Virtual Goody Bag
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
IVS NICT-TDC News No.39
ISSN 1882-3432 CONTENTS Proceedings of the 18th NICT TDC Symposium (Kashima, October 1, 2020) KNIFE, Kashima Nobeyama InterFErometer . 3 Makoto Miyoshi Space-Time Measurements Research Inspired by Kashima VLBI Group . 8 Mizuhiko Hosokawa ALMA High Frequency Long Baseline Phase Correction Using Band-to-band ..... 11 (B2B) Phase Referencing Yoshiharu Asaki and Luke T. Maud Development of a 6.5-22.5 GHz Very Wide Band Feed Antenna Using a New ..... 15 Quadruple-Ridged Antenna for the Traditional Radio Telescopes Yutaka Hasegawa*, Yasumasa Yamasaki, Hideo Ogawa, Taiki Kawakami, Yoshi- nori Yonekura, Kimihiro Kimura, Takuya Akahori, Masayuki Ishino, Yuki Kawa- hara Development of Wideband Antenna . 18 Hideki Ujihara Performance Survey of Superconductor Filter Introduced in Wideband Re- ..... 20 ceiver for VGOS of the Ishioka VLBI Station Tomokazu Nakakuki, Haruka Ueshiba, Saho Matsumoto, Yu Takagi, Kyonosuke Hayashi, Toru Yutsudo, Katsuhiro Mori, Tomokazu Kobayashi, and Mamoru Sekido New Calibration Method for a Radiometer Without Using Liquid Nitrogen ..... 23 Cooled Absorber Noriyuki Kawaguchi, Yuichi Chikahiro, Kenichi Harada, and Kensuke Ozeki Comparison of Atmospheric Delay Models (NMF, VMF1, and VMF3) in ..... 27 VLBI analysis Mamoru Sekido and Monia Negusini HINOTORI Status Report . 31 Hiroshi Imai On-the-Fly Interferometer Experiment with the Yamaguchi Interferometer . 34 Kenta Fujisawa, Kotaro Niinuma, Masanori Akimoto, and Hideyuki Kobayashi Superconducting Wide-band BRF for Geodetic VLBI Observation with ..... 36 VGOS Radio Telescope -
Meerkat Commissioning & NRAO in South Africa
MeerKAT Commissioning & NRAO in South Africa Deb Shepherd NRAO & SKA Africa 10 Nov 2010 Radio telescopes around the World: Very Large Array (VLA), NM Very Long Baseline Array Green Bank Telescope (VLBA) , USA (GBT), WV Sub-Millimeter Array (SMA), Mauna Kea Owens Valley Radio Observatory (OVRO) + Berkeley-Illinois-Maryland Array (BIMA) = CARMA, CA http://www.ska.ac.za MeerKAT! QuickTime™ and a YUV420 codec decompressor are needed to see this picture. MeerKAT & the SKA 3000-4000 antennas MeerKAT: 64 - 13.5m Offset Gregorian antennas The MeerKAT Team MeerKAT Precursor Array MPA (or KAT-7) Today 2 1 3 4 5 Commissioning Accomplishments To Date • March 2010 - Regular commissioning activity began, tipping scans, pointing determination, gain curves. • April 2010 - First demonstration single dish image made (Centaurus A) • May 2010 - First demonstration interferometric image (4 antennas, warm receivers) • July 2010 - Holography system built and demonstrated on XDM and KAT antennas 5 & 6. • July 2010 - Noise diode calibration and Tsys determination for antennas 1-4 completed. Preliminary single dish commissioning evaluation complete for antennas 1-4 with warm receivers. • Aug/Sept 2010 - Commissioning paused; RFI measurement campaign • Nov 2010 - First cold feed installed on antenna 5 Tipping Curves • Antennas 1-4: tipping curve, warm receivers 1694-1960 MHz Tipping curve shape compares well with theoretical predictions, including spillover model provided by EMSS. AfriStar Pointing Determination • Antennas 1-4: pointing determination, warm receivers 1822 MHz center frequency All sky coverage 1.5’ RMS using all sources 0.76’ RMS using only 6 brightest sources Gain Curves • Antennas 1-4: Gain curve determination, warm receivers 1694-1950 MHz Preliminary gain, aperture efficiency, Tsys and SFED as a function of elevation. -
Astro2020 APC White Paper Panel on Radio
Astro2020 APC White Paper Panel on Radio, Millimeter, and Submillimeter Observations from the Ground The Case for a Fully Funded Green Bank Telescope Brief Description [350 character limit]: The NSF has reduced its funding for peer-reviewed use on the GBT to ~3900 hours/year, 60% of available science time. This greatly increases the telescope pressure & fragments the schedule, making it very difficult to allocate time for even the highest rated projects planned for the next decade. Here we seek funding for 1500 more hours annually. Principal Author: K. O’Neil (Green Bank Observatory; [email protected]) Co-authors: Felix J Lockman (Green