THE EVOLUTION of COLOR VISION in INSECTS Adriana D. Briscoe1 and Lars Chittka2
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Interspecific Variation in Competitor Avoidance and Foraging Success in Sap-Attracted Insects
Eur. J. Entomol. 106: 529–533, 2009 http://www.eje.cz/scripts/viewabstract.php?abstract=1484 ISSN 1210-5759 (print), 1802-8829 (online) Interspecific variation in competitor avoidance and foraging success in sap-attracted insects JIICHIRO YOSHIMOTO* Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan Key words. Aggressive interactions, community, foraging strategy, interference competition, resources, tree sap Abstract. Many insect species attracted to fermenting sap often fight for access to this resource, which results in the establishment of interspecific dominance hierarchies. In one such system, the hornet Vespa mandarinia (Hymenoptera: Vespidae) behaviourally dominates during the daytime and several subordinate species avoid aggressive interactions in various ways. In order to elucidate the interspecific variation in competitor-avoidance behaviour and its subsequent effect on foraging success, the behaviour of species of hornets, beetles and butterflies at patches (exudation spots) in Japan was recorded. The percentage of individuals that succeeded in visiting a patch following departure from one, or an attempted visit, or after waiting near a patch for t 10 s, did not differ greatly among species, despite the distinctive differences in dominance between V. mandarinia and the other species. These results suggest that subordinate species may be equally effective at foraging for sap as the dominant species. The competitor-avoidance behaviour differed among the species. Vespa crabro and satyrine butterflies mainly avoided competition by actively moving away from com- petitors. The beetle Rhomborrhina japonica (Coleoptera: Scarabaeidae) often remained close to an occupied patch and waited for the occupant to leave, whereas V. -
Biolphilately Vol-64 No-3
BIOPHILATELY OFFICIAL JOURNAL OF THE BIOLOGY UNIT OF ATA MARCH 2020 VOLUME 69, NUMBER 1 Great fleas have little fleas upon their backs to bite 'em, And little fleas have lesser fleas, and so ad infinitum. —Augustus De Morgan Dr. Indraneil Das Pangolins on Stamps More Inside >> IN THIS ISSUE NEW ISSUES: ARTICLES & ILLUSTRATIONS: From the Editor’s Desk ......................... 1 Botany – Christopher E. Dahle ............ 17 Pangolins on Stamps of the President’s Message .............................. 2 Fungi – Paul A. Mistretta .................... 28 World – Dr. Indraneil Das ..................7 Secretary -Treasurer’s Corner ................ 3 Mammalia – Michael Prince ................ 31 Squeaky Curtain – Frank Jacobs .......... 15 New Members ....................................... 3 Ornithology – Glenn G. Mertz ............. 35 New Plants in the Philatelic News of Note ......................................... 3 Ichthyology – J. Dale Shively .............. 57 Herbarium – Christopher Dahle ....... 23 Women’s Suffrage – Dawn Hamman .... 4 Entomology – Donald Wright, Jr. ........ 59 Rats! ..................................................... 34 Event Calendar ...................................... 6 Paleontology – Michael Kogan ........... 65 New Birds in the Philatelic Wedding Set ........................................ 16 Aviary – Charles E. Braun ............... 51 Glossary ............................................... 72 Biology Reference Websites ................ 69 ii Biophilately March 2020 Vol. 69 (1) BIOPHILATELY BIOLOGY UNIT -
Classical Biological Control of Arthropods in Australia
Classical Biological Contents Control of Arthropods Arthropod index in Australia General index List of targets D.F. Waterhouse D.P.A. Sands CSIRo Entomology Australian Centre for International Agricultural Research Canberra 2001 Back Forward Contents Arthropod index General index List of targets The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. Its primary mandate is to help identify agricultural problems in developing countries and to commission collaborative research between Australian and developing country researchers in fields where Australia has special competence. Where trade names are used this constitutes neither endorsement of nor discrimination