective under drought conditions, this technique pairs well in agricultural systems using limited irrigation to save water, particularly in semi-arid regions where climate change and population growth exacerbate water scarcity. The research in this dissertation examines synergistic techniques to reduce irrigation inputs, while building soil organic matter, and promoting natural microbial function to increase crop available nutrients. The research was conducted on conventional irrigated maize systems at the Agricultural Research Development and Education Center north of Fort Collins, CO. -
Lifestyle Preferences Drive the Structure and Diversity of Bacterial and Archaeal Communities in a Small Riverine Reservoir
www.nature.com/scientificreports OPEN Lifestyle preferences drive the structure and diversity of bacterial and archaeal communities in a small riverine reservoir Carles Borrego1,2, Sergi Sabater1,3* & Lorenzo Proia1,4 Spatial heterogeneity along river networks is interrupted by dams, afecting the transport, processing, and storage of organic matter, as well as the distribution of biota. We here investigated the structure of planktonic (free-living, FL), particle-attached (PA) and sediment-associated (SD) bacterial and archaeal communities within a small reservoir. We combined targeted-amplicon sequencing of bacterial and archaeal 16S rRNA genes in the DNA and RNA community fractions from FL, PA and SD, followed by imputed functional metagenomics, in order to unveil diferences in their potential metabolic capabilities within the reservoir (tail, mid, and dam sections) and lifestyles (FL, PA, SD). Both bacterial and archaeal communities were structured according to their life-style preferences rather than to their location in the reservoir. Bacterial communities were richer and more diverse when attached to particles or inhabiting the sediment, while Archaea showed an opposing trend. Diferences between PA and FL bacterial communities were consistent at functional level, the PA community showing higher potential capacity to degrade complex carbohydrates, aromatic compounds, and proteinaceous materials. Our results stressed that particle-attached prokaryotes were phylogenetically and metabolically distinct from their free-living counterparts, and that performed as hotspots for organic matter processing within the small reservoir. Spatial heterogeneity of river networks results from the sequence of lotic segments—which promote the transport and quick transformation of materials—and lentic segments such as large pools and wetlands—which mostly contribute to the process and storage of organic matter 1,2. -
Genome Sequencing and Description of Oerskovia Enterophila Vjag, an Agar- and Cellulose-Degrading Bacterium Vanessa Jag1*† , Anja Poehlein2†, Frank R
Jag et al. Standards in Genomic Sciences (2017) 12:30 DOI 10.1186/s40793-017-0244-4 SHORT GENOME REPORT Open Access Genome sequencing and description of Oerskovia enterophila VJag, an agar- and cellulose-degrading bacterium Vanessa Jag1*† , Anja Poehlein2†, Frank R. Bengelsdorf1, Rolf Daniel2 and Peter Dürre1 Abstract A nonmotile, Gram-positive bacterium that shows an elongated and branching cell shape was isolated from soil samples from the botanical garden of Ulm University, Ulm, Germany. Here, the isolation procedure, identification, genome sequencing and metabolic features of the strain are described. Phylogenetic analysis allowed to identify the isolated strain as Oerskovia enterophila. The genus Oerskovia belongs to the family Cellulomonadaceae within the order Actinomycetales. The length of cells of O. enterophila ranges from 1 μmto15μm, depending on the growth phase. In the exponential growth phase, cells show an elongated and branching shape, whereas cells break up to round or coccoid elements in the stationary growth phase. The 4,535,074 bp long genome consists of 85 contigs with 3918 protein-coding genes and 57 RNA genes. The isolated strain was shown to degrade numerous complex carbon sources such as cellulose, chitin, and starch, which can be found ubiquitously in nature. Moreover, analysis of the genomic sequence revealed the genetic potential to degrade these compounds. Keywords: Oerskovia, Cellulomonadaceae, Cellulose degradation, Soil bacteria, Phylogenetic analysis Introduction from 51% to more than 70% [5–7]. Actinobacteria are Oerskovia enterophila was formerly characterized as widely distributed in terrestrial as well as in aquatic Promicromonospora enterophila by Jàger et al. in 1983 habitats [8, 9]. -
The Diversity of Cultivable Hydrocarbon-Degrading Bacteria Isolated from Crude Oil Contaminated Soil and Sludge from Arzew Refinery in Algeria
