2Majors and Minors.Qxd.KA

Total Page:16

File Type:pdf, Size:1020Kb

2Majors and Minors.Qxd.KA MATHEMATICS Spring 2008: updates since Spring 2007 are in red Mathematics (MAT) Major and Minor in Mathematics Department of Mathematics, College of Arts and Sciences CHAIRPERSON: David Ebin DIRECTOR OF UNDERGRADUATE STUDIES: Scott Sutherland ASSISTANT TO THE CHAIR: Lucille Meci OFFICE: Mathematics P143 PHONE: (631) 632-8250 E-MAIL: [email protected] WEB ADDRESS: http://www.math.sunysb.edu Minors of particular interest to students majoring in Mathematics: Applied Mathematics and Statistics (AMS), Computer Science (CSE), Economics (ECO), Physics (PHY) Faculty Jeremy Kahn, Lecturer, Ph.D., University of Bernard Maskit, Professor, Ph.D., New York Michael Anderson, Professor, Ph.D., University California, Berkeley: Dynamical systems, University: Riemann surfaces; Kleinian groups of California, Berkeley: differential geometry. complex analysis. and deformation spaces. William Barcus, Professor Emeritus and Director Ljudmilla Kamenova, Simons Instructor, Ph.D., Dusa McDuff, Distinguished Professor, Ph.D., of Mathematics Learning Center, D. Phil, Massachusetts Institute of Technology: Cambridge University, England: Symplectic University of Oxford, England: Algebraic topology. Complex geometry. topology. Christopher Bishop, Professor, Ph.D., University Nadia Kennedy, Assistant Professor, Ed.D., Marie-Louise Michelsohn, Professor, Ph.D., of Chicago: Complex analysis. Montclair State University: Mathmatics University of Chicago: Differential geometry. education. Kingshook Biswas, Lecturer, Ph.D., University John Milnor, Distinguished Professor and of California Los Angeles: Holomorphic dynam- Marcus Khuri, Assistant Professor, Ph.D., Director of the Institute for Mathematical ics, Riemann surfaces. University of Pennsylvania: Differential Sciences, Ph.D., Princeton University: geometry, partial differential equations, and Sylvain Bonnot, Lecturer, Ph.D., Universite de Dynamical systems. general relativity. Provence, Marseille: Complex dynamics, Anthony Phillips, Professor, Ph.D., Princeton Holomorphic dynamics, several complex Alexander Kirillov, Jr., Associate Professor, University: Differential topology and applica- variables. Ph.D., Yale University: Representation theory; tions to mathematical physics. low dimensional topology; mathematical Sebastian Casalaina-Martin, Simons Instructor, physics. Olga Plamenevskaya, Assistant Professor, Ph.D., Columbia University: Algebraic geometry. Ph.D., Harvard University: Contact and sym- Valentina Kiritchenko, Simons Instructor, Ph.D., Mark de Cataldo, Assistant Professor, Ph.D., plectic geometry; low-dimensional topology. University of Toronto: Algebraic geometry. University of Notre Dame: Higher dimensional Sorin Popescu, Associate Professor, Ph.D., Irwin Kra, Distinguished Service Professor, geometry. University of Saarland, Germany: Algebraic Ph.D., Columbia University: Complex analysis; Reza Chamanara, Lecturer, Ph.D., Graduate geometry; computational algebraic geometry. Kleinian groups, Reimann surfaces; Teichmuller Center, CUNY: Moduli spaces, Kleinian groups, theory; applications to mathematical physics Corbett Redden, Simons Instructor, Ph.D., complex analysis. and number theory. Notre Dame University: Riemannian geometry; Moira Chas, Lecturer, Ph.D., Universitat algebraic topology. Paul Kumpel, Professor Emeritus, Ph.D., Autonoma de Barcelona: Topology and dynami- Brown University: Algebraic topology. Alexander Retakh, Visiting Assistant Professor, cal systems. Recipient of the State University Chancellor’s Ph.D., Yale University: Algebra; mathematical David Ebin, Professor, Ph.D., Massachusetts Award for Excellence in Teaching, 1990, physics. Institute of Technology: Global analysis; mathe- and