against any product by the Centre. ACIAR MONOGRAPH SERIES This peer-reviewed series contains the results of original research supported by ACIAR, or material deemed relevant to ACIAR’s research objectives. The series is distributed internationally, with an emphasis on the Third World. © Australian Centre for International Agricultural Research, GPO Box 1571, Canberra ACT 2601, Australia Waterhouse, D.F. and Sands, D.P.A. 2001. Classical biological control of arthropods in Australia. ACIAR Monograph No. 77, 560 pages. ISBN 0 642 45709 3 (print) ISBN 0 642 45710 7 (electronic) Published in association with CSIRO Entomology (Canberra) and CSIRO Publishing (Melbourne) Scientific editing by Dr Mary Webb, Arawang Editorial, Canberra Design and typesetting by ClarusDesign, Canberra Printed by Brown Prior Anderson, Melbourne Cover: An ichneumonid parasitoid Megarhyssa nortoni ovipositing on a larva of sirex wood wasp, Sirex noctilio. Back Forward Contents Arthropod index General index Foreword List of targets WHEN THE CSIR Division of Economic Entomology, now Commonwealth Scientific and Industrial Research Organisation (CSIRO) Entomology, was established in 1928, classical biological control was given as one of its core activities. -
A Magyar Természettudományi Múzeum Évkönyve 79. (Budapest 1987)
ANNALES HISTORICO-NATURALES MUSEI NATIONALIS HUNGARICI Tomus 79. Budapest, 1987 p. 167-178. Taxonomic and zoogeographical studies on the subfamily Plusiinae (Lepidoptera, Noctuidae). The Palaeotropical, Oriental and Nearctic material of the Zoological Museum, Copenhagen by L. RONKAY, Budapest L. RONKAY: Taxonomic and zoogeographical studies on the subfamily Plusiinae (Lepidoptera, Noctuidae). The Palaeotropical, Oriental and Nearctic material of the Zoological Museum, Copen hagen. — Annls hist.-nat. Mus. natn. hung. 1987 79: 167-178. Abstract — Three new genera, Anaplusia gen. n., Extremoplusia gen. n. and Scriptoplusia gen. n. and one new species, Scriptoplusia noona sp. n. are described and an annotated list of 50 species from N America, Africa and the Oriental Region is given. With 26 figures and 1 photoplate. In 1986Ihadtthe opportunity to study the Palaeotropical, Nearctic and Indo-Australian Plusiinae material of the Zoological Museum of Copenhagen. During the course of this work I could study in details some species which had not been relagated to any described genera. These studies, based on the external and genitalic morphology including the characteristics of the vesica, have shown the necessity to erect three new genera for these taxa. — The whole material contains specimens of 50 species, one of them is new for science and there are several previously unknown distribution records of the species. I would like to express my thanks to Dr. Ole Karsholt (Zool. Mus., Copenhagen) for his exten sive help in this work and also to Dr. L. Gozmány (Budapest) for his useful advice. 1. DESCRIPriON OF THE NEW TAXA It is an interesting fact that there are some species, distributed over the Eastern-South eastern border of the Palaearctic Region to Indonesia, Australia and New Guinea, which appear to be remote from any well-known genera of the Eastern Tropical Plusiinae. -
Evolution of Insect Color Vision: from Spectral Sensitivity to Visual Ecology
EN66CH23_vanderKooi ARjats.cls September 16, 2020 15:11 Annual Review of Entomology Evolution of Insect Color Vision: From Spectral Sensitivity to Visual Ecology Casper J. van der Kooi,1 Doekele G. Stavenga,1 Kentaro Arikawa,2 Gregor Belušic,ˇ 3 and Almut Kelber4 1Faculty of Science and Engineering, University of Groningen, 9700 Groningen, The Netherlands; email: [email protected] 2Department of Evolutionary Studies of Biosystems, SOKENDAI Graduate University for Advanced Studies, Kanagawa 240-0193, Japan 3Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; email: [email protected] 4Lund Vision Group, Department of Biology, University of Lund, 22362 Lund, Sweden; email: [email protected] Annu. Rev. Entomol. 2021. 66:23.1–23.28 Keywords The Annual Review of Entomology is online at photoreceptor, compound eye, pigment, visual pigment, behavior, opsin, ento.annualreviews.org anatomy https://doi.org/10.1146/annurev-ento-061720- 071644 Abstract Annu. Rev. Entomol. 