Fundamentals of Planar Transmission Lines
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Twisted-Pair Telephone Transmission Line
High Frequency Design From November 2002 High Frequency Electronics Copyright © 2002, Summit Technical Media, LLC TRANSMISSION LINES The Twisted-Pair Telephone Transmission Line By Richard LAO Sumida America Technologies elephone line is a This article reviews the prin- balanced twisted- ciples of operation and Tpair transmission measurement methods for line, and like any electro- twisted pair (balanced) magnetic transmission transmission lines common- line, its characteristic ly used for xDSL and ether- impedance Z0 can be cal- net computer networking culated from manufactur- ers’ data and measured on an instrument such as the Agilent 4395A (formerly Hewlett-Packard HP4395A) net- Figure 1. Lumped element model of a trans- work analyzer. For lowest bit-error-rate mission line. (BER), central office and customer premise equipment should have analog front-end cir- cuitry that matches the telephone line • Category 3: BWMAX <16 MHz. Intended for impedance. This article contains a brief math- older networks and telephone systems in ematical derivation and and a computer pro- which performance over frequency is not gram to generate a graph of characteristic especially important. Used for voice, digital impedance as a function of frequency. voice, older ethernet 10Base-T and commer- Twisted-pair line for telephone and LAN cial customer premise wiring. The market applications is typically fashioned from #24 currently favors CAT5 installations instead. AWG or #26 AWG stranded copper wire and • Category 4: BWMAX <20 MHz. Not much will be in one of several “categories.” The used. Similar to CAT5 with only one-fifth Electronic Industries Association (EIA) and the bandwidth. the Telecommunications Industry Association • Category 5: BWMAX <100 MHz. -
A Broad Bandwidth Suspended Membrane Waveguide to Thinfilm
A Broad Bandwidth Suspended Membrane Waveguide to Thinfilm Microstrip Transition J. W. Kooi California Institute of Technology, 320-47, Pasadena, CA 91125, USA. C. K. Walker University of Arizona, Dept. of Astronomy. J. Hesler University of Virginia, Dept. of Electrical Engineering. Abstract Excellent progress in the development of Submillimeter-wave SIS and HEB mixers has been demonstrated in recent years. At frequencies below 800 GHz these mixers are typically implemented using waveguide techniques, while above 800 GHz quasi-optical (open structure) methods are often used. In many instances though, the use of waveguide components offers certain advantages. For example, broadband corrugated feed-horns with well defined on axis Gaussian beam patterns. Over the years a number of waveguide to microstrip transitions have been proposed. Most of which are implemented in reduced height waveguide with RF bandwidth less than 35%. Unfortunately reducing the height makes machining of mixer components at terahertz frequencies rather difficult. It also increases RF loss as the current density in the waveguide goes up, and surface finish is degraded. An additional disadvantage of existing high frequency waveguide mixers is the way the active device (SIS, HEB, Schottky diode) is mounted in the waveguide. Traditionally the junction, and its supporting substrate, is mounted in a narrow channel across the guide. This structure forms a partially filled dielectric waveguide, whose dimensions must kept small to prevent energy from leaking out the channel. At frequencies approaching or exceeding a terahertz this mounting scheme becomes impractical. Because of these issues, quasi-optical mixers are typically used at these small wavelength. In this paper, we propose the use of suspended silicon (Si) and silicon nitride (Si3N4) membranes with silicon micro-machined backshort and feedhorn blocks. -
Chapter 6 Two-Port Network Model
Chapter 6 Two-Port Network Model 6.1 Introduction In this chapter a two-port network model of an actuator will be briefly described. In Chapter 5, it was shown that an automated test setup using an active system can re- create various load impedances over a limited range of frequencies. This test set-up can therefore be used to automatically reproduce any load impedance condition (related to a possible application) and apply it to a test or sample actuator. It is then possible to collect characteristic data from the test actuator such as force, velocity, current and voltage. Those characteristics can then be used to help to determine whether the tested actuator is appropriate or not for the case simulated. However versatile and easy to use this test set-up may be, because of its limitations, there is some characteristic data it will not be able to provide. For this reason and the fact that it can save a lot of measurements, having a good linear actuator model can be of great use. Developed for transduction theory [29], the linear model presented in this chapter is 77 called a Two-Port Network model. The automated test set-up remains an essential complement for this model, as it will allow the development and verification of accuracy. This chapter will focus on the two-port network model of the 1_3 tube array actuator provided by MSI (Cf: Figure 5.5). 6.2 Theory of the Two–Port Network Model As a transducer converts energy from electrical to mechanical forms, and vice- versa, it can be modelled as a Two-Port Network that relates the electrical properties at one port to the mechanical properties at the other port. -
