Doctoral Thesis

Total Page:16

File Type:pdf, Size:1020Kb

Doctoral Thesis DOCTORAL THESIS 2019 A multiparametric study of the psychobiological mechanisms operating in the incubation of seeking of drugs and natural reinforcers in the laboratory rat Estudio multiparamétrico de los mecanismos psicobiológicos de la incubación de la búsqueda de drogas y reforzadores naturales en ratas de laboratorio DAVID ROURA MARTÍNEZ Doctoral Program in Psychology of Health Thesis advisors: Dr. ALEJANDRO HIGUERA MATAS Dr. EMILIO AMBROSIO FLORES RESEARCH FUNDED BY: Spanish Ministry of Economy and Competitiveness: SAF2013-47520-P PSI2016-80541-P PSI2010-20355 Spanish Ministry of Health, Social Services and Equality: - Red de Trastornos Adictivos: RTA-RD12/028/0020 of the Institute of Health Carlos III - Plan Nacional Sobre Drogas: 2012I057 General Directorate of Research of the Community of Madrid: S-2011/BMD-2308, Program of I+D+I Activities CANNAB-CM Universidad Nacional de Educación a Distancia: Plan for the Promotion of Research Predoctoral fellowship European Union: JUST/2013/DPIP/AG/4823-EU MADNESS AGRADECIMIENTOS Estoy profundamente agradecido a mis directores de tesis, Alejandro y Emilio, por la confianza que desde el principio han depositado en mí y por la oportunidad que me dieron de trabajar en su grupo de inves- tigación. Su profesionalidad y calidad humana son encomiables. Así mismo, quiero agradecer a Arturo y María Rosa por confiar en mí y escogerme para investigar con ellos durante el último año y medio de mi estancia en Madrid. Sin lugar a dudas, aquel puesto fue tan oportuno como provechoso. A continuación citaré, cronológicamente, a aquellas personas con las que he compartido parte de mi tra- yectoria en forma de compañeros, mentores, amigos y/o enlaces. Cuando cite a varios lo haré en orden alfabético. La primera persona a quien quiero agradecer es mi madre. Ella me animó a que me mudara, habiendo cumplido la mayoría de edad, de mi pueblo, Pasajes (Gipuzkoa), a Bilbao (Bizkaia), a estudiar aquello que quería, Biología, ya que en el campus de la UPV-EHU de Donostia no lo hay. Gracias a su apoyo, a las becas del Gobierno Vasco (que afortunadamente nunca faltaron) y a trabajar de vez en cuando, pude finalizar los estudios. El segundo cuatrimestre de tercero de carrera cursé Fisiología Animal y recuerdo estar fas- cinado con la asignatura. Tal es así que cuando vi a la profesora Mertxe colgar un anuncio en el que bus- caban candidatos para alumno interno de laboratorio me lancé de cabeza. Y sin fijarme en que era en el departamento de Fisiología, no Fisiología Animal, y en la facultad de Medicina y Odontología, no en la de Ciencias. Seguramente la profesora se limitó a recoger del suelo un anuncio caído. Así que acabé teniendo una entrevista para un grupo del que no tenía ninguna referencia. Y me seleccionaron. A partir de sep- tiembre de 2003 entré como alumno interno bajo la supervisión de María Begoña y José Ignacio, y con ellos obtuve el Diploma de Estudios Avanzados. A ellos les debo mi primer contacto con la ciencia empí- rica, en un departamento muy bien equipado en el que se cuidaba mucho la transmisión del conocimiento y el trabajo en grupo. Allí tuve la posibilidad de trabajar con muy buenos investigadores, algunos amigos hoy en día: Ainara, Ainhoa, Alejandro’, Begoña, Cristian, Fadil, Idoia, Igor, Igotz, Itxaso, Lourdes, Marga, María José, Montse, Nerea, Olatz, Patricia, Rosa, Rosaura, Sandra, Xabier, Yolanda y Yuri (hace tanto que puede que me olvide de alguien). Pero escaseaba la financiación en mi grupo así que empecé a buscar trabajo en neurociencias, campo que siempre me había atraído, y en Madrid, ciudad que me gustaba y conocía de visita. Fue la mujer de Fadil la que, sin conocerme, encontró una oferta en el laboratorio de Maribel y Esther, en el departamento de Farmacología de la facultad de Medicina