Natural History Los Angeles | December 3, 2020 Bonhams © 2020 Bonhams & Butterfields Auctioneers Corp

Total Page:16

File Type:pdf, Size:1020Kb

Natural History Los Angeles | December 3, 2020 Bonhams © 2020 Bonhams & Butterfields Auctioneers Corp Natural History Los Angeles | December 3, 2020 Bonhams © 2020 Bonhams & Butterfields Auctioneers Corp. All rights reserved. Natural History Los Angeles | Thursday 3 December at 10am BONHAMS INQUIRIES BIDS COVID-19 SAFETY STANDARDS 7601 W. Sunset Boulevard Tom Lindgren Register to bid online by visiting Bonhams’ galleries are currently Los Angeles CA 90046 Specialist www.bonhams.com/26149 subject to government restrictions bonhams.com Co-consulting Director and arrangements may be subject 310-469-8567 Alternatively, contact our Client to change. [email protected] SALE NUMBER Services department at: [email protected] 26149 Claudia Florian, G.J.G. Preview: Lots will be made +1 (323) 850 7500 Lots 3000 - 3295 Co-consulting Director available for in-person viewing by 323-436-5437 appointment only. Please contact AUCTION INFORMATION [email protected] IMPORTANT NOTICES the specialist department on +1 323 436 5437 to arrange an Bonded pursuant to California Civil Please note that all customers, appointment before visiting our Code Sec. 1812.600; Esther Park irrespective of any previous activity galleries. In accordance with Bond No. 57BSBGL0808 Administrator/Cataloguer Trainee with Bonhams, are required to have 323-436-5437 proof of identity when submitting Covid-19 guidelines, it is [email protected] bids. Failure to do this may result in mandatory that you wear a face CATALOG: $45 your bid not being processed. mask and observe social For absentee and telephone bids we distancing at all times. Additional ILLUSTRATIONS require a completed Bidder lot information and photographs Front Cover: lot 3099 Registration Form in advance of the are available from the specialist Inside Front Cover: lot 3196 sale. The form can be found at the department upon request. Inside Rear Cover: lot 3121 back of every catalogue and on our Rear Cover: lot 3011 website at www.bonhams.com Bidding: We are unable to offer and should be returned by email to in-person bidding for this auction. the specialist department or to the PREVIEW Client Services department at bids. Payment, Collections & Shipping: Monday November 30, 12pm-5pm [email protected]. Please note we We strongly encourage Tuesday December 1, 12pm-5pm cannot guarantee bids within 24 contactless payment of invoices Wednesday December 2, 10am-5pm hours of the sale. prior to collection via wire transfer Lots marked “W” are oversized and or credit card through your therefore your purchases may be MyBonhams account. In-person or subject to alternative shipping and third-party collections from our storage methods. For further galleries are scheduled in advance information, please refer to the with our Client Services team. Oversized Lots page. Bonhams © 2020 Bonhams & Butterfields Auctioneers Corp. All rights reserved. Order of Sale Regulated Species Materials and CITES Permits Fossils………………………… ...........Lots 3000 – 3126 The export of a lot from the United States or import into certain Dinosauria…………… ...........................Lots 3000-3037 countries may be subject to export or import regulations, licensure and/or other restrictions; in particular, lots containing plant or animal Marine Reptiles…… ...............................Lots 3038-3040 materials such as ivory, rhinoceros horn, tortoiseshell, coral, whalebone Amphibians……… ........................... …..Lots 3041-3042 or certain types of woods, irrespective of age or value, may require the Echinoderms… ............................ ……..Lots 3043-3046 granting of one or more export or import licenses or certificates, or may Crusteceans…… ............................ ….. Lots 3047-3051 be banned from import altogether by some countries. Moreover, the Trilobites……… ..........................