Bank Observatory), Filippo D'Ammando (INAF-IRA Bologna), Will Armentrout (Green Bank Observatory), Shami Chatterjee (Cornell University), Jim Cordes (Cornell University), Martin Cordiner (NASA GSFC), David Frayer (Green Bank Observatory), Luke Zoltan Kelley (Northwestern University), Natalia Lewandowska (West Virginia University), Duncan Lorimer (WVU), Brian Mason (NRAO), Maura McLaughlin (West Virginia University), Tony Mroczkowski (European Southern Observatory), Hooshang Nayyeri (UC Irvine), Eric Perlman (Florida Institute of Technology), Bindu Rani (NASA Goddard Space Flight Center), Dominik Riechers (Cornell University), Martin Sahlan (Uppsala University), Ian Stephens (CfA/SAO), Patrick Taylor (Lunar and Planetary Institute), Francisco Villaescusa- Navarro (Center for Computational Astrophysics, Flatiron Institute) Endosers: Esteban D. Araya (Western Illinois University), Hector Arce (Yale -
Optical SETI: the All-Sky Survey
Professor van der Veen Project Scientist, UCSB Department of Physics, Experimental Cosmology Group class 4 [email protected] frequencies/wavelengths that get through the atmosphere The Planetary Society http://www.planetary.org/blogs/jason-davis/2017/20171025-seti-anybody-out-there.html THE ATMOSPHERE'S EFFECT ON ELECTROMAGNETIC RADIATION Earth's atmosphere prevents large chunks of the electromagnetic spectrum from reaching the ground, providing a natural limit on where ground-based observatories can search for SETI signals. Searching for technology that we have, or are close to having: Continuous radio searches Pulsed radio searches Targeted radio searches All-sky surveys Optical: Continuous laser and near IR searches Pulsed laser searches a hypothetical laser beacon watch now: https://www.youtube.com/watch?time_continue=41&v=zuvyhxORhkI Theoretical physicist Freeman Dyson’s “First Law of SETI Investigations:” Every search for alien civilizations should be planned to give interesting results even when no aliens are discovered. Interview with Carl Sagan from 1978: Start at 6:16 https://www.youtube.com/watch?v=g- Q8aZoWqF0&feature=youtu.be Anomalous signal recorded by Big Ear Telescope at Ohio State University. Big Ear was a flat, aluminum dish three football fields wide, with reflectors at both ends. Signal was at 1,420 MHz, the hydrogen 21 cm ‘spin flip’ line. http://www.bigear.org/Wow30th/wow30th.htm May 15, 2015 A Russian observatory reports a strong signal from a Sun-like star. Possibly from advanced alien civilization. The RATAN-600 radio telescope in Zelenchukskaya, at the northern foot of the Caucasus Mountains location: star HD 164595 G-type star (like our Sun) 94.35 ly away, visually located in constellation Hercules 1 planet that orbits it every 40 days unusual radio signal detected – 11 GHz (2.7 cm) claim: Signal from a Type II Kardashev civilization Only one observation Not confirmed by other telescopes Russian Academy of Sciences later retracted the claim that it was an ETI signal, stating the signal came from a military satellite. -
A Precise and Accurate Determination of the Cosmic Microwave Background Temperature at Z =0.89
A&A 551, A109 (2013) Astronomy DOI: 10.1051/0004-6361/201220613 & c ESO 2013 Astrophysics A precise and accurate determination of the cosmic microwave background temperature at z =0.89 S. Muller1, A. Beelen2,J.H.Black1,S.J.Curran3,4, C. Horellou1,S.Aalto1, F. Combes5, M. Guélin6,7, and C. Henkel8,9 1 Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, 439 92 Onsala, Sweden e-mail: [email protected] 2 Institut d’Astrophysique Spatiale, Bât. 121, Université Paris-Sud, 91405 Orsay Cedex, France 3 Sydney Institute for Astronomy, School of Physics, The University of Sydney, 2006 NSW, Australia 4 ARC Centre of Excellence for All-sky Astrophysics (CAASTRO), Australia 5 Observatoire de Paris, LERMA, CNRS, 61 Av. de l’Observatoire, 75014 Paris, France 6 Institut de Radioastronomie Millimétrique, 300 rue de la piscine, 38406 Saint-Martin d’Hères, France 7 École Normale Supérieure/LERMA, 24 rue Lhomond, 75005 Paris, France 8 Max-Planck-Institut für Radioastonomie, Auf dem Hügel 69, 53121 Bonn, Germany 9 Astron. Dept., King Abdulaziz University, PO Box 80203, Jeddah, Saudi Arabia Received 22 October 2012 / Accepted 21 December 2012 ABSTRACT Context. According to the Big Bang theory and as a consequence of adiabatic expansion of the Universe, the temperature of the cosmic microwave background (CMB) increases linearly with redshift. This relation is, however, poorly explored, and detection of any deviation would directly lead to (astro-)physics beyond the standard model. Aims. We aim to measure the temperature of the CMB with an accuracy of a few percent at z = 0.89 toward the molecular absorber in the galaxy lensing the quasar PKS 1830−211. -