the President’s Award for Excellence Frederic Rochon, Simons Instructor, Ph.D., matics of continuum mechanics; partial differ- in Teaching, 1990. Massachusetts Institute of Technology: Index ential equations. H. Blaine Lawson, Jr., Distinguished Professor, theory; pseudodifferential equations; K-theory. Daryl Geller, Professor, Ph.D., Princeton Ph.D., Stanford University: Differential geome- Scott Simon, Simons Instructor, Ph.D., Purdue University: Partial differential equations; har- try; topology; algebraic geometry. University: Infinite-dimensional complex analy- monic analysis; several complex variables; Claude LeBrun, Professor, D. Phil, University of Lie groups. sis; several complex variables. Oxford, England: Complex analysis; mathemati- James Glimm, Distinguished Professor, Ph.D., Jason Starr, Assistant Professor, Ph.D., Harvard cal physics; differential geometry; algebraic University: Algebraic geometry. Columbia University: Applied mathematics; geometry. numerical analysis; mathematical physics. Dennis Sullivan, Distinguished Professor, Ph.D., Krastio Lilov, Lecturer, Ph.D, University of Princeton University: Dynamical systems; Detlef Gromoll, Professor, Ph.D., University Michigan: Complex dynamics; complex geometry; partial differential equations. of Bonn, Germany: Differential geometry. variables. Scott Sutherland, Associate Professor, Ph.D., Eric Harrelson, RTG Fellow, Ph.D., University of William Linch III, RTG Fellow, Ph.D., University Boston University: Dynamical systems; root Minnesota: Algebraic topology, String field theory. of Maryland: Theoretical physics. finding algorithms; computing. Xuhua He, Simons Instructor, Ph.D., Mikhail Lyubich, Professor and Co-director of Leon Takhtajan, Professor, Ph.D., Leningrad Massachusetts Institute of Technology: the Institute for Mathematical Sciences, Ph.D., Branch of the Steklov Mathematical Institute, Representation theory, Algebraic geometry. Tashkent State University, former Soviet Union: Russia: Mathematical physics. C. Denson Hill, Professor, Ph.D., New York Dynamical systems. University: Partial differential equations; Vladimir Markovic, Associate Professor, Ph.D., Vladlen Timorin, Lecturer, Ph.D, University of several complex variables. Belgrade University: Teichmuller theory and Toronto: Differential geometry. Jerome Jenquin, RTG Fellow, Ph.D, University hyperbolic geometry; harmonic maps between Dror Varolin, Assistant Professor, Ph.D., of Texas at Austin: Differential geometry. manifolds. University of Wisconsin, Madison: Several Lowell Jones, Professor, Ph.D., Yale University: Marco Martens, Associate Professor, Ph.D., complex variables; algebraic geometry; Topology; geometry. Delft University: Dynamics. complex geometry; dynamical systems. www.stonybrook.edu/ugbulletin 271 Spring 2008: updates since Spring 2007 are in red MATHEMATICS Judith Wiegand, Lecturer and Coordinator of er field, such as physics, computer science, MAT 205 Calculus III Field Experience and Student Teaching, M.A., applied mathematics and statistics, or eco- MAT 211 Introduction to Linear Polytechnic University of Brooklyn. nomics, are common and are encouraged. Algebra Aleksey Zinger, Assistant Professor, Ph.D., Massachusetts Institute of Technology: The secondary teacher education option MAT 260 Problem Solving in Symplectic topology and enumerative algebraic is designed for students planning a Mathematics geometry. career teaching mathematics in a sec- MAT 303 Calculus IV with Applications ondary school. This option is described in Teaching Assistants detail in the “Education and Teacher MAT 305 Calculus IV Estimated number: 60 Certification” entry in the alphabetical MAT 310 Linear Algebra listings of Approved Majors, Minors, and MAT 311 Number Theory Programs. athematics is