2021.66. Downloaded from www.annualreviews.org Copyright © 2021 by Annual Reviews. Color vision is widespread among insects but varies among species, depend- All rights reserved ing on the spectral sensitivities and interplay of the participating photore- Access provided by University of New South Wales on 09/26/20. For personal use only. ceptors. The spectral sensitivity of a photoreceptor is principally determined by the absorption spectrum of the expressed visual pigment, but it can be modified by various optical and electrophysiological factors. For example, screening and filtering pigments, rhabdom waveguide properties, retinal structure, and neural processing all influence the perceived color signal. -
The Reading Naturalist
The Reading Naturalist No. 53 Published by the Reading and District Natural History Society 2001 Price to Non Members £2.50 T H E R E A D I N G N A T U R A L I S T No 53 for the year 2000 The Journal of the Reading and District Natural History Society President Mr Rod d’Ayala Honorary General Secretary Mrs Catherine Butcher Honorary Editor Dr Malcolm Storey Editorial Sub-committee The Editor, Dr Alan Brickstock, Mrs Linda Carter, Mr Hugh H. Carter Miss June M. V. Housden, Mr David G. Notton Honorary Recorders Botany: Mrs Linda Carter, Fungi: Dr Alan Brickstock Entomology: Mr David G. Notton Invertebates other than insects: Mr Hugh H. Carter Vertebrates: Mr Hugh H. Carter CONTENTS Obituary 1 Members’ Observations 1 Excursions Meryl Beek 2 Wednesday Afternoon Walks Alan Brickstock 5 Meetings (1999-2000) Catherine Butcher 6 The Fishlock Prize 7 Membership Norman Hall 8 Presidential address: Some Mycological Ramblings Alan Brickstock 9 Natural History Services provided at the Museum of Reading David G. Notton 13 A Mutant Foxglove Malcolm Storey 16 Sehirus dubius (or should that be dubious!) Chris Raper 17 Hartslock – a Local Success Story Chris Raper 17 Recorders’ Reports Malcolm Storey 19 “RDB” and “N” status – The Jargon Explained Rod d’Ayala 19 Recorder’s Report for Botany 2000 Linda Carter 20 The New Berkshire Flora Malcolm Storey 23 Recorder’s Report for Mycology 2000 Alan Brickstock 24 Recorder’s Report for Entomology 2000 David G. Notton 27 Recorder’s Report for Invertebrates other than insects 2000 Hugh H. -
A Contribution to the Knowledge of the Tenthredinidae (Symphyta, Hymenoptera)
TurkJZool 28(2004)37-54 ©TÜB‹TAK AContributiontotheKnowledgeoftheTenthredinidae (Symphyta,Hymenoptera)FaunaofTurkey PartI:TheSubfamilyTenthredininae* ÖnderÇALMAfiUR,HikmetÖZBEK AtatürkUniversity,FacultyofAgriculture,DepartmentofPlantProtection, 25240Erzurum-TURKEY Received:07.02.2003 Abstract: ThesubfamilyTenthredininaeinthefamilyTenthredinidaewastreatedinthispartofthestudyregardingthesawfly (Symphyta,Hymenoptera)faunaofTurkey.Thematerialswerecollectedfromvariouslocalitiesaroundthecountry,though examplesfromeasternTurkeyarepredominant.Afterexaminingmorethan2500specimens,57speciesin8generawererecorded. ElevenspecieswerenewforTurkishfauna;ofthese3specieswererecordedforthefirsttimeasAsianfauna.Furthermore,3 specieswereendemicforTurkey.ThedistributionandnewareasaswellasthehostplantsofsomespeciesaroundTurkeyandth e worldweregiven.Foreachspeciesitschorotypewasreported. KeyWords: Hymenoptera,Tenthredinidae,Tenthredininae,Fauna,Turkey Türkiye’ninTenthredinidae(Symphyta,Hymenoptera)Faunas›naKatk›lar Bölüm:ITenthredininaeAltfamilyas› Özet: Türkiye’nintestereliar›(Symphyta,Hymenoptera)faunas›n›ntespitineyönelikçal›flmalar›nbubölümünde;Tenthredininae (Tenthredinidae)altfamilyas›eleal›nm›fl;incelenen2500’denfazlaörneksonucu,sekizcinseba¤l›toplam57türsaptanm›flt›r. Türkiyefaunas›içinyeniolduklar›saptanan11türdenüçününAsyafaunas›içindeyenikay›tolduklar›belirlenmifltir.ÜçtürünTürkiye içinendemikolduklar›saptanm›flt›r.Tespitedilentürlerinhementamam›içinyeniyay›lmaalanlar›belirlenmifl,birço¤unun konukçular›bulunmufltur.Türkiyevedünyadakida¤›l›fllar›chorotype’leriilebirlikteverilmifltir. -
(Insecta, Lepidoptera) Национального Парка «Анюйский» (Хабаровский Край) В