Short History of Radio Astronomy Jansky – January 1932
Short History of Radio Astronomy Jansky – January 1932 Modified Bruce Array: Harald Friis design December 1932 Jansky’s 1932 Data Grote Reber- 1937 9.5 m Parabolic Reflector! Strip Chart output From Strip Chart to Contour Plot… 1940 Ap. J. paper…barely Reber’s 160 MHz contour map published in the ApJ in 1944. This shows the northern sky in equatorial coordinates. The Reber’s 160 MHz contour map published in the ApJ in 1944. This shows the northern sky in equatorial coordinates. The Reber’s 160 MHz contour map published in the ApJ in 1944. This shows the northern sky in equatorial coordinates. The Reber’s 160 MHz contour map published in the ApJ in 1944. This shows the northern sky in equatorial coordinates. The Jan Oort & Hendrik van de Hulst Lieden Observatory 1944 Predicted HI Line Detection of Hydrogen Line …… Ewen & Purcell 21 cm HI Line (1420 MHz) Purcell HI Receiver: Doc Ewen (1951) Milky Way in Optical Origin of SETI Nature, 1959 Philip Morrison 1959 Project Ozma: April 6, 1960 Tau Ceti & Epsilon Eridani Cosmic Background: Penzias & Wilson 1965 • 20 ft Echo Horn (Sugar Scoop): • Harald Friis design Pulsars: Bell and Hewish 1967 Detection of Pulsars: ~100ft of chart/day Chart recording of the pulsar Examples of scintillating detection and an interference signal somewhat later in time. Fast chart recording of pulsar emission (LGM nomenclature is “Little Green Arecibo Message: 1974 Big Ear Radio Telescope OSU Wow! Signal, Aug. 15, 1977 Sagitarius, Chi Sagittari star group NRAO 36ft Kitt Peak Telescope The Drake Equation The Drake equation -
A Researcher's Guide to Earth Observations
National Aeronautics and Space Administration A Researcher’s Guide to: Earth Observations This International Space Station (ISS) Researcher’s Guide is published by the NASA ISS Program Science Office. Authors: William L. Stefanov, Ph.D. Lindsey A. Jones Atalanda K. Cameron Lisa A. Vanderbloemen, Ph.D Cynthia A. Evans, Ph.D. Executive Editor: Bryan Dansberry Technical Editor: Carrie Gilder Designer: Cory Duke Published: June 11, 2013 Revision: January 2020 Cover and back cover: a. Photograph of the Japanese Experiment Module Exposed Facility (JEM-EF). This photo was taken using External High Definition Camera (EHDC) 1 during Expedition 56 on June 4, 2018. b. Photograph of the Momotombo Volcano taken on July 10, 2018. This active stratovolcano is located in western Nicaragua and was described as “the smoking terror” in 1902. The geothermal field that surrounds this volcano creates ideal conditions to produce thermal renewable energy. c. Photograph of the Betsiboka River Delta in Madagascar taken on June 29, 2018. This river is comprised of interwoven channels carrying sediment from the mountains into Bombetoka Bay and the Mozambique Channel. The heavy islands of built-up sediment were formed as a result of heavy deforestation on Madagascar since the 1950s. 2 The Lab is Open Orbiting the Earth at almost 5 miles per second, a structure exists that is nearly the size of a football field and weighs almost a million pounds. The International Space Station (ISS) is a testament to international cooperation and significant achievements in engineering. Beyond all of this, the ISS is a truly unique research platform. The possibilities of what can be discovered by conducting research on the ISS are endless and have the potential to contribute to the greater good of life on Earth and inspire generations of researchers to come. -
CASKAR: a CASPER Concept for the SKA Phase 1 Signal Processing Sub-System