an essential ele- MAT 312 Applied Algebra ment in a wide range of human The Department of Mathematics offers MAT 313 Abstract Algebra Mactivities. It is the language of tutorial help to all undergraduate stu- MAT 316 Invitation to Modern the physical sciences, and as such is an dents in its 100-level courses in the Mathematics indispensable tool in the formulation of Mathematics Learning Center. Since the the laws of nature. In the social and bio- Center’s staff consists of faculty and MAT 318 Classical Algebra logical sciences, it plays an increasingly graduate students in mathematics as MAT 319 Foundations of Analysis important role in modeling complicated, well as undergraduate tutors, students in MAT 320 Introduction to Analysis large-scale phenomena. In addition, ma- more advanced courses can also find thematics has an aesthetic side: aware- assistance there. MAT 322 Analysis in Several Dimensions ness of the possibility of elegance and MAT 324 Real Analysis beauty in mathematical arguments has The Department encourages students to seek information and advice on appropri- MAT 331 Computer-Assisted been a significant feature of human cul- Mathematical Problem Solving ture throughout history. Today more ate mathematics courses, programs, and mathematics is being done, and more career goals. Professors in mathematics MAT 336-H History of Mathematics needs to be done, than ever before. are available as advisors in the Under- MAT 341 Applied Real Analysis graduate Mathematics Office to help MAT 342 Applied Complex Analysis The undergraduate course offerings in with these matters. Advising hours can Mathematics allow students to set up be obtained by calling the Department of MAT 351 Differential Equations: individualized programs of study consis- Mathematics. Dynamics and Chaos tent with their academic interests and MAT 360 Geometric Structures career plans. Students should consider Courses Offered in Mathematics MAT 362 Differential Geometry of majoring in Mathematics even if they do See the Course Descriptions listing in Surfaces not plan to become mathematicians or
Recommended publications
  • 3-Manifold Groups
    3-Manifold Groups Matthias Aschenbrenner Stefan Friedl Henry Wilton University of California, Los Angeles, California, USA E-mail address: [email protected] Fakultat¨ fur¨ Mathematik, Universitat¨ Regensburg, Germany E-mail address: [email protected] Department of Pure Mathematics and Mathematical Statistics, Cam- bridge University, United Kingdom E-mail address: [email protected] Abstract. We summarize properties of 3-manifold groups, with a particular focus on the consequences of the recent results of Ian Agol, Jeremy Kahn, Vladimir Markovic and Dani Wise. Contents Introduction 1 Chapter 1. Decomposition Theorems 7 1.1. Topological and smooth 3-manifolds 7 1.2. The Prime Decomposition Theorem 8 1.3. The Loop Theorem and the Sphere Theorem 9 1.4. Preliminary observations about 3-manifold groups 10 1.5. Seifert fibered manifolds 11 1.6. The JSJ-Decomposition Theorem 14 1.7. The Geometrization Theorem 16 1.8. Geometric 3-manifolds 20 1.9. The Geometric Decomposition Theorem 21 1.10. The Geometrization Theorem for fibered 3-manifolds 24 1.11. 3-manifolds with (virtually) solvable fundamental group 26 Chapter 2. The Classification of 3-Manifolds by their Fundamental Groups 29 2.1. Closed 3-manifolds and fundamental groups 29 2.2. Peripheral structures and 3-manifolds with boundary 31 2.3. Submanifolds and subgroups 32 2.4. Properties of 3-manifolds and their fundamental groups 32 2.5. Centralizers 35 Chapter 3. 3-manifold groups after Geometrization 41 3.1. Definitions and conventions 42 3.2. Justifications 45 3.3. Additional results and implications 59 Chapter 4. The Work of Agol, Kahn{Markovic, and Wise 63 4.1.