………Lots 3052-3055 ability to obtain an export license or certificate does not insure the ability Cephalopods…… ............................ …..Lots 3056-3074 to obtain an import license or certificate in another country. Lots that contain such regulated species materials may also not be eligible for Fish………… .......................……………Lots 3075-3096 exportation or for re-importation into the United States if they are not at Reptiles……… .........................………..Lots 3097-3099 least 100 years of age, and, under current law, lots containing African Arthropods…… ..........................………Lots 3100-3103 Elephant Ivory may no longer be re-imported into the United States Mammals… .......................... …………..Lots 3104-3107 regardless of age. In addition, resales of lots containing certain regulated Fossil Replicas…… ......................... …..Lots 3108-3113 species materials may be subject to restrictions in some jurisdictions. Paleobotany including agatized Lots noted in the catalog with a next to the lot number contain one and opalized wood… .................………Lots 3114-3126 Y or more such regulated plant or animal materials. It is the buyer’s responsibility to investigate any such restrictions and to Copal, Amber, Curiosities obtain any relevant export or import licenses. Please note that and Taxidermy ................................ …..Lots 3127-3152 this process is governed by local authorities and may take Meteorites (listed alphabetically) ....... …..Lots 3153-3186 considerable time. Regardless of any delay in the obtaining of Minerals (listed alphabetically)…… ..... …Lots 3187-3234 an export or import license or certificate or denial of a license’s Malachite and Copper or certificate’s issuance, purchased lots shall be paid for in Related Minerals… ................................Lots 3235-3268 accordance with the Conditions of Sale, and any such delay or denial shall not serve as the basis for cancellation of any Mineral Décor…………………………. ...Lots 3269-3295 sale. Prospective buyers are advised to obtain information from the relevant regulatory authorities regarding export and import restrictions, requirements, and costs prior to bidding. Prospective buyers should also check with their local (e.g. state) regulatory authorities regarding any local restrictions and/or permit ERA PERIOD EPOCH MILLION YEARS AGO requirements that may apply with respect to purchases of regulated species materials, including without limitation purchases of items Quaternary Holocene (Recent) Present to 0.01 containing elephant ivory or rhino horn. For example, we are advised Pleistocene (Ice Age) 0.01 to 2 that New York buyers of any lot containing elephant or mammoth ivory Tertiary Pliocene 2 to 5 Miocene 5 to 25 or rhino horn will be responsible for obtaining a New York State permit Oligocene 25 to 38 before taking possession of the lot within New York State, and that CENOZOIC Eocene 38 to 55 the State of New Jersey has banned the import of items containing Paleocene 55 to 65 elephant or marine mammal ivory or rhino horn into that state. Cretaceous 65 to 144 Upon request, Bonhams can refer the purchaser to a third party agent Jurassic 144 to 213 to assist the purchaser in attempting to obtain the appropriate licenses Triassic 213 to 248 and/or certificates. However, there is no assurance that any necessary licenses or certificates can be obtained. Please contact the Specialist Dinosaurs) (Age of the MESOZOIC Department for a suggested list of shipping agents prior to placing a bid if you are uncertain as to whether a lot is subject to export/import Permian 248 to 286 license or certificate requirements or related restrictions. Carboniferous 286 to 360 Devonian 360 to 408 Silurian 408 to 438 Ordovician 438 to 505 PALEOZOIC Cambrian 505 to 590 Fossils Lots 3000 - 3126 3000 3001 DINOSAURIA 3000 THERAPOD DINOSAUR TOOTH Nanotyrannus lancensis Cretaceous Bolan Ranch, Lance Creek Formation, Wyoming A fine theropod tooth. Theropods are a carnivorous bipedal group of dinosaurs characterized by hollow bones and three-toed limbs. Measuring 1 x 1/2 in $1,000 - 1,200 To be sold without reserve 3001 DINOSAUR TOOTH Nanotyrannus lancensis Cretaceous Bolan Ranch, Lance Creek Formation, Wyoming A fine dinosaur tooth with good enamel and well preserved serrations. 