CASKAR: A CASPER concept for the SKA phase 1 Signal Processing Sub-system Francois Kapp, SKA SA Outline • Background • Technical – Architecture – Power • Cost • Schedule • Challenges/Risks • Conclusions Background CASPER Technology MeerKAT Who is CASPER? • Berkeley Wireless Research Center • Nancay Observatory • UC Berkeley Radio Astronomy Lab • Oxford University Astrophysics • UC Berkeley Space Sciences Lab • Metsähovi Radio Observatory, Helsinki University of • Karoo Array Telescope / SKA - SA Technology • NRAO - Green Bank • New Jersey Institute of Technology • NRAO - Socorro • West Virginia University Department of Physics • Allen Telescope Array • University of Iowa Department of Astronomy and • MIT Haystack Observatory Physics • Harvard-Smithsonian Center for Astrophysics • Ohio State University Electroscience Lab • Caltech • Hong Kong University Department of Electrical and Electronic Engineering • Cornell University • Hartebeesthoek Radio Astronomy Observatory • NAIC - Arecibo Observatory • INAF - Istituto di Radioastronomia, Northern Cross • UC Berkeley - Leuschner Observatory Radiotelescope • Giant Metrewave Radio Telescope • University of Manchester, Jodrell Bank Centre for • Institute of Astronomy and Astrophysics, Academia Sinica Astrophysics • National Astronomical Observatories, Chinese Academy of • Submillimeter Array Sciences • NRAO - Tucson / University of Arizona Department of • CSIRO - Australia Telescope National Facility Astronomy • Parkes Observatory • Center for Astrophysics and Supercomputing, Swinburne University -
Constraining Gas Motions in the Intra-Cluster Medium
Noname manuscript No. (will be inserted by the editor) Constraining Gas Motions in the Intra-Cluster Medium Aurora Simionescu · John ZuHone · Irina Zhuravleva · Eugene Churazov · Massimo Gaspari · Daisuke Nagai · Norbert Werner · Elke Roediger · Rebecca Canning · Dominique Eckert · Liyi Gu · Frits Paerels Received: date / Accepted: date Aurora Simionescu SRON, Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht, The Netherlands; E-mail: [email protected] Institute of Space and Astronautical Science (ISAS), JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa, 252-5210, Japan John ZuHone Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138, USA Irina Zhuravleva Department of Astronomy & Astrophysics, University of Chicago, 5640 S Ellis Ave, Chicago, IL 60637, USA Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, CA 94305-4085, USA Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305-4085, USA Eugene Churazov Max Planck Institute for Astrophysics, Karl-Schwarzschild-Strasse 1, D-85741 Garching, Germany Space Research Institute (IKI), Profsoyuznaya 84/32, Moscow 117997, Russia Massimo Gaspari Einstein and Spitzer Fellow, Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ 08544-1001, USA Daisuke Nagai Department of Physics, Yale University, PO Box 208101, New Haven, CT, USA Yale Center for Astronomy and Astrophysics, PO Box 208101, New Haven, CT, USA Norbert Werner MTA-E¨otv¨osLor´andUniversity Lend¨uletHot Universe Research Group, H-1117 P´azm´any P´eters´eta´ny1/A, Budapest, Hungary Department of Theoretical Physics and Astrophysics, Faculty of Science, Masaryk Univer- sity, Kotl´arsk´a2, Brno, 61137, Czech Republic School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, arXiv:1902.00024v1 [astro-ph.CO] 31 Jan 2019 Japan 2 Aurora Simionescu et al. -
Highlights in Space 2010
International Astronautical Federation Committee on Space Research International Institute of Space Law 94 bis, Avenue de Suffren c/o CNES 94 bis, Avenue de Suffren UNITED NATIONS 75015 Paris, France 2 place Maurice Quentin 75015 Paris, France Tel: +33 1 45 67 42 60 Fax: +33 1 42 73 21 20 Tel. + 33 1 44 76 75 10 E-mail: : [email protected] E-mail: [email protected] Fax. + 33 1 44 76 74 37 URL: www.iislweb.com OFFICE FOR OUTER SPACE AFFAIRS URL: www.iafastro.com E-mail: [email protected] URL : http://cosparhq.cnes.fr Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law The United Nations Office for Outer Space Affairs is responsible for promoting international cooperation in the peaceful uses of outer space and assisting developing countries in using space science and technology. United Nations Office for Outer Space Affairs P. O. Box 500, 1400 Vienna, Austria Tel: (+43-1) 26060-4950 Fax: (+43-1) 26060-5830 E-mail: [email protected] URL: www.unoosa.org United Nations publication Printed in Austria USD 15 Sales No. E.11.I.3 ISBN 978-92-1-101236-1 ST/SPACE/57 *1180239* V.11-80239—January 2011—775 UNITED NATIONS OFFICE FOR OUTER SPACE AFFAIRS UNITED NATIONS OFFICE AT VIENNA Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law Progress in space science, technology and applications, international cooperation and space law UNITED NATIONS New York, 2011 UniTEd NationS PUblication Sales no. -
