Proceedings of the 10Th International Conference on Ecological Informatics

Total Page:16

File Type:pdf, Size:1020Kb

Proceedings of the 10Th International Conference on Ecological Informatics Proceedings of the 10th International Conference on Ecological Informatics Translating Ecological Data into Knowledge and Decisions in a Rapidly Changing World. 24-28 September 2018, Jena, Germany Proceedings of the 10th International Conference on Ecological Informatics PROCEEDINGS TH 10 INTERNATIONAL CONFERENCE ON ECOLOGICAL INFORMATICS Translating Ecological Data into Knowledge and Decisions in a Rapidly Changing World 24-28 September 2018, Jena, Germany Edited by- Jitendra Gaikad1,2, Birgitta König-Ries1,2, and Friedrich Recknagel3 1 Friedrich Schiller University Jena, Germany; 2 German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Germany; 3 University of Adelaide, Australia Disclaimer The ideas and opinions expressed in this document are those of the authors and do not necessarily represents the views of the Friedrich Schiller University, iDiv, University of Adelaide and Journal of Ecological Informatics. The authors are fully responsible for the submitted material (abstracts) in this document and should be contacted directly for further information as preferred. The proceedings should be cited as: Gaikwad, J., König-Ries, B., & Recknagel, F. (Eds). Proceedings of the ‘10th International Conference on Ecological Informatics: translating ecological data into knowledge and decisions in a rapidly changing world’, Jena, Germany, 24-28 September, 2018. This document is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA. Page 1 of 299 th th 24 - 28 September 2018 https://icei2018.uni-jena.de Proceedings of the 10th International Conference on Ecological Informatics Preface It is with great pleasure to welcome you to the 10th International Conference on Ecological Informatics hosted by the Friedrich Schiller University, Jena, Germany. The Conference Proceedings are an impressive display of the current scope of Ecological Informatics as schematically represented in Figure. 1. Whilst Data Management, Analysis, Synthesis and Forecasting have been lasting popular themes over the past nine biannual ICEI conferences, ICEI 2018 addresses distinctively novel developments in Data Acquisition enabled by cutting edge in situ and remote sensing technology. The here presented ICEI 2018 program captures well current trends and challenges of Ecological Informatics towards: • regional, continental and global sharing of ecological data, • thorough integration of complementing monitoring technologies including DNA-barcoding, • sophisticated pattern recognition by deep learning, • advanced exploration of valuable information in ‘big data’ by means of machine learning and process modelling, • decision-informing solutions for biodiversity conservation and sustainable ecosystem management in light of global changes. Figure. 1: Scope of Ecological Informatics I herewith wish all delegates an inspiring week of science, communication and socialising. Adelaide, 5th September 2018 Friedrich Recknagel Scientific Program Chair ICEI 2018 University of Adelaide AUSTRALIA Page 2 of 299 th th 24 - 28 September 2018 https://icei2018.uni-jena.de Proceedings of the 10th International Conference on Ecological Informatics Table of Content Session R1.1 ................................................................................................................................................... 14 Ecological monitoring by camera, thermal and acoustic images..................................................................... 15 Keeping the Human in the Loop: Towards Automatic Visual Monitoring in Biodiversity Research ................ 16 Automating biological monitoring on the Northern Andes of South America: combining biology and machine learning for conservation ................................................................................................................................. 17 Understanding the Relationship between Soundscape and Landscape Features in a Tropical Andean Environment ..................................................................................................................................................... 18 The Diversity of Heath Flowering Phenology– Revealing Fine Scale Patterns of Heterogeneity by High Resolution Drone Cameras ............................................................................................................................. 19 Using automated species identification in passive acoustic recording to test the acoustic niche partition hypothesis in Neotropical frogs ....................................................................................................................... 21 Automated recognition of people and identification of animal species in camera trap images ....................... 22 A method for automatic creation of a vegetation map using high-resolution aerial photographs of unmanned aerial vehicles .................................................................................................................................................. 23 Complimenting long-term bird monitoring observations with acoustic sensors and camera traps: best of both worlds............................................................................................................................................................... 24 Optimisation of video monitoring of fish for reef assessment and management............................................. 25 Annotating Species Trait Images with Absolute Size Information Using Mobile Devices ............................... 26 Session R2.1 ................................................................................................................................................... 