3002 Measuring 1 1/4 x 5/8 in $1,500 - 2,000 To be sold without reserve 3002 FINE DINOSAUR TOOTH Nanotyrannus lancensis Cretaceous Bolan Ranch, Lance Creek Formation, Wyoming A fine Nanotyrannus lancensis tooth exhibiting most of the enamel and serrations. Measuring 7/8 x 1/2 in $1,200 - 1,500 To be sold without reserve 3003 TYRANNOSAURUS TOOTH Tyrannosaurus rex Cretaceous Bolan Ranch, Lance Creek Formation, Wyoming A tooth from Tyrannosaurus rex, perhaps the most sought-after species in fossil collecting. Exhibiting large serrations and a short crown. Measuring 1 1/4 x 5/8 in $1,200 - 1,500 3003 To be sold without reserve 4 | BONHAMS 3004 3005 3004 NANOTYRANNUS DINOSAUR TOOTH Nanotyrannus Lancensis Cretaceous Bolan Ranch, Lance Creek Formation, Wyoming A very weathered tooth with some serrations visible. Measuring 3/4 x 3/8 in $800 - 1,000 To be sold without reserve 3005 TYRANNOSAURID TOOTH Nanotyrannrus lancensis Cretaceous Bolan Ranch, Lance Creek Formation, Wyoming A tooth from a Nanotyrannus lancensis dinosaur. Measuring 1 x 3/8 in $600 - 900 3006 To be sold without reserve 3006 TWO SMALL DINOSAUR TEETH Troodontidae Cretaceous Bolan Ranch, Lance Creek Formation, Wyoming There is no described genus and species for these mysterious prehistoric animals. They are known only from teeth and a few isolated bones from the Lance Creek and Hell Creek Formations. Measuring 9.34 x 4.44 millimeters and 8.92 x 5.24 millimeters, respectively (2) $300 - 500 To be sold without reserve 3007 THREE TRICERATOPS TEETH
Recommended publications
  • 1991 ADMINISTRATION BOARD of DIRECTORS President Dr
    FEB 91 THE GEOLOGICAL NEWSLETTER I GEOLOGICAL SOCIETY OF THE OREGON COUNTRY I .. GEOLOGICAL SOCIETY Non-Profit Org. OF THE OREGON COUNTRY U.S. POSTAGE P.O. BOX 907 PAID Portland, Oregon PORTLAND, OR 97207 Permit No. 999 \ 1Ett£ 13" .\. J!l CIJ" \ \. GEOLOGICAL SOCIETY OF THE OREGON COUNTRY 1990-1991 ADMINISTRATION BOARD OF DIRECTORS President Dr. Ruth Keen 222-1430 Directors 4138 SW 4th Ave Donald Barr (3 years) 246-2785 Portland, OR 97201 Peter E. Baer (2 years) 661-7995 Vice President Charlene Holzwarth (1 year) 284-3444 Dr. Walter Sunderland 625-6840 Immediate Past Presidents 7610 NE Earlwood Rd. Rosemary Kenney 221-0757 Newberg, OR 97132. Joline Robustelli 223-2852 Secretary Cecelia Crater 235-5158 THE GEOLOGICAL NEWSLETTER 3823 SE lOth Editor: Sandra Anderson 775-5538 Portland, OR 97202 Calendar: Joline Robustelli 223-2852 Treasurer Business Mgr. Joline Robustelli 223-2852 Archie Strong 244-1488 Assist: Cecelia Crater 235-5158 6923 SW 2nd Ave Portland, OR 97219 ACTIVITIES CHAIRS Calligrapher Properties and PA System .. Wallace R. McClung 637-3834 (Luncheon) Donald Botteron 245-6251 Field Trips (Evening) Walter A. Sunderland 625-6840 Alta B. Fosback 641-6323 Publications Charlene Holzwarth 284-3444 Margaret Steere 246-1670 Geology Seminars Publicity Margaret Steere 246-1670 Roberta L. Walter 235 -3579 Historian Refreshments Phyllis G. Bonebrake 289-8597 (Friday Evening) Hospitality Donald and Betty Turner 246-3192 (Luncheon) Margaret Fink 289-0188 (Geology Seminars) (Evening) Gale Rankin and Freda and Virgil Scott 771-3646 Manuel Boyes 223-6784 Telephone Library: Frances Rusche 6_54-5975 Cecelia Crater 235-5158 Esther Kennedy -287-3091 Volunteer Speakers Bureau Lois Sato 654-7671 Robert Richmond 282-3817 Past Presidents Panel Annual Banquet Rosemary Kenney 221-0757 Esther Kennedy 287-3091 Programs Gale Rankin 223-6784 (Luncheon) Helen E.