Амурский зоологический журнал, 2020, т. XII, № 4 Amurian Zoological Journal, 2020, vol. XII, no. 4 www.azjournal.ru УДК 595.783 DOI: 10.33910/2686-9519-2020-12-4-490-512 http://zoobank.org/References/b28d159d-a1bd-4da9-838c-931ed5c583bb MACROHETEROCERA (INSECTA, LEPIDOPTERA) НАЦИОНАЛЬНОГО ПАРКА «АНЮЙСКИЙ» (ХАБАРОВСКИЙ КРАЙ) В. В. Дубатолов1, 2 1 ФГУ «Заповедное Приамурье», ул. Юбилейная, д. 8, Хабаровский край, 680502, пос. Бычиха, Россия 2 Институт систематики и экологии животных СО РАН, ул. Фрунзе, д. 11, 630091, Новосибирск, Россия Сведения об авторе Аннотация. Приводится список Macroheterocera (без Geometridae), Дубатолов Владимир Викторович отмеченных в Анюйском национальном парке, включающий 442 вида. E-mail: [email protected] Наиболее интересные находки: Rhodoneura vittula Guenée, 1858; Auzata SPIN-код: 6703-7948 superba (Butler, 1878); Oroplema plagifera (Butler, 1881); Mimopydna pallida Scopus Author ID: 14035403600 (Butler, 1877); Epinotodonta fumosa Matsumura, 1920; Moma tsushimana ResearcherID: N-1168-2018 Sugi, 1982; Chilodes pacifica Sugi, 1982; Doerriesa striata Staudinger, 1900; Euromoia subpulchra (Alpheraky, 1897) и Xestia kurentzovi (Kononenko, 1984). Среди них впервые для Приамурья приводятся Rhodoneura vittula Guen. (Thyrididae), Euromoia subpulchra Alph. и Xestia kurentzovi Kononenko (Noctuidae). Права: © Автор (2020). Опубликова- но Российским государственным Ключевые слова: Macroheterocera, Nolidae, Limacodidae, Cossidae, педагогическим университетом им. Thyrididae, Thyatiridae, Drepanidae, Uraniidae, Lasiocampidae, -
Taxonomic Ecology of Geometric Morphometry on Classification And
Ekoloji 27(106): 827-835 (2018) Taxonomic Ecology of Geometric Morphometry on Classification and Identification of Sphingid Moths (Lepidoptera: Sphingidae) Xiaoyu Su 1, Xiaona Cai 2, Dazhuang Huang 1* 1 Agricultural University of Hebei, 2596 Lekai South Street, 071000, Baoding, Hebei, P.R. CHINA 2 Hebei Finance University, 3188 Hengxiang North Street, 071051, Baoding, Hebei, P.R. CHINA * Corresponding author: [email protected] Abstract The aim of the study was to explore the feasibility of a geometric morphometric method for the ecological classification and identification of moths according to taxonomic ecology. Ten species of Sphingidae were used as examples in this paper. The right forewings from the ten species were used as the research object, and seventeen landmarks in environment were selected for analysis. Two related steps including geometric morphometric analysis and multivariate statistical analysis were carried out. In the first step, Procrustes superimposition was applied to the data of the seventeen environmental landmarks by removing nonshape variation from the landmark coordinates. Using relative warp analysis, relative warp figures and a matrix of relative warp scores were obtained. In the second step, ecological component analysis of the Procrustes- transformed data set was implemented, and three dimensional distribution figures for the ten species of Sphingidae were described on the basis of the first three components. Discriminant analysis was carried out on the relative warp scores matrix, and accuracy of original and cross-validation tests achieved 100% and 99.7%, respectively. The results indicate that geometric morphometric analysis may be used to accurately identify the ten species of Sphingidae, and their taxonomy can be achieved using relative warp figures. -
The Semiaquatic Hemiptera of Minnesota (Hemiptera: Heteroptera) Donald V
The Semiaquatic Hemiptera of Minnesota (Hemiptera: Heteroptera) Donald V. Bennett Edwin F. Cook Technical Bulletin 332-1981 Agricultural Experiment Station University of Minnesota St. Paul, Minnesota 55108 CONTENTS PAGE Introduction ...................................3 Key to Adults of Nearctic Families of Semiaquatic Hemiptera ................... 6 Family Saldidae-Shore Bugs ............... 7 Family Mesoveliidae-Water Treaders .......18 Family Hebridae-Velvet Water Bugs .......20 Family Hydrometridae-Marsh Treaders, Water Measurers ...22 Family Veliidae-Small Water striders, Rime bugs ................24 Family Gerridae-Water striders, Pond skaters, Wherry men .....29 Family Ochteridae-Velvety Shore Bugs ....35 Family Gelastocoridae-Toad Bugs ..........36 Literature Cited ..............................37 Figures ......................................44 Maps .........................................55 Index to Scientific Names ....................59 Acknowledgement Sincere appreciation is expressed to the following individuals: R. T. Schuh, for being extremely helpful in reviewing