de la Complutense. Hice una entrevista, me cogieron y me mudé a la capital. Durante esos tres años (enero 2008-diciembre 2010) tuve la suerte de trabajar con Alejandro (postdoc), David, Elizabeth, Erica (postdoc), Icíar, Nieves y Noelia (postdoc). También a Andrés, amigo de la facultad, que se mudó a Madrid cuando le becaron en el mismo departamento. Terminándose ya el contrato, Alejandro me comentó que iba a salir una beca conseguida por el grupo de Psicobiología de la Drogadicción de la UNED (en una convocatoria competitiva del Vicerrectorado de Investigación), grupo en el que él se doctoró. Sólo nos presentamos dos personas y, tras casi siete años de experiencia en laboratorio, yo tenía mejor currículum, así que me seleccionaron. Un año después Ale- jandro se vio codirigiendo mi tesis con Emilio: su primera tesis. Allí también fui agraciado, además de con mis directores, con los compañeros que me encontré, permanentes, duraderos, temporales, estancias, colaboradores, fugaces o amigos: Adrián Emilio, Alberto, Amparo, Ana Belén, Carlos Alberto, Esmeralda, Gonzalo, Gonzalo’, Inmaculada, Inmaculada’, Javier, Jorge Aldrete, Luis, Luis’, Marcos, Mariano, Mario, Miguel, Mónica, Natalia, Nuria, Paula, Raquel, Roberto, Rosa, Santiago, Shishir y Telmo. También pude trabajar, durante una estancia en el instituto Donders (Radboud University, Nijmegen), con Erika, amiga de la carrera que casualmente realizaba la tesis en el grupo de Benno, en el que yo estaba interesado. Por último, Arturo y María Rosa quisieron contratarme, durante mi último año y medio en Madrid (y en España), para trabajar en el departamento de Toxicología de la facultad de Veterinaria de la Complutense, brindándome la posibilidad de conocer a Arantxa, Bernardo, Irma, José Luis, Natalia, Óscar, Óscar’ y Thais. Por casualidades de la vida, pocos meses después de entrar a formar parte del grupo este departamento se fusionó con el de Farmacología de la facultad de Medicina, del que fui miembro años atrás. Llegar hasta aquí no ha sido fácil, y no sólo ha dependido del esfuerzo que yo haya dedicado a mis estu- dios y a mi trabajo: también ha sido gracias a la buena voluntad, a la profesionalidad y a la capacidad de gente que por suerte me he ido encontrando por un camino con altibajos en cuanto a financiación. Por último, agradezco a Dimitris por acompañarme durante todo este difícil proceso, aunque a veces no entendieses muchas cosas del mismo. «Porque los pilares sostienen el templo, pero están separados; y ni el roble ni el ciprés crecen el uno a la sombra del otro». INDEX Abbreviations 1 Abstract 3 1. INTRODUCTION 5 1.1. THE PROBLEM OF DRUGS OF ABUSE AND RELAPSE 7 1.1.1. The problem of relapse 7 1.1.2. Effects of timing on relapse 9 Circadian effects on heroin craving 9 Effect of the frequency of cocaine and alcohol consumption on craving 9 Effect of the abstinence length on craving 10 1.1.3. Clinical relevance of the incubation of craving 11 Research in human craving incubation 11 Clinical relevance in the relapse of drug abuse 12 Clinical relevance in the relapse of food consumption 12 1.2. STATE OF THE ART IN THE INCUBATION OF CRAVING 13 1.2.1. Human neuroimaging studies 13 Studies of fMRI during heroin abstinence 13 Studies of fMRI during food dieting 13 1.2.2. Animal models of craving incubation 14 Animal models of consumption, abstinence and relapse 14 Animal models of seeking incubation 15 1.2.3. Psychobiology of seeking incubation 17 Substances and research groups 17 Biochemical and pharmacological studies in seeking incubation 17 Involvement of brain regions in the incubation of seeking 24 a) Nucleus accumbens 24 b) Amygdala 25 c) Prefrontal cortex 26 d) Dorsal striatum 28 e) Dopaminergic system 29 f) Hippocampus 30 g) Hypothalamus and peptidergic systems 30 h) Serotoninergic system 30 i) Thalamus 31 j) Noradrenergic system 31 Effects of stress and