    [Show full text]
  • Notices of the AMS 595 Mathematics People NEWS
    NEWS Mathematics People contrast electrical impedance Takeda Awarded 2017–2018 tomography, as well as model Centennial Fellowship reduction techniques for para- bolic and hyperbolic partial The AMS has awarded its Cen- differential equations.” tennial Fellowship for 2017– Borcea received her PhD 2018 to Shuichiro Takeda. from Stanford University and Takeda’s research focuses on has since spent time at the Cal- automorphic forms and rep- ifornia Institute of Technology, resentations of p-adic groups, Rice University, the Mathemati- especially from the point of Liliana Borcea cal Sciences Research Institute, view of the Langlands program. Stanford University, and the He will use the Centennial Fel- École Normale Supérieure, Paris. Currently Peter Field lowship to visit the National Collegiate Professor of Mathematics at Michigan, she is Shuichiro Takeda University of Singapore and deeply involved in service to the applied and computa- work with Wee Teck Gan dur- tional mathematics community, in particular on editorial ing the academic year 2017–2018. boards and as an elected member of the SIAM Council. Takeda obtained a bachelor's degree in mechanical The Sonia Kovalevsky Lectureship honors significant engineering from Tokyo University of Science, master's de- contributions by women to applied or computational grees in philosophy and mathematics from San Francisco mathematics. State University, and a PhD in 2006 from the University —From an AWM announcement of Pennsylvania. After postdoctoral positions at the Uni- versity of California at San Diego, Ben-Gurion University in Israel, and Purdue University, since 2011 he has been Pardon Receives Waterman assistant and now associate professor at the University of Missouri at Columbia.
    [Show full text]
  • Curriculum Vitae Yang Liu Erik Jonsson School of Engineering and Computer Science Computer Science Department
    Curriculum Vitae Yang Liu Erik Jonsson School of Engineering and Computer Science Computer Science department Educational History: Ph.D, 2004, Purdue University, West Lafayette, IN, USA, Electrical and Computer Engineering MS, 2000, Tsinghua University, Beijing, China, Electrical Engineering BS, 1997, Tsinghua University, Beijing, China, Electrical Engineering Ph.D dissertation: Structural Event Detection for Rich Transcription of Speech, Advisor: Mary Harper Employment History: Assistant Professor, 2005/08-present, Computer Science department, The University of Texas at Dallas, Richardson, TX, USA Affiliated faculty, 2006-present, Electrical Engineering department, The University of Texas at Dallas, Richardson, TX, USA Postdoc, 2004/12-2005/08, International Computer Science Institute, Berkeley, CA, USA Research Associate, 2002/07-2004/12, International Computer Science Institute, Berkeley, CA, USA Research Assistant, 2000/08-2002/07, Purdue University, West Lafayette, IN, USA Professional recognition and honors: NSF CAREER Award, 2009, NSF Air Force Young Investigator Program Award, 2010, U.S. Air Force, Office of Scientific Research Professional memberships: Institute of Electrical and Electronics Engineers (IEEE) Association for Computing Machinery (ACM) Association for Computational Linguistics (ACL) International Speech Communication Association (ISCA) CV – Yang Liu 1 Achievements in original investigation: Articles in refereed journals (in reverse chronological order): J1. Fei Liu, Feifan Liu, and Yang Liu. A Supervised Framework for Keyword Extraction from Meeting Transcripts. IEEE Transactions on Audio, Speech and Language Processing, V19(3), pages 538-548, 2011. J2. Thamar Solorio, Melissa Sherman, Yang Liu, Lisa Bedore, Elizabeth D. Pena, and Aquiles Iglesias. Analyzing Language Samples of Spanish-English Bilingual Children for the Automated Prediction of Language Dominance. Natural Language Engineering.