Analysis of Microwave Networks
! a b L • ! t • h ! 9/ a 9 ! a b • í { # $ C& $'' • L C& $') # * • L 9/ a 9 + ! a b • C& $' D * $' ! # * Open ended microstrip line V + , I + S Transmission line or waveguide V − , I − Port 1 Port Substrate Ground (a) (b) 9/ a 9 - ! a b • L b • Ç • ! +* C& $' C& $' C& $ ' # +* & 9/ a 9 ! a b • C& $' ! +* $' ù* # $ ' ò* # 9/ a 9 1 ! a b • C ) • L # ) # 9/ a 9 2 ! a b • { # b 9/ a 9 3 ! a b a w • L # 4!./57 #) 8 + 8 9/ a 9 9 ! a b • C& $' ! * $' # 9/ a 9 : ! a b • b L+) . 8 5 # • Ç + V = A V + BI V 1 2 2 V 1 1 I 2 = 0 V 2 = 0 V 2 I 1 = CV 2 + DI 2 I 2 9/ a 9 ; ! a b • !./5 $' C& $' { $' { $ ' [ 9/ a 9 ! a b • { • { 9/ a 9 + ! a b • [ 9/ a 9 - ! a b • C ) • #{ • L ) 9/ a 9 ! a b • í !./5 # 9/ a 9 1 ! a b • C& { +* 9/ a 9 2 ! a b • I • L 9/ a 9 3 ! a b # $ • t # ? • 5 @ 9a ? • L • ! # ) 9/ a 9 9 ! a b • { # ) 8 -
A Review of Electric Impedance Matching Techniques for Piezoelectric Sensors, Actuators and Transducers
Review A Review of Electric Impedance Matching Techniques for Piezoelectric Sensors, Actuators and Transducers Vivek T. Rathod Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA; [email protected]; Tel.: +1-517-249-5207 Received: 29 December 2018; Accepted: 29 January 2019; Published: 1 February 2019 Abstract: Any electric transmission lines involving the transfer of power or electric signal requires the matching of electric parameters with the driver, source, cable, or the receiver electronics. Proceeding with the design of electric impedance matching circuit for piezoelectric sensors, actuators, and transducers require careful consideration of the frequencies of operation, transmitter or receiver impedance, power supply or driver impedance and the impedance of the receiver electronics. This paper reviews the techniques available for matching the electric impedance of piezoelectric sensors, actuators, and transducers with their accessories like amplifiers, cables, power supply, receiver electronics and power storage. The techniques related to the design of power supply, preamplifier, cable, matching circuits for electric impedance matching with sensors, actuators, and transducers have been presented. The paper begins with the common tools, models, and material properties used for the design of electric impedance matching. Common analytical and numerical methods used to develop electric impedance matching networks have been reviewed. The role and importance of electrical impedance matching on the overall performance of the transducer system have been emphasized throughout. The paper reviews the common methods and new methods reported for electrical impedance matching for specific applications. The paper concludes with special applications and future perspectives considering the recent advancements in materials and electronics. -
A Survey on Microstrip Patch Antenna Using Metamaterial Anisha Susan Thomas1, Prof
ISSN (Print) : 2320 – 3765 ISSN (Online): 2278 – 8875 International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering (An ISO 3297: 2007 Certified Organization) Vol. 2, Issue 12, December 2013 A Survey on Microstrip Patch Antenna using Metamaterial Anisha Susan Thomas1, Prof. A K Prakash2 PG Student [Wireless Technology], Dept of ECE, Toc H Institute of Science and Technology, Cochin, Kerala, India 1 Professor, Dept of ECE, Toc H Institute of Science and Technology, Cochin, Kerala, India 2 ABSTRACT: Microstrip patch antennas are used for mobile phone applications due to their small size, low cost, ease of production etc. The MSA has proved to be an excellent radiator for many applications because of its several advantages, but it also has some disadvantages. Lower gain and narrow bandwidth are the major drawbacks of a patch antenna. In this paper, a survey on the existing solutions for the same which are developed through several years and an evolving technology metamaterial is presented. Metamaterials are artificial materials characterized by parameters generally not found in nature, but can be engineered. They differ from other materials due to the property of having negative permeability as well as permittivity. Metamaterial structure consists of Split Ring Resonators (SRRs) to produce negative permeability and thin wire elements to generate negative permittivity. Performance parameters especially bandwidth, of patch antennas which are usually considered as narrowband antennas can be improved using metamaterial. Metamaterials are also the basis of further miniaturization of microwave antennas. Keywords: Microstrip antenna, Metamaterial, Split Ring Resonator, Miniaturization, Narrowband antennas. I. INTRODUCTION Although the field of antenna engineering has a history of over 80 years it still remains as described in [1] “…. -
Modeling of Crosstalk in High Speed Planar Structure Parallel Data Buses and Suppression by Uniformly Spaced Short Circuits Gabriel A