THE DIVERSITY OF CULTIVABLE HYDROCARBON-DEGRADING BACTERIA ISOLATED FROM CRUDE OIL CONTAMINATED SOIL AND SLUDGE FROM ARZEW REFINERY IN ALGERIA Sonia SEKKOUR1*, Abdelkader BEKKI1, Zoulikha BOUCHIBA1, Timothy M. Vogel2, Elisabeth NAVARRO2 Address(es): Ing. Sonia SEKKOUR PhD., 1Université Ahmed Benbella, Faculté des sciences de la nature et de la vie, Département de Biotechnologie, Laboratoire de biotechnologie des rhizobiums et amélioration des plantes, 31000 Oran, Algérie. 2Environmental Microbial Genomics Group, Laboratoire Ampère, Centre National de la Recherche Scientifique, UMR5005, Institut National de la Recherche Agronomique, USC1407, Ecole Centrale de Lyon, Université de Lyon, Ecully, France. *Corresponding author: [email protected] doi: 10.15414/jmbfs.2019.9.1.70-77 ARTICLE INFO ABSTRACT Received 27. 3. 2018 The use of autochtonious bacterial strains is a valuable bioremediation strategy for cleaning the environment from hydrocarbon Revised 19. 2. 2019 pollutants. The isolation, selection and identification of hydrocarbon-degrading bacteria is therefore crucial for obtaining the most Accepted 14. 3. 2019 promising strains for decontaminate a specific site. In this study, two different media, a minimal medium supplemented with petroleum Published 1. 8. 2019 and with oil refinery sludge as sole carbon source, were used for the isolation of native hydrocarbon-degrading bacterial strains from crude oil contaminated soils and oil refinery sludges which allowed isolation of fifty-eight strains.The evalution of diversity of twenty- two bacterials isolates reveled a dominance of the phylum Proteobacteria (20/22 strains), with a unique class of Alphaproteobacteria, Regular article the two remaining strains belong to the phylum Actinobacteria. Partial 16S rRNA gene sequencing performed on isolates showed high level of identity with known sequences. -
Investigating the Functions of the Plant-Associated Genus Variovorax in the Populus Rhizosphere
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 12-2019 Investigating the Functions of the Plant-associated Genus Variovorax in the Populus Rhizosphere Jennifer Ann Childers University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Recommended Citation Childers, Jennifer Ann, "Investigating the Functions of the Plant-associated Genus Variovorax in the Populus Rhizosphere. " Master's Thesis, University of Tennessee, 2019. https://trace.tennessee.edu/utk_gradthes/5570 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Jennifer Ann Childers entitled "Investigating the Functions of the Plant-associated Genus Variovorax in the Populus Rhizosphere." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Life Sciences. Jennifer L. Morrell-Falvey, Major Professor We have read this thesis and recommend its acceptance: Dale A. Pelletier, Gladys Alexandre, Sarah L. Lebeis Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Investigating the Functions of the Plant-associated Genus Variovorax in the Populus Rhizosphere A Thesis Presented for the Master of Science Degree The University of Tennessee, Knoxville Jennifer Ann Childers December 2019 Copyright © 2019 by Jennifer Ann Childers All rights reserved. -
Promicromonospora Flava Sp. Nov., Isolated from Sediment of the Baltic Sea
International Journal of Systematic and Evolutionary Microbiology (2009), 59, 1599–1602 DOI 10.1099/ijs.0.006197-0 Promicromonospora flava sp. nov., isolated from sediment of the Baltic Sea Yi Jiang,1,2 Jutta Wiese,1 Yan-Ru Cao,2 Li-Hua Xu,2 Johannes F. Imhoff1 and Cheng-Lin Jiang2 Correspondence 1Leibniz-Institut fu¨r Meereswissenschaften, IFM-GEOMAR, Du¨sternbrooker Weg 20, D-24105 Kiel, Cheng-Lin Jiang Germany [email protected] 2Yunnan Institute of Microbiology, Yunnan University, Kunming 650091, PR China Johannes F. Imhoff [email protected] A Gram-positive, non-spore-forming actinomycete, designated strain CC 0387T, was isolated from a sediment sample from the Baltic Sea, Germany. Classification using a polyphasic approach and comparative 16S rRNA gene sequencing showed that strain CC 0387T belonged to the genus Promicromonospora and displayed more than 3 % 16S rRNA gene sequence divergence from all Promicromonospora species with validly published names. Strain CC 0387T did not produce aerial mycelium. Substrate mycelia were yellowish white to pale orange-yellow and fragmented into bacillary or coccoid elements. The cell wall contained lysine and alanine. Whole- cell hydrolysates contained galactose, glucose, rhamnose and ribose. The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol, an unknown phospholipid and an unknown glycolipid. The predominant menaquinone was MK-9(H4) (86 %). The G+C content of the DNA was 71.87 mol%. Based on morphological, chemotaxonomic, phenotypic and genetic characteristics, strain CC 0387T (5CCTCC AA208024T5DSM 21481T) represents a novel species, for which the name Promicromonospora flava sp. nov. is proposed. The genus Promicromonospora was proposed by bacteria and fungi, after incubation at 28 uC for 21 days. -
Direct Meta-Analyses Reveal Unexpected Microbial Life in the Highly Radioactive Water of an Operating Nuclear Reactor Core