27 Understanding Species Distribution, population Dynamics and Phenology by Machine Learning ................. 28 Performance evaluation and hyperparameter tuning of statistical and machine-learning models using spatial data .................................................................................................................................................................. 29 Statistically reinforced machine learning for nonlinear interactions of factors and hierarchically nested spatial patterns ............................................................................................................................................................ 30 Reconstruction and Recognition of Spatial Patterns from Sparse Data in the Problem of Biological Invasion ......................................................................................................................................................................... 31 Modeling Green Peach Aphid populations exposed to elicitors inducing plant resistance on peach ............. 32 Testing the strengths of relationships between otter populations, fish and macroinvertebrate communities as well as habitat conditions across three Korean rivers by inferential modelling based on the hybrid evolutionary algorithm HEA ............................................................................................................................. 33 Community and Population Abundance Patterns in Benthic Macroinvertebrates in Streams Unravelled by Species Abundance Distribution and Machine Learning ................................................................................. 34 Page 3 of 299 th th 24 - 28 September 2018 https://icei2018.uni-jena.de Proceedings of the 10th International Conference on Ecological Informatics Modelling urban bird breeding sites with a random forest classifier using indicators of spatial heterogeneity in plant communities derived from earth observation data .................................................................................. 35 A machine learning approach to the assessment of the vulnerability of Posidonia oceanica meadows ........ 36 Supervised learning methods to predict species interactions based on traits and phylogeny ........................ 37 Overall and site-specific response of the macroinvertebrate community of Swan Coastal Plain Wetlands (West Australia) to water quality gradients revealed by GF and HEA ............................................................. 38 Causal relationships of Cylindrospermopsis dynamics with water temperature and N/P-ratios: a meta- analysis across lakes with different climate based on inferential modelling by HEA ...................................... 39 Remote Sensing based Estimation of Forest Biophysical Variables using Machine Learning Algorithm ....... 40 A mixed model approach to modelling global habitat suitability and invasion risk of the American bullfrog ... 41 Dynamics of Four Cyanobacteria in the Nakdong River, South Korea over 24 years (1993-2016) Patternized by an Artificial Neural Network ........................................................................................................................ 42 Integrating context-based recommendation with deep CNN image classification for on-site plant species identification ..................................................................................................................................................... 43 Session S1.1 .................................................................................................................................................... 44 Earth Observation for ecosystem analysis and decision making
Recommended publications
  • The Role of the Matrix-Edge Dynamics of Amphibian Conservation in Tropical Montane Fragmented Landscapes
    Revista Mexicana de Biodiversidad 82: 679-687, 2011 The role of the matrix-edge dynamics of amphibian conservation in tropical montane fragmented landscapes La dinámica del borde-matriz en bosques mesófilos de montaña fragmentados y su papel en la conservación de los anfibios Georgina Santos-Barrera1 and J. Nicolás Urbina-Cardona1,2* 1Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autônoma de México. 70-399, 04510 México D.F., México. 2 Departamento de Ecología y Territorio. Facultad de Estudios Ambientales y Rurales, Universidad Javeriana. Transv. 4, núm. 42-00. *Correspondent: [email protected] Abstract . Edge effects play a key role in forest dynamics in which the context of the anthropogenic matrix has a great influence on fragment connectivity and function. The study of the interaction between edge and matrix effects in nature is essential to understand and promote the colonization of some functional groups in managed ecosystems. We studied the dynamics of 7 species of frogs and salamanders occurring in 8 ecotones of tropical montane cloud forest (TMCF) which interact with adjacent managed areas of coffee and corn plantations in Guerrero, southern Mexico. A survey effort of 196 man/hours along 72 transects detected 58 individuals of 7 amphibian species and 12 environmental and structural variables were measured. The diversity and abundance of amphibians in the forest mostly depended on the matrix context adjacent to the forest patches. The forest interior provided higher relative humidity, leaf litter cover, and canopy cover that determined the presence of some amphibian species. The use of shaded coffee plantations was preferred by the amphibians over the corn plots possibly due to the maintenance of native forest arboreal elements, low management rate and less intensity of disturbance in the coffee plantations than in the corn plots.