environmental enrichment 31 Effects of sex 33 Effects of age 33 Kinetics of seeking incubation 34 1.2.4. Summary of the state of the art in seeking incubation 34 HYPOTHESIS AND GOALS 37 2. MATERIALS AND METHODS 39 2.1. JUSTIFICATION OF THE MODEL AND THE SAMPLE PROCESING 41 Justification of the model 41 Justification of sample processing 41 2.2. ANIMAL PROCEDURES 42 Animals 42 Surgery 42 Experimental batches 42 Self-administration sessions 42 Missing animals 43 Abstinence and extinction test 43 Behavioural parameters 43 2.3. SAMPLE PROCESING 44 Animal sacrifice 44 Reagents and buffers 44 Brain dissection 44 Missing samples 44 Tissue homogenization 44 2.4. PROTEIN QUANTIFICATION 44 Protein quantification 44 2.5. RADIOIMMUNOASSAY (RIA) 46 Radioimmunoassay 46 2.6. WESTERN BLOT 46 Reagents and buffers 46 Western blot 47 Analysis 47 2.7. CAPILLARY ELECTROPHORESIS 48 Reagents and buffers 48 Capillary electrophoresis 48 Analysis 48 2.8. GENE EXPRESSION 50 RNA isolation 50 RNA quantification 50 Retrotranscription 50 qPCR 50 Analysis 50 2.9. PERINEURONAL NETS 52 Reagents and buffers 52 Fluorescent staining of perineuronal nets 52 Fluorescent microscopy and analysis 52 Issues encountered during the analysis 53 2.10. STATISTIC ANALYSIS 54 Data presentation 54 Univariant statistics 54 Bivariant statistics 54 Principal components analysis (PCA) 54 Structural equation modelling (SEM) 55 3. RESULTS 57 1st Goal: SELF-ADMINISTRATION AND SEEKING INCUBATION 59 3.1. SUBSTANCE SELF-ADMINISTRATION AND SEEKING INCUBATION 59 Incubation of seeking 59 Self-administration behaviour 59 Behavioural predictive variables of seeking incubation 59 2nd Goal: CHANGES IN GLUTAMATERGIC AND GABAERGIC PARAMETERS DURING 61 SEEKING INCUBATION 3.2. SYNAPTIC SCAFOLDING PROTEINS LEVELS 61 Levels of PSD95 and gephyrin by brain region 61 Synaptic coherence between brain regions by SEM 61 Group comparisons 61 3.3. BRAIN AMINES LEVELS 66 Levels of amines in the control groups 66 Changes in amine content 66 3.4. GENE EXPRESSION OF GLUTAMATERGIC, GABAERGIC AND eCB SYSTEMS 68 Gene expression changes in early withdrawal 68 Gene expression changes after protracted withdrawal 69 Gene expression covariation by PCA 71 3.5.
Recommended publications
  • High KDM1A Expression Associated with Decreased CD8+T Cells Reduces the Breast Cancer Survival Rate in Patients with Breast Cancer
    Journal of Clinical Medicine Article High KDM1A Expression Associated with Decreased CD8+T Cells Reduces the Breast Cancer Survival Rate in Patients with Breast Cancer Hyung Suk Kim 1 , Byoung Kwan Son 2 , Mi Jung Kwon 3, Dong-Hoon Kim 4,* and Kyueng-Whan Min 5,* 1 Department of Surgery, Division of Breast Surgery, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri 11923, Korea; [email protected] 2 Department of Internal Medicine, Eulji Hospital, Eulji University School of Medicine, Seoul 03181, Korea; [email protected] 3 Department of Pathology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Korea; [email protected] 4 Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Korea 5 Department of Pathology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri 11923, Korea * Correspondence: [email protected] (D.-H.K.); [email protected] (K.-W.M.); Tel.: +82-2-2001-2392 (D.-H.K.); +82-31-560-2346 (K.-W.M.); Fax: +82-2-2001-2398 (D.-H.K.); Fax: +82-2-31-560-2402 (K.-W.M.) Abstract: Background: Lysine-specific demethylase 1A (KDM1A) plays an important role in epige- netic regulation in malignant tumors and promotes cancer invasion and metastasis by blocking the immune response and suppressing cancer surveillance activities. The aim of this study was to analyze Citation: Kim, H.S.; Son, B.K.; Kwon, survival, genetic interaction networks and anticancer immune responses in breast cancer patients M.J.; Kim, D.-H.; Min, K.-W. High with high KDM1A expression and to explore candidate target drugs.