    [Show full text]
  • Shergotty Basalt, 5 Kg Seen to Fall Introduction the Shergotty Achondrite Fell on August 25, 1865 at 9:00 A.M
    V. Shergotty basalt, 5 kg seen to fall Introduction The Shergotty achondrite fell on August 25, 1865 at 9:00 a.m. near a town called Shergahti in Bihar State, India after detonations were heard (Graham et al. 1985). Duke (1968) refers to several stones with fusion crusts, but this has not been confirmed. The main mass is at the Museum of the Geological Survey in Calcutta, India (figure V-1). In 1984, an international consortium was organized by J. C. Laul to study ~30 grams of Shergotty in detail (Laul 1986a, b). Shergottites (Shergotty, Zagami, EETA79001B, QUE94201, Los Angeles) are texturally and mineralogically similar to terrestrial diabases (although all of the plagioclase has been shocked to maskelynite), but quite distinct petrologically and chemically from the rest of the basaltic achondrites (Stolper et al. 1979). Stolper and McSween (1979) and others have noted that Shergotty crystallized under relatively oxidizing conditions. Figure V-1. Photograph of Shergotty meteorite The Shergotty meteorite has been severely shocked and showing fusion crust and borken surfaces. Two saw is considered the “type locality” for maskelynite (dense cuts are visible. Sample is about 25 cm across. Photo plagioclase glass). In fact, it has proven to be very kindly provided by Prof. N. Bhandari, Director, Physical Research Laboratory, Ahmedabad, India. difficult to date the original crystallization event of Figure V-2. Photograph of slab of Shergotty meteorite showing basaltic texture and alignment of pyroxene crystals. Note the inclusion of black glass in the center of this slab. This is figure 1 in Duke (1968). Photo courtesy of U.
    [Show full text]
  • New and Poorly Known Perisphinctoidea (Ammonitina) from the Upper Tithonian of Le Chouet (Drôme, SE France)
    Volumina Jurassica, 2014, Xii (1): 113–128 New and poorly known Perisphinctoidea (Ammonitina) from the Upper Tithonian of Le Chouet (Drôme, SE France) Luc G. BULOT1, Camille FRAU2, William A.P. WIMBLEDON3 Key words: Ammonoidea, Ataxioceratidae, Himalayitidae, Neocomitidae, Upper Tithonian, Le Chouet, South-East France. Abstract. The aim of this paper is to document the ammonite fauna of the upper part of the Late Tithonian collected at the key section of Le Chouet (Drôme, SE France). Emphasis is laid on new and poorly known Ataxioceratidae, Himalayitidae and Neocomitidae from the upper part of the Tithonian. Among the Ataxioceratidae, a new account on the taxonomy and relationship between Paraulacosphinctes Schindewolf and Moravisphinctes Tavera is presented. Regarding the Himalayitidae, the range and content of Micracanthoceras Spath is discussed and two new genera are introduced: Ardesciella gen. nov., for a group of Mediterranean ammonites that is homoeomorphic with the Andean genus Corongoceras Spath, and Pratumidiscus gen. nov. for a specimen that shows morphological similarities with the Boreal genera Riasanites Spath and Riasanella Mitta. Finally, the occurrence of Neocomitidae in the uppermost Tithonian is documented by the presence of the reputedly Berriasian genera Busnardoiceras Tavera and Pseudargentiniceras Spath. INTRODUCTION known Perisphinctoidea from the Upper Tithonian of this reference section. Additional data on the Himalayitidae in- The unique character of the ammonite fauna of Le Chouet cluding the description and discussion of Boughdiriella (near Les Près, Drôme, France) (Fig. 1) has already been chouetensis gen. nov. sp. nov. are to be published elsewhere outlined by Le Hégarat (1973), but, so far, only a handful of (Frau et al., 2014).