    [Show full text]
  • 1 Program/Abstract # 1 Role of the Core Promoter in the Regulation Of
    1 Program/Abstract # 1 Role of the core promoter in the regulation of gene expression Kadonaga, Jim, UC San Diego, United States The RNA polymerase II core promoter comprises the stretch of DNA that directs the initiation of transcription. This basic definition might suggest that core promoters are simple transcriptional elements that function via common mechanism. Current evidence indicates, however, that there is extraordinary diversity in core promoter structure and activity. For instance, there are a variety of sequence-specific DNA elements in core promoters that include the TATA box, Inr, MTE, DPE, BRE, and TCT motifs. These elements do not act universally – the well-known TATA box is present in only about 15% of human promoters. Instead, specific core promoter elements confer distinct transcriptional activities to core promoters. For example, nearly all of the Drosophila Hox genes have DPE-dependent core promoters, and the Caudal protein, a master regulator of the Hox genes, is an enhancer-binding protein that activates transcription specifically through the DPE motif. Hence, the Hox genes are a DPE-based transcriptional network, and Caudal is a DPE-specific activator. In addition, another core promoter element, the TCT motif, is dedicated to the expression of the network of ribosomal protein genes. These and other findings collectively indicate that the core promoter is a diverse transcriptional regulatory element that is employed for the regulation not only of individual genes, but also of gene networks. Moreover, at a more practical level, optimized versions of the core promoter can be used to achieve the desired specificity and level of expression of transgenes.
    [Show full text]
  • Herpetological Review: Geographic Distribution
    296 GEOGRAPHIC DISTRIBUTION GEOGRAPHIC DISTRIBUTION C AUDATA — SALAMANDERS (2010. Lista Anotada de los Anfibios y Reptiles del Estado de Hi- dalgo, México. Univ. Autó. Estado de Hidalgo, CONABIO, Lito Im- AMBYSTOMA BARBOURI (Streamside Salamander). USA: OHIO: presos Bernal, S. A., Pachuca, Hidalgo, México. x + 104 pp.). The LAWRENCE CO.: Hamilton Township (38.57403°N 82.77565°W, salamander was found in pine-oak forest. WGS84). 21 February 2011. Jeffrey V. Ginger. Verified by Her- M . GUADALUPE LÓPEZ-GARDUÑO (e-mail: guadalupe.bio@hot- man Mays (based on DNA analysis). Cincinnati Museum Center mail.com) and FELIPE RODRÍGUEZ-ROMERO (e-mail: [email protected]), (CMC 12206). New county record (Pfingsten and Matson 2003. Facultad de Ciencias, Universidad Autónoma del Estado de México, Cam- Ohio Salamander Atlas. Ohio Biological Survey Misc. Contribu- pus El Cerrillo, Piedras Blancas, Carretera Toluca – Ixtlahuaca Km. 15.5, To- tion No. 9, Columbus). luca, Edo. de México C.P. 52000. The breeding site was a flooded ditch used as a breeding pool on Back Road. Collected from a ditch that was being used as a EURYCEA CHAMBERLAINI (Chamberlain’s Dwarf Salaman- breeding pool instead of a first or second order stream, the typi- der). USA: ALABAMA: COVINGTON CO.: Conecuh National Forest; cal habitat for the species (Petranka 1998. Salamanders of the Mossy Pond (31.13922°N 86.60119°W; WGS 84). 05 June 2011. C. United States and Canada. Smithsonian Institution Press, Wash- Thawley and S. Graham. Verified by Craig Guyer. AUM 39521. ington, DC. 587 pp.). New county record (Mount 1975. The Reptiles and Amphibians J EFFREY V.
    [Show full text]
  • Redalyc.The Role of the Matrix-Edge Dynamics of Amphibian
    Revista Mexicana de Biodiversidad ISSN: 1870-3453 [email protected] Universidad Nacional Autónoma de México México Santos-Barrera, Georgina; Urbina-Cardona, J. Nicolás The role of the matrix-edge dynamics of amphibian conservation in tropical montane fragmented landscapes Revista Mexicana de Biodiversidad, vol. 82, núm. 2, junio, 2011, pp. 679-687 Universidad Nacional Autónoma de México Distrito Federal, México Available in: http://www.redalyc.org/articulo.oa?id=42521043025 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Revista Mexicana de Biodiversidad 82: 679-687, 2011 The role of the matrix-edge dynamics of amphibian conservation in tropical montane fragmented landscapes La dinámica del borde-matriz en bosques mesófilos de montaña fragmentados y su papel en la conservación de los anfibios Georgina Santos-Barrera1 and J. Nicolás Urbina-Cardona1,2* 1Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autônoma de México. 70-399, 04510 México D.F., México. 2 Departamento de Ecología y Territorio. Facultad de Estudios Ambientales y Rurales, Universidad Javeriana. Transv. 4, núm. 42-00. *Correspondent: [email protected] Abstract . Edge effects play a key role in forest dynamics in which the context of the anthropogenic matrix has a great influence on fragment connectivity and function. The study of the interaction between edge and matrix effects in nature is essential to understand and promote the colonization of some functional groups in managed ecosystems. We studied the dynamics of 7 species of frogs and salamanders occurring in 8 ecotones of tropical montane cloud forest (TMCF) which interact with adjacent managed areas of coffee and corn plantations in Guerrero, southern Mexico.