    [Show full text]
  • Neuro-Oncology Advances 1 1(1), 1–14, 2019 | Doi:10.1093/Noajnl/Vdz042 | Advance Access Date 5 November 2019
    applyparastyle "fig//caption/p[1]" parastyle "FigCapt" applyparastyle "fig" parastyle "Figure" Neuro-Oncology Advances 1 1(1), 1–14, 2019 | doi:10.1093/noajnl/vdz042 | Advance Access date 5 November 2019 PELP1 promotes glioblastoma progression by enhancing Wnt/β-catenin signaling Gangadhara R. Sareddy, Uday P. Pratap, Suryavathi Viswanadhapalli, Prabhakar Pitta Venkata, Binoj C. Nair, Samaya Rajeshwari Krishnan, Siyuan Zheng, Andrea R. Gilbert, Andrew J. Brenner, Darrell W. Brann, and Ratna K. Vadlamudi Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas (G.R.S., U.P.P., S.V., P.P.V., B.C.N., S.R.K., R.K.V.); Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas (S.Z.); Department of Pathology and Laboratory Medicine, University of Texas Health San Antonio, San Antonio, Texas (A.R.G.); Hematology & Oncology, University of Texas Health San Antonio, San Antonio, Texas (A.J.B.); Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas (G.R.S., S.Z., A.J.B., R.K.V.); Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia (D.W.B.) Correspondence Author: Ratna K. Vadlamudi, Department of Obstetrics and Gynecology, 7703 Floyd Curl Drive, University of Texas Health San Antonio, San Antonio, TX 78229 ([email protected]). Abstract Background: Glioblastoma (GBM) is a deadly neoplasm of the central nervous system. The molecular mechanisms and players that contribute to GBM development is incompletely understood. Methods: The expression of PELP1 in different grades of glioma and normal brain tissues was analyzed using immunohistochemistry on a tumor tissue array.
    [Show full text]
  • 4-6 Weeks Old Female C57BL/6 Mice Obtained from Jackson Labs Were Used for Cell Isolation
    Methods Mice: 4-6 weeks old female C57BL/6 mice obtained from Jackson labs were used for cell isolation. Female Foxp3-IRES-GFP reporter mice (1), backcrossed to B6/C57 background for 10 generations, were used for the isolation of naïve CD4 and naïve CD8 cells for the RNAseq experiments. The mice were housed in pathogen-free animal facility in the La Jolla Institute for Allergy and Immunology and were used according to protocols approved by the Institutional Animal Care and use Committee. Preparation of cells: Subsets of thymocytes were isolated by cell sorting as previously described (2), after cell surface staining using CD4 (GK1.5), CD8 (53-6.7), CD3ε (145- 2C11), CD24 (M1/69) (all from Biolegend). DP cells: CD4+CD8 int/hi; CD4 SP cells: CD4CD3 hi, CD24 int/lo; CD8 SP cells: CD8 int/hi CD4 CD3 hi, CD24 int/lo (Fig S2). Peripheral subsets were isolated after pooling spleen and lymph nodes. T cells were enriched by negative isolation using Dynabeads (Dynabeads untouched mouse T cells, 11413D, Invitrogen). After surface staining for CD4 (GK1.5), CD8 (53-6.7), CD62L (MEL-14), CD25 (PC61) and CD44 (IM7), naïve CD4+CD62L hiCD25-CD44lo and naïve CD8+CD62L hiCD25-CD44lo were obtained by sorting (BD FACS Aria). Additionally, for the RNAseq experiments, CD4 and CD8 naïve cells were isolated by sorting T cells from the Foxp3- IRES-GFP mice: CD4+CD62LhiCD25–CD44lo GFP(FOXP3)– and CD8+CD62LhiCD25– CD44lo GFP(FOXP3)– (antibodies were from Biolegend). In some cases, naïve CD4 cells were cultured in vitro under Th1 or Th2 polarizing conditions (3, 4).