    [Show full text]
  • Cryptoclidid Plesiosaurs (Sauropterygia, Plesiosauria) from the Upper Jurassic of the Atacama Desert
    Journal of Vertebrate Paleontology ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/ujvp20 Cryptoclidid plesiosaurs (Sauropterygia, Plesiosauria) from the Upper Jurassic of the Atacama Desert Rodrigo A. Otero , Jhonatan Alarcón-Muñoz , Sergio Soto-Acuña , Jennyfer Rojas , Osvaldo Rojas & Héctor Ortíz To cite this article: Rodrigo A. Otero , Jhonatan Alarcón-Muñoz , Sergio Soto-Acuña , Jennyfer Rojas , Osvaldo Rojas & Héctor Ortíz (2020): Cryptoclidid plesiosaurs (Sauropterygia, Plesiosauria) from the Upper Jurassic of the Atacama Desert, Journal of Vertebrate Paleontology, DOI: 10.1080/02724634.2020.1764573 To link to this article: https://doi.org/10.1080/02724634.2020.1764573 View supplementary material Published online: 17 Jul 2020. Submit your article to this journal Article views: 153 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=ujvp20 Journal of Vertebrate Paleontology e1764573 (14 pages) © by the Society of Vertebrate Paleontology DOI: 10.1080/02724634.2020.1764573 ARTICLE CRYPTOCLIDID PLESIOSAURS (SAUROPTERYGIA, PLESIOSAURIA) FROM THE UPPER JURASSIC OF THE ATACAMA DESERT RODRIGO A. OTERO,*,1,2,3 JHONATAN ALARCÓN-MUÑOZ,1 SERGIO SOTO-ACUÑA,1 JENNYFER ROJAS,3 OSVALDO ROJAS,3 and HÉCTOR ORTÍZ4 1Red Paleontológica Universidad de Chile, Laboratorio de Ontogenia y Filogenia, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago, Chile, [email protected]; 2Consultora Paleosuchus Ltda., Huelén 165, Oficina C, Providencia, Santiago, Chile; 3Museo de Historia Natural y Cultural del Desierto de Atacama. Interior Parque El Loa s/n, Calama, Región de Antofagasta, Chile; 4Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Barrio Universitario, Concepción, Región del Bío Bío, Chile ABSTRACT—This study presents the first plesiosaurs recovered from the Jurassic of the Atacama Desert that are informative at the genus level.