    [Show full text]
  • Geographic Variation in Incilius Occidentalis (Anura: Bufonidae), an Endemic Toad from Mexico, with a Redescription of the Speci
    Revista Mexicana de Biodiversidad 85: 414-428, 2014 414 Santos-Barrera.- Geographic variation and redescriptionDOI: of Incilius 10.7550/rmb.42015 occidentalis Geographic variation in Incilius occidentalis (Anura: Bufonidae), an endemic toad from Mexico, with a redescription of the species and delimitation of the type locality Variación geográfica en Incilius occidentalis (Anura: Bufonidae), un sapo endémico de México, con una redescripción de la especie y delimitación de la localidad tipo Georgina Santos-Barrera Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México. Circuito Exterior s/n, Ciudad Universitaria, 04510 México, D. F., Mexico. [email protected] Abstract. A taxonomic revision of the populations referable to the wide ranging species Incilius occidentalis was conducted based on 10 morphometric variables and other external morphological traits. Thirty three populations were geographically defined from more than 220 locality records of the species. A brief summary of the nomenclatural history of this species is presented and the external morphological variation is analyzed. Incilius occidentalis is here redescribed on the basis of comparisons with the 3 specimens housed at the Old Collection of the Torino Museum, and over 850 specimens held at several herpetological collections. Statistical analysis using principal components analysis (PCA) demonstrated that SVL concentrates the main part of the variance observed in these populations. No distinguishable populations were detected on the basis of morphometric differences using the Tukey HSD analysis. Body proportions are fairly similar between the 33 populations defined, suggesting the idea that the typical body shape of the bufonid genera is also perceived in this species. The species I.
    [Show full text]
  • THE CURRENT STATUS of the PHILIPPINE RUBIACEAE Review
    Philippine Journal of Systematic Biology Vol. I, No. 1 (June 2007) Review THE CURRENT STATUS OF THE PHILIPPINE RUBIACEAE Grecebio Jonathan D. Alejandro Research Center for the Natural Sciences and College of Science, University of Santo Tomas, España 1008 Manila, Philippines. [email protected] In its several issues on biodiversity, National Geographic (2002) has fea- tured the plethora of life in the Philippine rainforests, much like the richness of the Amazon jungles. In the article by Vesilind (2002: 62), the Philippines is iden- tified as one of the world’s 25 biodiversity hotspots where “a cauldron of fauna and flora boils…” and one of the listed eight “hottest hotspots” in terms of num- bers of endemics, endemic species/area ratios and habitat loss (Myers et al., 2000). With very thick canopies in the jungles often soaked in monsoon waters year in and out, the more than 7,100 islands of the Philippines have been a friendly habi- tat to thousands of classified and yet to be discovered plant species. With the introduction of new species posing as predators to the indigenous species, with the unabated deforestation and animal hunting, the Philippines is fast becoming a microcosm of the world at the throes of the quarternary, sixth mass extinction it has yet to witness (Morell, 1999: 43). With the depressing threats of extinction at hand, scientists all over the world are racing against time in order to catalogue the species before they become prey to extinction, and devise ways to avert their loss and reproduce their kind. In the Philippines, it is even depressing to find out that many treatments on plant spe- cies warrant revision and updating, and an accurately published catalogue on the Flora of the Philippines has yet to materialize (Madulid, pers.