    [Show full text]
  • Proline-, Glutamic Acid-, and Leucine-Rich Protein 1 Mediates
    Proline-, glutamic acid-, and leucine-rich protein 1 PNAS PLUS mediates estrogen rapid signaling and neuroprotection in the brain Gangadhara R. Sareddya,1, Quanguang Zhangb,1, Ruimin Wangb,c, Erin Scottb, Yi Zoud, Jason C. O’Connore,f, Yidong Chend, Yan Dongb, Ratna K. Vadlamudia,2, and Darrell Brannb,g,2 aDepartment of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, TX 78229; bDepartment of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912; cNeurobiology Institute of Medical Research Center, North China University of Science and Technology, Tangshan, People’s Republic of China 063000; dDepartment of Epidemiology & Biostatistics, University of Texas Health Science Center, San Antonio, TX 78229; eDepartment of Pharmacology, University of Texas Health Science Center, San Antonio, TX 78229; fSouth Texas Veterans Health System, Audie L. Murphy VA Hospital, San Antonio, TX 78229; and gCharlie Norwood Veterans Affairs Medical Center, Augusta, GA 30904 Edited by Bruce S. McEwen, The Rockefeller University, New York, NY, and approved October 1, 2015 (received for review August 21, 2015) 17-β estradiol (E2) has been implicated as neuroprotective in a vari- E2 signaling is thought to be primarily mediated by the classical ety of neurodegenerative disorders. However, the underlying mech- estrogen receptors, estrogen receptor alpha (ERα) and estrogen anism remains unknown. Here, we provide genetic evidence, using receptor beta (ERβ). Both subtypes are expressed in the brain forebrain-specific knockout (FBKO) mice, that proline-, glutamic and have been shown to mediate various neural actions of E2, acid-, and leucine-rich protein 1(PELP1),anestrogenreceptor including neuroprotection (4, 12–14).
    [Show full text]
  • LSD1/KDM1A, a Gate-Keeper of Cancer Stemness and a Promising Therapeutic Target
    Review LSD1/KDM1A, a Gate-Keeper of Cancer Stemness and a Promising Therapeutic Target Panagiotis Karakaidos 1,2,*, John Verigos 1,3 and Angeliki Magklara 1,3,* 1 Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology, Ioannina 45110, Greece 2 Biomedical Research Foundation Academy of Athens, Athens 11527, Greece 3 Department of Clinical Chemistry, Faculty of Medicine, University of Ioannina, Ioannina 45110, Greece * Correspondence: [email protected] (P.K.); [email protected] (A.M.) Received: 25 October 2019; Accepted: 18 November 2019; Published: 20 November 2019 Abstract: A new exciting area in cancer research is the study of cancer stem cells (CSCs) and the translational implications for putative epigenetic therapies targeted against them. Accumulating evidence of the effects of epigenetic modulating agents has revealed their dramatic consequences on cellular reprogramming and, particularly, reversing cancer stemness characteristics, such as self- renewal and chemoresistance. Lysine specific demethylase 1 (LSD1/KDM1A) plays a well- established role in the normal hematopoietic and neuronal stem cells. Overexpression of LSD1 has been documented in a variety of cancers, where the enzyme is, usually, associated with the more aggressive types of the disease. Interestingly, recent studies have implicated LSD1 in the regulation of the pool of CSCs in different leukemias and solid tumors. However, the precise mechanisms that LSD1 uses to mediate its effects on cancer stemness are largely unknown. Herein, we review the literature on LSD1’s role in normal and cancer stem cells, highlighting the analogies of its mode of action in the two biological settings. Given its potential as a pharmacological target, we, also, discuss current advances in the design of novel therapeutic regimes in cancer that incorporate LSD1 inhibitors, as well as their future perspectives.