    [Show full text]
  • A New Classification of the Xanthoidea Sensu Lato
    Contributions to Zoology, 75 (1/2) 23-73 (2006) A new classifi cation of the Xanthoidea sensu lato (Crustacea: Decapoda: Brachyura) based on phylogenetic analysis and traditional systematics and evaluation of all fossil Xanthoidea sensu lato Hiroaki Karasawa1, Carrie E. Schweitzer2 1Mizunami Fossil Museum, Yamanouchi, Akeyo, Mizunami, Gifu 509-6132, Japan, e-mail: GHA06103@nifty. com; 2Department of Geology, Kent State University Stark Campus, 6000 Frank Ave. NW, North Canton, Ohio 44720, USA, e-mail: [email protected] Key words: Crustacea, Decapoda, Brachyura, Xanthoidea, Portunidae, systematics, phylogeny Abstract Family Pilumnidae ............................................................. 47 Family Pseudorhombilidae ............................................... 49 A phylogenetic analysis was conducted including representatives Family Trapeziidae ............................................................. 49 from all recognized extant and extinct families of the Xanthoidea Family Xanthidae ............................................................... 50 sensu lato, resulting in one new family, Hypothalassiidae. Four Superfamily Xanthoidea incertae sedis ............................... 50 xanthoid families are elevated to superfamily status, resulting in Superfamily Eriphioidea ......................................................... 51 Carpilioidea, Pilumnoidoidea, Eriphioidea, Progeryonoidea, and Family Platyxanthidae ....................................................... 52 Goneplacoidea, and numerous subfamilies are elevated
    [Show full text]
  • Physical Properties of Martian Meteorites: Porosity and Density Measurements
    Meteoritics & Planetary Science 42, Nr 12, 2043–2054 (2007) Abstract available online at http://meteoritics.org Physical properties of Martian meteorites: Porosity and density measurements Ian M. COULSON1, 2*, Martin BEECH3, and Wenshuang NIE3 1Solid Earth Studies Laboratory (SESL), Department of Geology, University of Regina, Regina, Saskatchewan S4S 0A2, Canada 2Institut für Geowissenschaften, Universität Tübingen, 72074 Tübingen, Germany 3Campion College, University of Regina, Regina, Saskatchewan S4S 0A2, Canada *Corresponding author. E-mail: [email protected] (Received 11 September 2006; revision accepted 06 June 2007) Abstract–Martian meteorites are fragments of the Martian crust. These samples represent igneous rocks, much like basalt. As such, many laboratory techniques designed for the study of Earth materials have been applied to these meteorites. Despite numerous studies of Martian meteorites, little data exists on their basic structural characteristics, such as porosity or density, information that is important in interpreting their origin, shock modification, and cosmic ray exposure history. Analysis of these meteorites provides both insight into the various lithologies present as well as the impact history of the planet’s surface. We present new data relating to the physical characteristics of twelve Martian meteorites. Porosity was determined via a combination of scanning electron microscope (SEM) imagery/image analysis and helium pycnometry, coupled with a modified Archimedean method for bulk density measurements. Our results show a range in porosity and density values and that porosity tends to increase toward the edge of the sample. Preliminary interpretation of the data demonstrates good agreement between porosity measured at 100× and 300× magnification for the shergottite group, while others exhibit more variability.
    [Show full text]
  • Monophyly and Interrelationships of Snook and Barramundi (Centropomidae Sensu Greenwood) and five New Markers for fish Phylogenetics ⇑ Chenhong Li A, , Betancur-R
    Molecular Phylogenetics and Evolution 60 (2011) 463–471 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Monophyly and interrelationships of Snook and Barramundi (Centropomidae sensu Greenwood) and five new markers for fish phylogenetics ⇑ Chenhong Li a, , Betancur-R. Ricardo b, Wm. Leo Smith c, Guillermo Ortí b a School of Biological Sciences, University of Nebraska, Lincoln, NE 68588-0118, USA b Department of Biological Sciences, The George Washington University, Washington, DC 200052, USA c The Field Museum, Department of Zoology, Fishes, 1400 South Lake Shore Drive, Chicago, IL 60605, USA article info abstract Article history: Centropomidae as defined by Greenwood (1976) is composed of three genera: Centropomus, Lates, and Received 24 January 2011 Psammoperca. But composition and monophyly of this family have been challenged in subsequent Revised 3 May 2011 morphological studies. In some classifications, Ambassis, Siniperca and Glaucosoma were added to the Accepted 5 May 2011 Centropomidae. In other studies, Lates + Psammoperca were excluded, restricting the family to Available online 12 May 2011 Centropomus. Recent analyses of DNA sequences did not solve the controversy, mainly due to limited taxonomic or character sampling. The present study is based on DNA sequence data from thirteen Keywords: genes (one mitochondrial and twelve nuclear markers) for 57 taxa, representative of all relevant Centropomidae species. Five of the nuclear markers are new for fish phylogenetic studies. The monophyly of Centrop- Lates Psammoperca omidae sensu Greenwood was supported by both maximum likelihood and Bayesian analyses of a Ambassidae concatenated data set (12,888 bp aligned). No support was found for previous morphological hypothe- Niphon spinosus ses suggesting that ambassids are closely allied to the Centropomidae.