the section on Saldidae, lending specimens, and allowing use of his illustrations of Saldidae; C. L. Smith for reading the section on Veliidae, checking identifications, and advising on problems in the taxon omy ofthe Veliidae; D. M. Calabrese, for reviewing the section on the Gerridae and making helpful sugges tions; J. T. Polhemus, for advising on taxonomic prob lems and checking identifications for several families; C. W. Schaefer, for providing advice and editorial com ment; Y. A. Popov, for sending a copy ofhis book on the Nepomorpha; and M. C. Parsons, for supplying its English translation. The University of Minnesota, including the Agricultural Experi ment Station, is committed to the policy that all persons shall have equal access to its programs, facilities, and employment without regard to race, creed, color, sex, national origin, or handicap. The information given in this publication is for educational purposes only. -
Nota Lepidopterologica
©Societas Europaea Lepidopterologica; download unter http://www.biodiversitylibrary.org/ und www.zobodat.at 178 Book review James P. Tuttle 2007: The Hawk Moths of North America. A Natural History Study of the Sphingidae of the United States and Canada. - The Wedge Entomological Research Foundation, Washington, DC. - ISBN 978-0-9796633-0-7. xviii + 253 pp., 23 pis. US$ 90.00. Sphingids are among the most easily recognized moths. The adults are among the largest and fastest flying lepidopterans and they are well known for hovering at flowers. Sphingids received considerable attention in pre-Linnean times already by Maria Sibylla Merian (1705) as well as 150 years later by the founders of evolutionary theory, Charles Darwin (1862) and Alfred Russel Wallace (1867), which undoubtedly stimulated subsequent research on the group. Today, sphingids belong to the best studied groups of Lepidoptera. Much anatomical and physiological knowledge on the order has been made available by studies on one of the most famous laboratory animals, Manduca sexta (Linnaeus, 1763). Also, a recent revisionary checklist of the 1,272 world species (Kitching & Cadiou 2000) and detailed identification books for all continents are available, including for North America (Hodges 1971). The book published by James R Tuttle focuses on the natural history of North American sphingids. It starts with an introductory chapter on historical literature, taxonomy, and structure of the book. Part one focuses on general biogeography, morphology, life history and ecology, natural enemies, collecting and rearing, and is illustrated with line drawings and black and white photographs. Part two, the main chapter of the book, contains the species accounts, which start with an introduction for each genus. -
Insecta Diptera) in Freshwater (Excluding Simulidae, Culicidae, Chironomidae, Tipulidae and Tabanidae) Rüdiger Wagner University of Kassel
Entomology Publications Entomology 2008 Global diversity of dipteran families (Insecta Diptera) in freshwater (excluding Simulidae, Culicidae, Chironomidae, Tipulidae and Tabanidae) Rüdiger Wagner University of Kassel Miroslav Barták Czech University of Agriculture Art Borkent Salmon Arm Gregory W. Courtney Iowa State University, [email protected] Follow this and additional works at: http://lib.dr.iastate.edu/ent_pubs BoudewPart ofijn the GoBddeeiodivrisersity Commons, Biology Commons, Entomology Commons, and the TRoyerarle Bestrlgiialan a Indnstit Aquaute of Nticat uErcaol Scienlogyce Cs ommons TheSee nex tompc page forle addte bitioniblaiol agruthorapshic information for this item can be found at http://lib.dr.iastate.edu/ ent_pubs/41. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Book Chapter is brought to you for free and open access by the Entomology at Iowa State University Digital Repository. It has been accepted for inclusion in Entomology Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Global diversity of dipteran families (Insecta Diptera) in freshwater (excluding Simulidae, Culicidae, Chironomidae, Tipulidae and Tabanidae) Abstract Today’s knowledge of worldwide species diversity of 19 families of aquatic Diptera in Continental Waters is presented. Nevertheless, we have to face for certain in most groups a restricted knowledge about distribution, ecology and systematic,