    [Show full text]
  • U.S. Team Places Second in International Olympiad
    THE NEWSLETTER OF THE MATHEMATICAL ASSOCIATION OF AMERICA VOLUME 5 NUMBER 4 SEPTEMBER 1985 u.s. Team Places Second in International Olympiad Stephen B. Maurer pearheaded with a first prize finish by Waldemar Hor­ problem. On the other hand, the Eastern Europeans (except wat, a recent U.S. citizen born in Poland, the U.S. team the Romanians) had trouble with a sequence problem which S finished second in the 26th International Mathematical the U.S. team handled easily. Olympiad (IMO), held in early July in Helsinki, Finland. Individually, Horwat, from Hoffman Estates,Illinois, obtained The U.S. team received 180 points out of a possible 252. 35 points. Jeremy Kahn, of New York City, also received a (Each of six students tackled six problems, each worth 7 first prize with 34. All the other team members received points.) Romania was first with 201. Following the U.S. were second prizes: David Grabiner, Claremont, California; Joseph Hungary, 168; Bulgaria, 165; Vietnam, 144; USSR, 140; and Keane, Pittsburgh, Pennsylvania; David Moews, Willimantic, West Germany, 139. Thirty-nine countries participated, up Connecticut; and Bjorn Poonen, Winchester, Massachusetts. from 34 last year. One student from Romania and one from Hungary obtained The exam this year was especially tough. For comparison, perfect scores. The top scorer for the USSR was female; she last year the USSR was first with 235 and the U.S. was tied obtained a first prize with 36 points. Two other young women with Hungary for fourth at 195. The U.S. contestants did very received second prizes. well on every problem this year except a classical geometry The U.S.
    [Show full text]
  • A Priori Bounds for Some Infinitely Renormalizable Quadratics: Ii
    ISSN 0012-9593 ASENAH quatrième série - tome 41 fascicule 1 janvier-février 2008 NNALES SCIENIFIQUES d L ÉCOLE ORMALE SUPÉRIEUE Jeremy KAHN & Mikhail LYUBICH A priori bounds for quadratic polynomials SOCIÉTÉ MATHÉMATIQUE DE FRANCE Ann. Scient. Éc. Norm. Sup. 4 e série, t. 41, 2008, p. 57 à 84 A PRIORI BOUNDS FOR SOME INFINITELY RENORMALIZABLE QUADRATICS: II. DECORATIONS by Jeremy KAHN and Mikhail LYUBICH Abstract. Ð A decoration of the Mandelbrot set M is a part of M cut oV by two external rays landing at some tip of a satellite copy of M attached to the main cardioid. In this paper we consider infinitely renormalizable quadratic polynomials satisfying the decoration condition, which means that the combinatorics of the renormalization operators involved is selected from a finite family of deco- rations. For this class of maps we prove a priori bounds. They imply local connectivity of the corre- sponding Julia sets and the Mandelbrot set at the corresponding parameter values. Résumé. Ð Une décoration de l’ensemble de Mandelbrot M est une partie de M découpée par deux rayons externes aboutissant à la pointe d’une petite copie de M attachée à la cardioïde principale. Dans cet article nous considérons des polynômes quadratiques infiniment renormalisables qui satisfont à la condition de décoration, à savoir que la combinatoire des opérateurs de renormalisation mis en jeu est sélectionnée à partir d’une famille finie de décorations. Pour cette classe d’applications, nous donnons des bornes a priori. Ces bornes impliquent la connexité locale des ensembles de Julia correspondants et celle de l’ensemble de Mandelbrot aux paramètres correspondants.