Florida International University FIU Digital Commons FIU Electronic Theses and Dissertations University Graduate School 3-29-2012 Modeling of Crosstalk in High Speed Planar Structure Parallel Data Buses and Suppression by Uniformly Spaced Short Circuits Gabriel A. Solana Florida International University, [email protected] DOI: 10.25148/etd.FI12050215 Follow this and additional works at: https://digitalcommons.fiu.edu/etd Recommended Citation Solana, Gabriel A., "Modeling of Crosstalk in High Speed Planar Structure Parallel Data Buses and Suppression by Uniformly Spaced Short Circuits" (2012). FIU Electronic Theses and Dissertations. 606. https://digitalcommons.fiu.edu/etd/606 This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact [email protected]. FLORIDA INTERNATIONAL UNIVERSITY Miami, Florida MODELING OF CROSSTALK IN HIGH SPEED PLANAR STRUCTURE PARALLEL DATA BUSES AND SUPPRESSION BY UNIFORMLY SPACED SHORT CIRCUITS A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in ELECTRICAL ENGINEERING by Gabriel Alejandro Solana 2012 To: Dean Amir Mirmiran College of Engineering and Computing This thesis, written by Gabriel Alejandro Solana, and entitled, Modeling of Crosstalk in High Speed Planar Structure Parallel Data Buses and Suppression by Uniformly Spaced Short Circuits, having been approved in respect to style and intellectual content, is referred to you for judgment. We have read this thesis and recommend that it be approved. _____________________________________________________ Stavros V. Georgakopoulos _____________________________________________________ Jean H. -
Capacitors Demystified: Practical Information on Capacitor Usage in EE133
EE133–Winter 2004 Capacitors Demystified Capacitors Demystified: Practical information on capacitor usage in EE133 Why do I need to read this? Despite all we know about capacitors from previous exposure (including everyone’s favorite capacitor fact – ‘Well, I know the voltage across a capacitor cannot change instantaneously!’), there is a quite a bit about the (good) properties and (bad) non- idealities of these devices that effects the way they are actually used in RF circuits. So, with the practical predisposition of EE133, let’s take another look at our old friend… The Starting Line-up Like fine cheeses or candy bars, capacitors come in wide variety of sizes, shapes, and prices- and they can be made from a host of different materials (except for nougat). However, all of these characteristics are interrelated because, in classic Murphy fashion, a capacitor that ranks well in one or two of these properties is usually terrible in the other categories. The physical size and shape are only of marginal importance to us since the former is pretty much irrelevant at the size of our solder board and the latter is only for aesthetics (which is a foreign term to EE’s anyway). But, the composite material is an important factor in determining the behavior of the capacitor, so for the purpose of this class we will identify four major types (Refer to page 21 of “The Art of Electronics” by Horowitz & Hill for a more complete listing of capacitor families): Material/Comments Picture Ceramics (10 pF – 22µF): Inexpensive, but not good at high frequencies Tantalum (0.1µF – 500µF): Polarized, low inductance Electrolytic (0.1µF – 75µF): Polarized, not good at high frequencies (NOTE: longer lead is usually the positive terminal) Silver Mica (1 pF – 4.7 nF): Expensive with only small capacitive values, but great for RF 1 EE133–Winter 2004 Capacitors Demystified Some Commonly Asked Questions about Capacitors Resistors are color-coded. -
Impedance Matching
Impedance Matching Advanced Energy Industries, Inc. Introduction The plasma industry uses process power over a wide range of frequencies: from DC to several gigahertz. A variety of methods are used to couple the process power into the plasma load, that is, to transform the impedance of the plasma chamber to meet the requirements of the power supply. A plasma can be electrically represented as a diode, a resistor, Table of Contents and a capacitor in parallel, as shown in Figure 1. Transformers 3 Step Up or Step Down? 3 Forward Power, Reflected Power, Load Power 4 Impedance Matching Networks (Tuners) 4 Series Elements 5 Shunt Elements 5 Conversion Between Elements 5 Smith Charts 6 Using Smith Charts 11 Figure 1. Simplified electrical model of plasma ©2020 Advanced Energy Industries, Inc. IMPEDANCE MATCHING Although this is a very simple model, it represents the basic characteristics of a plasma. The diode effects arise from the fact that the electrons can move much faster than the ions (because the electrons are much lighter). The diode effects can cause a lot of harmonics (multiples of the input frequency) to be generated. These effects are dependent on the process and the chamber, and are of secondary concern when designing a matching network. Most AC generators are designed to operate into a 50 Ω load because that is the standard the industry has settled on for measuring and transferring high-frequency electrical power. The function of an impedance matching network, then, is to transform the resistive and capacitive characteristics of the plasma to 50 Ω, thus matching the load impedance to the AC generator’s impedance. -
Voltage Standing Wave Ratio Measurement and Prediction