    [Show full text]
  • Place Names Describing Fossils in Oral Traditions
    Place names describing fossils in oral traditions ADRIENNE MAYOR Classics Department, Stanford University, Stanford CA 94305 (e-mail: [email protected]) Abstract: Folk explanations of notable geological features, including fossils, are found around the world. Observations of fossil exposures (bones, footprints, etc.) led to place names for rivers, mountains, valleys, mounds, caves, springs, tracks, and other geological and palaeonto- logical sites. Some names describe prehistoric remains and/or refer to traditional interpretations of fossils. This paper presents case studies of fossil-related place names in ancient and modern Europe and China, and Native American examples in Canada, the United States, and Mexico. Evidence for the earliest known fossil-related place names comes from ancient Greco-Roman and Chinese literature. The earliest documented fossil-related place name in the New World was preserved in a written text by the Spanish in the sixteenth century. In many instances, fossil geonames are purely descriptive; in others, however, the mythology about a specific fossil locality survives along with the name; in still other cases the geomythology is suggested by recorded traditions about similar palaeontological phenomena. The antiquity and continuity of some fossil-related place names shows that people had observed and speculated about miner- alized traces of extinct life forms long before modern scientific investigations. Traditional place names can reveal heretofore unknown geomyths as well as new geologically-important sites. Traditional folk names for geological features in the Named fossil sites in classical antiquity landscape commonly refer to mythological or and modern Greece legendary stories that accounted for them (Vitaliano 1973). Landmarks notable for conspicuous fossils Evidence for the practice of naming specific fossil have been named descriptively or mythologically locales can be found in classical antiquity.
    [Show full text]
  • How to Become a Crab: Phenotypic Constraints on a Recurring Body Plan
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 December 2020 doi:10.20944/preprints202012.0664.v1 How to become a crab: Phenotypic constraints on a recurring body plan Joanna M. Wolfe1*, Javier Luque1,2,3, Heather D. Bracken-Grissom4 1 Museum of Comparative Zoology and Department of Organismic & Evolutionary Biology, Harvard University, 26 Oxford St, Cambridge, MA 02138, USA 2 Smithsonian Tropical Research Institute, Balboa–Ancon, 0843–03092, Panama, Panama 3 Department of Earth and Planetary Sciences, Yale University, New Haven, CT 06520-8109, USA 4 Institute of Environment and Department of Biological Sciences, Florida International University, Biscayne Bay Campus, 3000 NE 151 Street, North Miami, FL 33181, USA * E-mail: [email protected] Summary: A fundamental question in biology is whether phenotypes can be predicted by ecological or genomic rules. For over 140 years, convergent evolution of the crab-like body plan (with a wide and flattened shape, and a bent abdomen) at least five times in decapod crustaceans has been known as ‘carcinization’. The repeated loss of this body plan has been identified as ‘decarcinization’. We offer phylogenetic strategies to include poorly known groups, and direct evidence from fossils, that will resolve the pattern of crab evolution and the degree of phenotypic variation within crabs. Proposed ecological advantages of the crab body are summarized into a hypothesis of phenotypic integration suggesting correlated evolution of the carapace shape and abdomen. Our premise provides fertile ground for future studies of the genomic and developmental basis, and the predictability, of the crab-like body form. Keywords: Crustacea, Anomura, Brachyura, Carcinization, Phylogeny, Convergent evolution, Morphological integration 1 © 2020 by the author(s).