    [Show full text]
  • Interview with Research Fellow Peter Scholze 12
    2012 CLAY MATHEMATICS INSTITUTE annual report mission The primary objectives and purposes of the Clay Mathematics Institute are: l to increase and disseminate mathematical knowledge l to educate mathematicians and other scientists about new discoveries in the field of mathematics l to encourage gifted students to pursue mathematical careers l to recognize extraordinary achievements and advances in mathematical research The CMI will further the beauty, power and universality of mathematical thought. The Clay Mathematics Institute is governed by its Board of Directors, Scientific Advisory Board and President. Board meet- ings are held to consider nominations and research proposals and to conduct other business. The Scientific Advisory Board is responsible for the approval of all proposals and the selection of all nominees. CLAY MATHEMATICS INSTITUTE Board of Directors and Executive Officers Landon T. Clay, Chairman, Director, Treasurer Lavinia D. Clay, Director, Secretary Thomas Clay, Director James A. Carlson, President (through June 2012) Nicholas Woodhouse, President (from July 2012) David Ellwood, Research Director (through August 2012) Brian James, Chief Administrative Officer Scientific Advisory Board Simon Donaldson, Imperial College London Gregory A. Margulis, Yale University (through June 2012) Richard B. Melrose, Massachusetts Institute of Technology Andrei Okounkov, Columbia University (from July 2012) Yum-Tong Siu, Harvard University Andrew Wiles, University of Oxford One Bow Street Staff Julie Feskoe, Administrative Assistant
    [Show full text]
  • January 2013 Prizes and Awards
    January 2013 Prizes and Awards 4:25 P.M., Thursday, January 10, 2013 PROGRAM SUMMARY OF AWARDS OPENING REMARKS FOR AMS Eric Friedlander, President LEVI L. CONANT PRIZE: JOHN BAEZ, JOHN HUERTA American Mathematical Society E. H. MOORE RESEARCH ARTICLE PRIZE: MICHAEL LARSEN, RICHARD PINK DEBORAH AND FRANKLIN TEPPER HAIMO AWARDS FOR DISTINGUISHED COLLEGE OR UNIVERSITY DAVID P. ROBBINS PRIZE: ALEXANDER RAZBOROV TEACHING OF MATHEMATICS RUTH LYTTLE SATTER PRIZE IN MATHEMATICS: MARYAM MIRZAKHANI Mathematical Association of America LEROY P. STEELE PRIZE FOR LIFETIME ACHIEVEMENT: YAKOV SINAI EULER BOOK PRIZE LEROY P. STEELE PRIZE FOR MATHEMATICAL EXPOSITION: JOHN GUCKENHEIMER, PHILIP HOLMES Mathematical Association of America LEROY P. STEELE PRIZE FOR SEMINAL CONTRIBUTION TO RESEARCH: SAHARON SHELAH LEVI L. CONANT PRIZE OSWALD VEBLEN PRIZE IN GEOMETRY: IAN AGOL, DANIEL WISE American Mathematical Society DAVID P. ROBBINS PRIZE FOR AMS-SIAM American Mathematical Society NORBERT WIENER PRIZE IN APPLIED MATHEMATICS: ANDREW J. MAJDA OSWALD VEBLEN PRIZE IN GEOMETRY FOR AMS-MAA-SIAM American Mathematical Society FRANK AND BRENNIE MORGAN PRIZE FOR OUTSTANDING RESEARCH IN MATHEMATICS BY ALICE T. SCHAFER PRIZE FOR EXCELLENCE IN MATHEMATICS BY AN UNDERGRADUATE WOMAN AN UNDERGRADUATE STUDENT: FAN WEI Association for Women in Mathematics FOR AWM LOUISE HAY AWARD FOR CONTRIBUTIONS TO MATHEMATICS EDUCATION LOUISE HAY AWARD FOR CONTRIBUTIONS TO MATHEMATICS EDUCATION: AMY COHEN Association for Women in Mathematics M. GWENETH HUMPHREYS AWARD FOR MENTORSHIP OF UNDERGRADUATE
    [Show full text]
  • The Moduli Space of Riemann Surfaces of Large Genus
    THE MODULI SPACE OF RIEMANN SURFACES OF LARGE GENUS ALASTAIR FLETCHER, JEREMY KAHN, AND VLADIMIR MARKOVIC Abstract. Let Mg, be the -thick part of the moduli space Mg of closed genus g surfaces. In this article, we show that the number of balls of radius r needed to cover Mg, is bounded 2g 2g below by (c1g) and bounded above by (c2g) , where the constants c1; c2 depend only on and r, and in particular not on g. Using this counting result we prove that there are Riemann surfaces of arbitrarily large injectivity radius that are not close (in the Teichmüller metric) to a finite cover of a fixed closed Riemann surface. This result illustrates the sharpness of the Ehrenpreis conjecture. 