    [Show full text]
  • KDM1A Microenvironment, Its Oncogenic Potential, And
    Ismail et al. Epigenetics & Chromatin (2018) 11:33 https://doi.org/10.1186/s13072-018-0203-3 Epigenetics & Chromatin REVIEW Open Access KDM1A microenvironment, its oncogenic potential, and therapeutic signifcance Tayaba Ismail1, Hyun‑Kyung Lee1, Chowon Kim1, Taejoon Kwon2, Tae Joo Park2* and Hyun‑Shik Lee1* Abstract The lysine-specifc histone demethylase 1A (KDM1A) was the frst demethylase to challenge the concept of the irreversible nature of methylation marks. KDM1A, containing a favin adenine dinucleotide (FAD)-dependent amine oxidase domain, demethylates histone 3 lysine 4 and histone 3 lysine 9 (H3K4me1/2 and H3K9me1/2). It has emerged as an epigenetic developmental regulator and was shown to be involved in carcinogenesis. The functional diversity of KDM1A originates from its complex structure and interactions with transcription factors, promoters, enhancers, onco‑ proteins, and tumor-associated genes (tumor suppressors and activators). In this review, we discuss the microenviron‑ ment of KDM1A in cancer progression that enables this protein to activate or repress target gene expression, thus making it an important epigenetic modifer that regulates the growth and diferentiation potential of cells. A detailed analysis of the mechanisms underlying the interactions between KDM1A and the associated complexes will help to improve our understanding of epigenetic regulation, which may enable the discovery of more efective anticancer drugs. Keywords: Histone demethylation, Carcinogenesis, Acute myeloid leukemia, KDM1A, TLL Background X-chromosome, that are involved in the regulation of Epigenetic modifcations are crucial for physiological development. Additionally, these alterations may repre- development and steady-state gene expression in eukary- sent aberrant markers indicating the development of dif- otes [1] and are required for various biological processes ferent types of cancer and other diseases [5–7].
    [Show full text]
  • Adipogenesis at a Glance
    Cell Science at a Glance 2681 Adipogenesis at a Stephens, 2010). At the same time attention has This Cell Science at a Glance article reviews also shifted to many other aspects of adipocyte the transition of precursor stem cells into mature glance development, including efforts to identify, lipid-laden adipocytes, and the numerous isolate and manipulate relevant precursor stem molecules, pathways and signals required to Christopher E. Lowe, Stephen cells. Recent studies have revealed new accomplish this. O’Rahilly and Justin J. Rochford* intracellular pathways, processes and secreted University of Cambridge Metabolic Research factors that can influence the decision of these Adipocyte stem cells Laboratories, Institute of Metabolic Science, cells to become adipocytes. Pluripotent mesenchymal stem cells (MSCs) Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK Understanding the intricacies of adipogenesis can be isolated from several tissues, including *Author for correspondence ([email protected]) is of major relevance to human disease, as adipose tissue. Adipose-derived MSCs have the Journal of Cell Science 124, 2681-2686 adipocyte dysfunction makes an important capacity to differentiate into a variety of cell © 2011. Published by The Company of Biologists Ltd doi:10.1242/jcs.079699 contribution to metabolic disease in obesity types, including adipocytes, osteoblasts, (Unger et al., 2010). Thus, improving adipocyte chondrocytes and myocytes. Until recently, The formation of adipocytes from precursor function and the complementation or stem cells in the adipose tissue stromal vascular stem cells involves a complex and highly replacement of poorly functioning adipocytes fraction (SVF) have been typically isolated in orchestrated programme of gene expression. could be beneficial in common metabolic pools that contain a mixture of cell types, and the Our understanding of the basic network of disease.