CORF Comments on RM11713 (00724414).DOC
Before the FEDERAL COMMUNICATIONS COMMISSION Washington, D.C. 20554 In the Matter of ) ) Battelle Memorial Institute, Inc. ) RM-11713 ) Petition for Rulemaking to Adopt Service Rules ) for the 102-109.5 GHz Band ) COMMENTS OF THE NATIONAL ACADEMY OF SCIENCES’ COMMITTEE ON RADIO FREQUENCIES The National Academy of Sciences, through the National Research Council's Committee on Radio Frequencies (hereinafter, CORF), hereby submits its comments in response to the Commission's February 24, 2014, Public Notice regarding the above- captioned Petition for Rulemaking.1 In these Comments, CORF discusses the potential impact on radio astronomy from the proposals in the Petition for Rulemaking (Petition) filed by Battelle Memorial Institute, Inc. (Battelle) that led to the initiation of this proceeding, as well as the ways to minimize that impact. CORF does not oppose fixed commercial use of the sort proposed in the Petition, as long as the Commission’s rules provide for appropriate frequency coordination sufficient to protect Radio Astronomy Service (RAS) observations.2 1 CORF hereby moves for leave to file these comments after the filing deadline. The public interest would be served by accepting the comments, since Battelle’s proposal would directly impact radio astronomy observatories, and no other parties in this proceeding have filed any information regarding that impact or the proposals to limit that impact. Thus, these comments will provide information important for the Commission’s consideration in this proceeding. Further, no parties will be harmed by the acceptance of these comments, as further rounds of comments are anticipated if the Commission grants the Battelle Petition and initiates a rulemaking proceeding. -
RESEARCH FACILITIES for the SCIENTIFIC COMMUNITY
NATIONAL RADIO ASTRONOMY OBSERVATORY RESEARCH FACILITIES for the SCIENTIFIC COMMUNITY 2020 Atacama Large Millimeter/submillimeter Array Karl G. Jansky Very Large Array Central Development Laboratory Very Long Baseline Array CONTENTS RESEARCH FACILITIES 2020 NRAO Overview.......................................1 Atacama Large Millimeter/submillimeter Array (ALMA).......2 Very Long Baseline Array (VLBA) .........................6 Karl G. Jansky Very Large Array (VLA)......................8 Central Development Laboratory (CDL)..................14 Student & Visitor Programs ..............................16 (above image) One of the five ngVLA Key Science Goals is Using Pulsars in the Galactic Center to Make a Fundamental Test of Gravity. Pulsars in the Galactic Center represent clocks moving in the space-time potential of a super-massive black hole and would enable qualitatively new tests of theories of gravity. More generally, they offer the opportunity to constrain the history of star formation, stellar dynamics, stellar evolution, and the magneto-ionic medium in the Galactic Center. The ngVLA combination of sensitivity and frequency range will enable it to probe much deeper into the likely Galactic Center pulsar population to address fundamental questions in relativity and stellar evolution. Credit: NRAO/AUI/NSF, S. Dagnello (cover) ALMA antennas. Credit: NRAO/AUI/NSF; ALMA, P. Carrillo (back cover) ALMA map of Jupiter showing the distribution of ammonia gas below Jupiter’s cloud deck. Credit: ALMA (ESO/NAOJ/NRAO), I. de Pater et al.; NRAO/AUI NSF, S. Dagnello NRAO Overview ALMA photo courtesy of D. Kordan ALMA photo courtesy of D. The National Radio Astronomy Observatory (NRAO) is delivering transformational scientific capabili- ties and operating three world-class telescopes that are enabling the as- tronomy community to address its highest priority science objectives.