1. Introduction 1.1. The covering number. Let (X; d) be a metric space. A natural question to ask is the following: given a set E ⊂ X, how many balls of radius r does it take to cover E? It is an easy exercise to check that if X = Rn with the Euclidean norm and E is a ball of radius R, then it takes C(R=r)n balls of radius r to cover E, for some constant C depending only on n. To make this notion more precise, we introduce the following definition. Definition 1.1. Let (X; dX ) be a metric space and E ⊂ X. Then the r-covering number ηX (E; r) is the minimal number of balls in X of radius r needed to cover E in X. We will usually suppress the r and just use the terminology covering number, if the context 1 is clear.
    [Show full text]
  • LETTERS to the EDITOR Responses to ”A Word From… Abigail Thompson”
    LETTERS TO THE EDITOR Responses to ”A Word from… Abigail Thompson” Thank you to all those who have written letters to the editor about “A Word from… Abigail Thompson” in the Decem- ber 2019 Notices. I appreciate your sharing your thoughts on this important topic with the community. This section contains letters received through December 31, 2019, posted in the order in which they were received. We are no longer updating this page with letters in response to “A Word from… Abigail Thompson.” —Erica Flapan, Editor in Chief Re: Letter by Abigail Thompson Sincerely, Dear Editor, Blake Winter I am writing regarding the article in Vol. 66, No. 11, of Assistant Professor of Mathematics, Medaille College the Notices of the AMS, written by Abigail Thompson. As a mathematics professor, I am very concerned about en- (Received November 20, 2019) suring that the intellectual community of mathematicians Letter to the Editor is focused on rigor and rational thought. I believe that discrimination is antithetical to this ideal: to paraphrase I am writing in support of Abigail Thompson’s opinion the Greek geometer, there is no royal road to mathematics, piece (AMS Notices, 66(2019), 1778–1779). We should all because before matters of pure reason, we are all on an be grateful to her for such a thoughtful argument against equal footing. In my own pursuit of this goal, I work to mandatory “Diversity Statements” for job applicants. As mentor mathematics students from diverse and disadvan- she so eloquently stated, “The idea of using a political test taged backgrounds, including volunteering to help tutor as a screen for job applicants should send a shiver down students at other institutions.
    [Show full text]
  • Counting Essential Surfaces in a Closed Hyperbolic Three-Manifold
    Geometry & Topology 16 (2012) 601–624 601 Counting essential surfaces in a closed hyperbolic three-manifold JEREMY KAHN VLADIMIR MARKOVIC´ Let M3 be a closed hyperbolic three-manifold. We show that the number of genus g 3 2g surface subgroups of 1.M / grows like g . 57M50, 20H10 1 Introduction 3 Let M be a closed hyperbolic 3–manifold and let Sg denote a closed surface of 3 3 genus g. Given a continuous mapping f Sg M we let f 1.Sg/ 1.M / W ! W ! denote the induced homomorphism. 3 Definition 1.1 We say that G < 1.M / is a surface subgroup of genus g 2 if there 3 exists a continuous map f Sg M such that the induced homomorphism f is W ! 3 injective and f .1.Sg// G . Moreover, the subsurface f .Sg/ M is said to be D an essential subsurface. Recently, we showed[3] that every closed hyperbolic 3–manifold M3 contains an 3 essential subsurface and consequently 1.M / contains a surface subgroup. It is therefore natural to consider the question: How many conjugacy classes of surface 3 subgroups of genus g there are in 1.M /? This has already been considered by Masters[5], and our approach to this question builds on our previous work and improves on the work by Masters. 3 Let s2.M ; g/ denote the number of conjugacy classes of surface subgroups of genus 3 at most g. We say that two surface subgroups G1 and G2 of 1.M / are commen- 3 surable if G1 G2 has a finite index in both G1 and G2 .