    [Show full text]
  • Supplemental Material.Pdf
    Supplemental Material ZNF750 Interacts with KLF4 and RCOR1, KDM1A, and CTBP1/2 Chromatin Regulators to Repress Epidermal Progenitor Genes and Induce Differentiation Genes Lisa D. Boxer, Brook Barajas, Shiying Tao, Jiajing Zhang, and Paul Khavari Supplemental Inventory Figure S1. This figure supports Figure 1 and shows the Gene Ontology terms for ZNF750-bound but unaffected genes, the genomic enrichment of ZNF750 ChIP-seq peaks, and the percentage of peaks that contain the ZNF750 motif. Figure S2. This figure supports Figure 2 and shows gene expression changes with depletion of ZNF750-interacting proteins, confirms the knock-down of ZNF750-interacting proteins, and shows the quantification of Ki67 in ZNF750-interacting protein depleted organotypic tissue. Figure S3. This figure supports Figure 3 and shows the quantification of ZNF750 and interacting protein co-IPs, and IPs and Far western blots demonstrating competition between KLF4 and KDM1A for binding to ZNF750. Figure S4. This figure supports Figure 4 and shows the expression of ZNF750 mutant proteins and the effects of full-length or mutant ZNF750 on differentiation in organotypic tissue and on clonogenic growth. Figure S5. This figure supports Figure 5 and shows the effects of mutagenesis of ZNF750 and KLF4 motifs on reporter activity, and the changes in histone marks with depletion of ZNF750 and interacting proteins. Figure S6. This figure supports Figure 6 and shows the changes in mRNA and protein expression of ZNF750-interacting proteins during keratinocyte differentiation, and the expression of ZNF750-interacting proteins with ZNF750 depletion. Table S1. Supports Figure 1 and shows the genomic coordinates of ZNF750 ChIP-seq peaks.
    [Show full text]
  • S41467-019-09800-Y.Pdf
    ARTICLE https://doi.org/10.1038/s41467-019-09800-y OPEN Vps11 and Vps18 of Vps-C membrane traffic complexes are E3 ubiquitin ligases and fine-tune signalling Gregory Segala 1, Marcela A. Bennesch1, Nastaran Mohammadi Ghahhari1, Deo Prakash Pandey1,3, Pablo C. Echeverria 1, François Karch 2, Robert K. Maeda2 & Didier Picard 1 1234567890():,; In response to extracellular signals, many signalling proteins associated with the plasma membrane are sorted into endosomes. This involves endosomal fusion, which depends on the complexes HOPS and CORVET. Whether and how their subunits themselves modulate signal transduction is unknown. We show that Vps11 and Vps18 (Vps11/18), two common subunits of the HOPS/CORVET complexes, are E3 ubiquitin ligases. Upon overexpression of Vps11/ Vps18, we find perturbations of ubiquitination in signal transduction pathways. We specifi- cally demonstrate that Vps11/18 regulate several signalling factors and pathways, including Wnt, estrogen receptor α (ERα), and NFκB. For ERα, we demonstrate that the Vps11/18- mediated ubiquitination of the scaffold protein PELP1 impairs the activation of ERα by c-Src. Thus, proteins involved in membrane traffic, in addition to performing their well-described role in endosomal fusion, fine-tune signalling in several different ways, including through ubiquitination. 1 Département de Biologie Cellulaire, Université de Genève, Sciences III, 30 quai Ernest-Ansermet, 1211 Genève, Switzerland. 2 Département de Génétique et Évolution, Université de Genève, Sciences III, 30 quai Ernest-Ansermet,
    [Show full text]
  • UC San Diego UC San Diego Electronic Theses and Dissertations
    UC San Diego UC San Diego Electronic Theses and Dissertations Title Insights from reconstructing cellular networks in transcription, stress, and cancer Permalink https://escholarship.org/uc/item/6s97497m Authors Ke, Eugene Yunghung Ke, Eugene Yunghung Publication Date 2012 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO Insights from Reconstructing Cellular Networks in Transcription, Stress, and Cancer A dissertation submitted in the partial satisfaction of the requirements for the degree Doctor of Philosophy in Bioinformatics and Systems Biology by Eugene Yunghung Ke Committee in charge: Professor Shankar Subramaniam, Chair Professor Inder Verma, Co-Chair Professor Web Cavenee Professor Alexander Hoffmann Professor Bing Ren 2012 The Dissertation of Eugene Yunghung Ke is approved, and it is acceptable in quality and form for the publication on microfilm and electronically ________________________________________________________________ ________________________________________________________________ ________________________________________________________________ ________________________________________________________________ Co-Chair ________________________________________________________________ Chair University of California, San Diego 2012 iii DEDICATION To my parents, Victor and Tai-Lee Ke iv EPIGRAPH [T]here are known knowns; there are things we know we know. We also know there are known unknowns; that is to say we know there