    [Show full text]
  • The Barremian Heteromorph Ammonite Dissimilites from Northern Italy: Taxonomy and Evolutionary Implications
    The Barremian heteromorph ammonite Dissimilites from northern Italy: Taxonomy and evolutionary implications ALEXANDER LUKENEDER and SUSANNE LUKENEDER Lukeneder, A. and Lukeneder, S. 2014. The Barremian heteromorph ammonite Dissimilites from northern Italy: Taxon- omy and evolutionary implications. Acta Palaeontologica Polonica 59 (3): 663–680. A new acrioceratid ammonite, Dissimilites intermedius sp. nov., from the Barremian (Lower Cretaceous) of the Puez area (Dolomites, northern Italy) is described. Dissimilites intermedius sp. nov. is an intermediate form between D. dissimilis and D. trinodosum. The new species combines the ribbing style of D. dissimilis (bifurcating with intercalating single ribs) with the tuberculation style of D. trinodosum (trituberculation on entire shell). The shallow-helical spire, entirely comprising single ribs intercalated by trituberculated main ribs, is similar to the one of the assumed ancestor Acrioceras, whereas the increasing curvation of the younger forms resembles similar patterns observed in the descendant Toxoc- eratoides. These characters support the hypothesis of a direct evolutionary lineage from Acrioceras via Dissimilites to Toxoceratoides. D. intermedius sp. nov. ranges from the upper Lower Barremian (Moutoniceras moutonianum Zone) to the lower Upper Barremian (Toxancyloceras vandenheckii Zone). The new species allows to better understand the evolu- tion of the genus Dissimilites. The genus appears within the Nicklesia pulchella Zone represented by D. duboise, which most likely evolved into D. dissimilis. In the Kotetishvilia compressissima Zone, two morphological forms developed: smaller forms very similar to Acrioceras and forms with very long shaft and juvenile spire like in D. intermedius sp. nov. The latter most likely gave rise to D. subalternatus and D. trinodosum in the M.
    [Show full text]
  • Asteroid Regolith Weathering: a Large-Scale Observational Investigation
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2019 Asteroid Regolith Weathering: A Large-Scale Observational Investigation Eric Michael MacLennan University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Recommended Citation MacLennan, Eric Michael, "Asteroid Regolith Weathering: A Large-Scale Observational Investigation. " PhD diss., University of Tennessee, 2019. https://trace.tennessee.edu/utk_graddiss/5467 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Eric Michael MacLennan entitled "Asteroid Regolith Weathering: A Large-Scale Observational Investigation." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Geology. Joshua P. Emery, Major Professor We have read this dissertation and recommend its acceptance: Jeffrey E. Moersch, Harry Y. McSween Jr., Liem T. Tran Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Asteroid Regolith Weathering: A Large-Scale Observational Investigation A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Eric Michael MacLennan May 2019 © by Eric Michael MacLennan, 2019 All Rights Reserved.
    [Show full text]
  • Meteorites: Rocks from Space
    Learning more... Meteorites: rocks from space Meteorites: Rocks from space It has been estimated that 100,000 rocks from space tonnes of extraterrestrial material Every year the Earth is showered by reach the Earth’s surface every year. It extraterrestrial material falling from can be anything from fine dust to space. The Museum’s mineralogy and metallic masses weighing many tonnes. petrology collections include a small Extraterrestrial material that falls towards the holding of meteorites, and a display of Earth is classified by size. The majority of this some of this material is on show in the material is in the form of tiny particles called rocks and minerals aisle of the main micrometeorites. They fall continuously, and court, along with a large touchable arrive unnoticed. specimen that fell in Nantan in China. Meteors or ‘shooting stars’ are often seen in a clear night sky. They are larger dust particles and small rocky fragments, many no more than a gram in weight, which are burnt up by friction as they fall through the Earth’s atmosphere. Meteorites are larger pieces of rock that reach the Earth’s surface without getting burnt up in the atmosphere. A meteorite whose arrival has been witnessed is called a fall. Meteorites discovered without a known time of fall are The Nantan meteorite called finds. All meteorites, falls and finds, are This meteorite comes from either Lihu or Yaozhai town in named after the place where they were picked Nantan County, Guangxi, China, where it fell in 1516. It is an iron meteorite weighing over 155 pounds (71kg), and is up.
    [Show full text]