    [Show full text]
  • Frontiers in Complex Dynamics (Celebrating John Milnor's 80Th Birthday)
    Frontiers in Complex Dynamics (Celebrating John Milnor’s 80th birthday) Araceli Bonifant (University of Rhode Island), Mikhail Lyubich (Stony Brook University), Scott Sutherland (Stony Brook University) February 21 – February 25, 2011 1 Overview of the Field The field of holomorphic dynamics, founded in the early 20th century by Fatou and Julia, experienced ex- plosive development in the 1980s and 1990s after the discovery of the Milnor-Thurston Kneading Theory, the appearance of pictures of the Mandelbrot set, and the proof of Sullivan’s No Wandering Domain Theo- rem. In the 21st century, new significant results emerged from the field, such as the construction of Julia sets of positive measure, major progress towards the long-standing MLC conjecture, a deeper understanding of various parameter slices, and applications of the pluri-potential theory to multi-dimensional dynamics. In- teractions with other fields such as Kleinian groups, Teichmuller¨ theory, hyperbolic and complex geometry, statistical physics and numerical analysis, have always played an insightful and stimulating role in the field. These developments are important for both mathematics and physics. The purpose of this conference was to examine and inspire further fruitful interactions in this field. 2 Recent Developments and Open Problems The Fatou-Julia theory was one of the first applications of the concept of normal families as introduced by Montel. Indeed, Montel’s theorem1 plays a major role in Complex Dynamics. When one is interested in generalizing the Fatou-Julia theory to other spaces such as quasiregular maps, non-Archimedean maps or higher dimensional maps, one needs to have some version of Montel’s theorem.
    [Show full text]
  • Immersing Almost Geodesic Surfaces in a Closed Hyperbolic Three Manifold
    Annals of Mathematics 175 (2012), 1127{1190 http://dx.doi.org/10.4007/annals.2012.175.3.4 Immersing almost geodesic surfaces in a closed hyperbolic three manifold By Jeremy Kahn and Vladimir Markovic Abstract Let M3 be a closed hyperbolic three manifold. We construct closed surfaces that map by immersions into M3 so that for each, one the corre- sponding mapping on the universal covering spaces is an embedding, or, in other words, the corresponding induced mapping on fundamental groups is an injection. 1. Introduction The purpose of this paper is to prove the following theorem. 3 3 Theorem 1.1. Let M = H =G denote a closed hyperbolic three manifold where G is a Kleinian group, and let " > 0. Then there exists a Riemann 2 surface S" = H =F" where F" is a Fuchsian group and a (1+")-quasiconformal 3 3 −1 map g : @H ! @H , such that the quasifuchsian group g◦F" ◦g is a subgroup 2 of G.(Here we identify the hyperbolic plane H with an oriented geodesic plane 3 2 3 in H and the circle @H with the corresponding circle on the sphere @H .) Remark. In the above theorem the Riemann surface S" has a pants de- composition where all the cuffs have a fixed large length and they are glued by twisting for +1. One can extend the map g to an equivariant diffeomorphism of the hy- 3 perbolic space. This extension defines the map f : S" ! M , and the surface 3 f(S") ⊂ M is an immersed (1+")-quasigeodesic surface. In particular, the sur- 3 face f(S") is essential which means that the induced map f∗ : π1(S") ! π1(M ) is an injection.
    [Show full text]