International Journal of Physical Sciences Vol. 4 (11), pp. 651-656, November, 2009 Available online at http://www.academicjournals.org/ijps ISSN 1992 - 1950 © 2009 Academic Journals Full Length Research Paper Voltage standing wave ratio measurement and prediction P. O. Otasowie* and E. A. Ogujor Department of Electrical/Electronic Engineering University of Benin, Benin City, Nigeria. Accepted 8 September, 2009 In this work, Voltage Standing Wave Ratio (VSWR) was measured in a Global System for Mobile communication base station (GSM) located in Evbotubu district of Benin City, Edo State, Nigeria. The measurement was carried out with the aid of the Anritsu site master instrument model S332C. This Anritsu site master instrument is capable of determining the voltage standing wave ratio in a transmission line. It was produced by Anritsu company, microwave measurements division 490 Jarvis drive Morgan hill United States of America. This instrument works in the frequency range of 25MHz to 4GHz. The result obtained from this Anritsu site master instrument model S332C shows that the base station have low voltage standing wave ratio meaning that signals were not reflected from the load to the generator. A model equation was developed to predict the VSWR values in the base station. The result of the comparism of the developed and measured values showed a mean deviation of 0.932 which indicates that the model can be used to accurately predict the voltage standing wave ratio in the base station. Key words: Voltage standing wave ratio, GSM base station, impedance matching, losses, reflection coefficient. INTRODUCTION Justification for the work amplitude in a transmission line is called the Voltage Standing Wave Ratio (VSWR). -
Brief Study of Two Port Network and Its Parameters
© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002 Brief study of two port network and its parameters Rishabh Verma, Satya Prakash, Sneha Nivedita Abstract- this paper proposes the study of the various ports (of a two port network. in this case) types of parameters of two port network and different respectively. type of interconnections of two port networks. This The Z-parameter matrix for the two-port network is paper explains the parameters that are Z-, Y-, T-, T’-, probably the most common. In this case the h- and g-parameters and different types of relationship between the port currents, port voltages interconnections of two port networks. We will also discuss about their applications. and the Z-parameter matrix is given by: Index Terms- two port network, parameters, interconnections. where I. INTRODUCTION A two-port network (a kind of four-terminal network or quadripole) is an electrical network (circuit) or device with two pairs of terminals to connect to external circuits. Two For the general case of an N-port network, terminals constitute a port if the currents applied to them satisfy the essential requirement known as the port condition: the electric current entering one terminal must equal the current emerging from the The input impedance of a two-port network is given other terminal on the same port. The ports constitute by: interfaces where the network connects to other networks, the points where signals are applied or outputs are taken. In a two-port network, often port 1 where ZL is the impedance of the load connected to is considered the input port and port 2 is considered port two. -
RF Matching Network Design Guide for STM32WL Series
AN5457 Application note RF matching network design guide for STM32WL Series Introduction The STM32WL Series microcontrollers are sub-GHz transceivers designed for high-efficiency long-range wireless applications including the LoRa®, (G)FSK, (G)MSK and BPSK modulations. This application note details the typical RF matching and filtering application circuit for STM32WL Series devices, especially the methodology applied in order to extract the maximum RF performance with a matching circuit, and how to become compliant with certification standards by applying filtering circuits. This document contains the output impedance value for certain power/frequency combinations, that can result in a different output impedance value to match. The impedances are given for defined frequency and power specifications. AN5457 - Rev 2 - December 2020 www.st.com For further information contact your local STMicroelectronics sales office. AN5457 General information 1 General information This document applies to the STM32WL Series Arm®-based microcontrollers. Note: Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere. Table 1. Acronyms Acronym Definition BALUN Balanced to unbalanced circuit BOM Bill of materials BPSK Binary phase-shift keying (G)FSK Gaussian frequency-shift keying modulation (G)MSK Gaussian minimum-shift keying modulation GND Ground (circuit voltage reference) LNA Low-noise power amplifier LoRa Long-range proprietary modulation PA Power amplifier PCB Printed-circuit board PWM Pulse-width modulation RFO Radio-frequency output RFO_HP High-power radio-frequency output RFO_LP Low-power radio-frequency output RFI_N Negative radio-frequency input (referenced to GND) RFI_P Positive radio-frequency input (referenced to GND) Rx Receiver SMD Surface-mounted device SRF Self-resonant frequency SPDT Single-pole double-throw switch SP3T Single-pole triple-throw switch Tx Transmitter RSSI Received signal strength indication NF Noise figure ZOPT Optimal impedance AN5457 - Rev 2 page 2/76 AN5457 General information References [1] T.