    [Show full text]
  • ZNF750 Interacts with KLF4 and RCOR1, KDM1A, and CTBP1/2 Chromatin Regulators to Repress Epidermal Progenitor Genes and Induce Differentiation Genes
    Downloaded from genesdev.cshlp.org on September 27, 2021 - Published by Cold Spring Harbor Laboratory Press ZNF750 interacts with KLF4 and RCOR1, KDM1A, and CTBP1/2 chromatin regulators to repress epidermal progenitor genes and induce differentiation genes Lisa D. Boxer,1,2 Brook Barajas,1 Shiying Tao,1 Jiajing Zhang,1 and Paul A. Khavari1,3 1Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California 94305, USA; 2Department of Biology, Stanford University, Stanford, California 94305, USA; 3Veterans Affairs Palo Alto Healthcare System, Palo Alto, California 94304, USA ZNF750 controls epithelial homeostasis by inhibiting progenitor genes while inducing differentiation genes, a role underscored by pathogenic ZNF750 mutations in cancer and psoriasis. How ZNF750 accomplishes these dual gene regulatory impacts is unknown. Here, we characterized ZNF750 as a transcription factor that binds both the progenitor and differentiation genes that it controls at a CCNNAGGC DNA motif. ZNF750 interacts with the pluripotency transcription factor KLF4 and chromatin regulators RCOR1, KDM1A, and CTBP1/2 through conserved PLNLS sequences. ChIP-seq (chromatin immunoprecipitation [ChIP] followed by high-throughput sequencing) and gene depletion revealed that KLF4 colocalizes ~10 base pairs from ZNF750 at differentiation target genes to facilitate their activation but is unnecessary for ZNF750-mediated progenitor gene repression. In contrast, KDM1A colocalizes with ZNF750 at progenitor genes and facilitates their repression but is unnecessary for ZNF750-driven differentiation. ZNF750 thus controls differentiation in concert with RCOR1 and CTBP1/2 by acting with either KDM1A to repress progenitor genes or KLF4 to induce differentiation genes. [Keywords: stem cell; differentiation; ZNF750; KLF4; chromatin regulator] Supplemental material is available for this article.
    [Show full text]
  • The KDM1A Histone Demethylase Is a Promising New Target for the Epigenetic Therapy of Medulloblastoma
    Pajtler et al. Acta Neuropathologica Communications 2013, 1:19 http://www.actaneurocomms.org/content/1/1/19 RESEARCH Open Access The KDM1A histone demethylase is a promising new target for the epigenetic therapy of medulloblastoma Kristian W Pajtler1*, Christina Weingarten1, Theresa Thor1, Annette Künkele1, Lukas C Heukamp2, Reinhard Büttner2, Takayoshi Suzuki3, Naoki Miyata4, Michael Grotzer5, Anja Rieb1, Annika Sprüssel1, Angelika Eggert1, Alexander Schramm1 and Johannes H Schulte1,6 Abstract Background: Medulloblastoma is a leading cause of childhood cancer-related deaths. Current aggressive treatments frequently lead to cognitive and neurological disabilities in survivors. Novel targeted therapies are required to improve outcome in high-risk medulloblastoma patients and quality of life of survivors. Targeting enzymes controlling epigenetic alterations is a promising approach recently bolstered by the identification of mutations in histone demethylating enzymes in medulloblastoma sequencing efforts. Hypomethylation of lysine 4 in histone 3 (H3K4) is also associated with a dismal prognosis for medulloblastoma patients. Functional characterization of important epigenetic key regulators is urgently needed. Results: We examined the role of the H3K4 modifying enzyme, KDM1A, in medulloblastoma, an enzyme also associated with malignant progression in the closely related tumor, neuroblastoma. Re-analysis of gene expression data and immunohistochemistry of tissue microarrays of human medulloblastomas showed strong KDM1A overexpression in the majority of tumors throughout all molecular subgroups. Interestingly, KDM1A knockdown in medulloblastoma cell lines not only induced apoptosis and suppressed proliferation, but also impaired migratory capacity. Further analyses revealed bone morphogenetic protein 2 (BMP2) as a major KDM1A target gene. BMP2 is known to be involved in development and differentiation of granule neuron precursor cells (GNCPs), one potential cell of origin for medulloblastoma.
    [Show full text]