microorganisms Communication Direct Meta-Analyses Reveal Unexpected Microbial Life in the Highly Radioactive Water of an Operating Nuclear Reactor Core Pauline C. M. Petit 1, Olivier Pible 2, Valérie Van Eesbeeck 3, Claude Alban 1 , 2 3 3, 2 Gérard Steinmetz , Mohamed Mysara , Pieter Monsieurs y, Jean Armengaud and 1, , Corinne Rivasseau * z 1 Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), CNRS, INRAE, Université Grenoble Alpes, F-38054 Grenoble, France; [email protected] (P.C.M.P.); [email protected] (C.A.) 2 Département Médicaments et Technologies pour la Santé (DMTS), CEA, INRAE, SPI, Université Paris-Saclay, F-30200 Bagnols-sur-Cèze, France; [email protected] (O.P.); [email protected] (G.S.); [email protected] (J.A.) 3 Microbiology Unit, The Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, B-2400 Mol, Belgium; • [email protected] (V.V.E.); [email protected] (M.M.); [email protected] (P.M.) * Correspondence: [email protected]; Tel.: +33-169-08-60-00 Present Address: Department of Microbiology, Wageningen University and Research, 6708 Wageningen, y The Netherlands. Present Address: CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, z 91198 Gif-sur-Yvette, France. Received: 21 October 2020; Accepted: 23 November 2020; Published: 25 November 2020 Abstract: The pools of nuclear reactor facilities constitute harsh environments for life, bathed with ionizing radiation, filled with demineralized water and containing toxic radioactive elements. The very few studies published to date have explored water pools used to store spent nuclear fuels. -
Systematic Research on Actinomycetes Selected According
Systematic Research on Actinomycetes Selected according to Biological Activities Dissertation Submitted in fulfillment of the requirements for the award of the Doctor (Ph.D.) degree of the Math.-Nat. Fakultät of the Christian-Albrechts-Universität in Kiel By MSci. - Biol. Yi Jiang Leibniz-Institut für Meereswissenschaften, IFM-GEOMAR, Marine Mikrobiologie, Düsternbrooker Weg 20, D-24105 Kiel, Germany Supervised by Prof. Dr. Johannes F. Imhoff Kiel 2009 Referent: Prof. Dr. Johannes F. Imhoff Korreferent: ______________________ Tag der mündlichen Prüfung: Kiel, ____________ Zum Druck genehmigt: Kiel, _____________ Summary Content Chapter 1 Introduction 1 Chapter 2 Habitats, Isolation and Identification 24 Chapter 3 Streptomyces hainanensis sp. nov., a new member of the genus Streptomyces 38 Chapter 4 Actinomycetospora chiangmaiensis gen. nov., sp. nov., a new member of the family Pseudonocardiaceae 52 Chapter 5 A new member of the family Micromonosporaceae, Planosporangium flavogriseum gen nov., sp. nov. 67 Chapter 6 Promicromonospora flava sp. nov., isolated from sediment of the Baltic Sea 87 Chapter 7 Discussion 99 Appendix a Resume, Publication list and Patent 115 Appendix b Medium list 122 Appendix c Abbreviations 126 Appendix d Poster (2007 VAAM, Germany) 127 Appendix e List of research strains 128 Acknowledgements 134 Erklärung 136 Summary Actinomycetes (Actinobacteria) are the group of bacteria producing most of the bioactive metabolites. Approx. 100 out of 150 antibiotics used in human therapy and agriculture are produced by actinomycetes. Finding novel leader compounds from actinomycetes is still one of the promising approaches to develop new pharmaceuticals. The aim of this study was to find new species and genera of actinomycetes as the basis for the discovery of new leader compounds for pharmaceuticals. -
Genome-Based Classification of Micromonosporae
www.nature.com/scientificreports OPEN Genome-based classifcation of micromonosporae with a focus on their biotechnological and Received: 14 August 2017 Accepted: 8 November 2017 ecological potential Published: xx xx xxxx Lorena Carro 1, Imen Nouioui1, Vartul Sangal2, Jan P. Meier-Kolthof 3, Martha E. Trujillo4, Maria del Carmen Montero-Calasanz 1, Nevzat Sahin 5, Darren Lee Smith2, Kristi E. Kim6, Paul Peluso6, Shweta Deshpande7, Tanja Woyke 7, Nicole Shapiro7, Nikos C. Kyrpides7, Hans-Peter Klenk1, Markus Göker 3 & Michael Goodfellow1 There is a need to clarify relationships within the actinobacterial genus Micromonospora, the type genus of the family Micromonosporaceae, given its biotechnological and ecological importance. Here, draft genomes of 40 Micromonospora type strains and two non-type strains are made available through the Genomic Encyclopedia of Bacteria and Archaea project and used to generate a phylogenomic tree which showed they could be assigned to well supported phyletic lines that were not evident in corresponding trees based on single and concatenated sequences of conserved genes. DNA G+C ratios derived from genome sequences showed that corresponding data from species descriptions were imprecise. Emended descriptions include precise base composition data and approximate genome sizes of the type strains. antiSMASH analyses of the draft genomes show that micromonosporae have a previously unrealised potential to synthesize novel specialized metabolites. Close to one thousand biosynthetic gene clusters were detected, including NRPS, PKS, terpenes and siderophores clusters that were discontinuously distributed thereby opening up the prospect of prioritising gifted strains for natural product discovery. The distribution of key stress related genes provide an insight into how micromonosporae adapt to key environmental variables.