    [Show full text]
  • FINAL REPORT Project: Status and Population Trends of Amphibians in Relation to Microenvironment at a Montane Forest, Southern Mexico
    FINAL REPORT Project: Status and population trends of amphibians in relation to microenvironment at a montane forest, southern Mexico Georgina Santos Barrera and José Nicolás Urbina-Cardona Museo de Zoología, Facultad de Ciencias, UNAM A. P. 70-399, C. P. 04510 México, D. F. We present here the results of our Project which consisted in an intense field, laboratory and local community work. The present report is separated in two parts, the Part I contains the results of the social and environmental education activities while the second part includes the results of our scientific ecological research in the way of a scientific paper that we will submit soon to a specialized journal after reviewing by the CLP pertinent staff. Study site, background and justification: Our field work was conducted at the town El Molote, Municipality of Atoyac de Alvarez, Guerrero, Mexico (Figure 1). The project was initially conceived to study the dynamics of the amphibian communities in a fragmented cloud forest and to know the local interest of the people about the very interesting fauna of amphibians in the region. In this area we conducted four field seasons (8 to 10 days in duration) sampling eight selected sites throughout a large area of Tropical Mountain Cloud Forest (TMCF). We established a close relationship with the local people; we taught children everyday about diversity and natural history of amphibians and reptiles and coordinated scientific activities with them. A previous visit to the town and vicinities were made during April 2007 in order to select the study sites and to establish the pertinent contacts with the people.
    [Show full text]
  • Glycosides in the Rubiaceae*
    The occurrence of asperulosidic glycosides in the Rubiaceae* P. Kooiman Laboratorium voor Algemene en Technische Biologie Technische Hogeschool, Delft. SUMMARY Some properties of the new iridoid compounds Galium glucoside and Gardenia glucoside are described. Galium glucoside and asperuloside occurin many species belongingto the Rubioideae (sensu Bremekamp); they were not found in other subfamilies of the Rubiaceae. Gardenia glucoside occurs in several species ofthe tribe Gardenieae (subfamily Ixoroideae). The distribution of the asperulosidic glucosides in the Rubiaceae corresponds with the classi- fication proposed by Bremekamp, although there are some exceptions (Hamelieae, Opercu- laria and Pomax, possibly the Gaertnereae). To a somewhat less degreethe system proposedby Verdcourt is supported. 1. INTRODUCTION Apart from the classification arrived at by Bremekamp (1966) the only other modern system of the Rubiaceae was proposed by Verdcourt (1958); both au- thors considered their classifications tentative. The have several fea- as systems tures in common, but deviate in some points. The main differences are in the po- sition ofthe Urophylloideae sensu Bremekamp, which are included in the subfa- mily Rubioideaeby Verdcourt, and in the relationship between the Cinchonoideae the Ixoroideae and (both sensu Bremekamp) which are united in the subfamily Cinchonoideae by Verdcourt. Both systems diverge widely and principally from all older classifications which appeared to become more and more unsatis- factory as the number of described species increased. In 1954 Briggs & Nicholes reported on the presence or absence of the iridoid glucoside asperuloside (1) in most species of Coprosma and in many other Rubiaceae. The reaction they used for the detection of asperuloside is now known to be not specific for this glucoside; it detects in addition some struc- turally and most probably biogenetically related glycosides.
    [Show full text]
  • Non-Timber Forest Produces and Their Conservation in Buxa Tiger Reserve, West Bengal, India
    NON-TIMBER FOREST PRODUCES AND THEIR CONSERVATION IN BUXA TIGER RESERVE, WEST BENGAL, INDIA THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN SCIENCE (BOTANY) UNDER THE UNIVERSITY OF NORTH BENGAL 2014 BY ANfM6St-t SAR..KAR UNDER THE SUPERVISION OF Prof. A. P. DAS TAXONOMY AND ENVIRONMENTAL BIOLOGY LABORATORY DEPARTMENT OF BOTANY UNIVERSITY OF NORTH BENGAL DARJEELING, WEST BENGAL, INDIA -1k 6 ~y I 9 ~ 0 ~' 5 2.. s 2l1 ~ ~ 272109 3 tAUbl015 Thts. s.VVtaLL -pLece of wor-~ ~s. oteot~cfilteot to VVttj teacVter-s. a 11\,ot VVttj fa VVt~Ltj DECLARATION I declare that the thesis entitled 'Non-Timber Forest Produces and Their Conservation in Buxa Tiger Reserve, West Bengal, India' has been prepared by me under the guidance of A. P. Das, Professor Botany, University of North Bengal. No part of this thesis has formed the basis for the award any degree of fellowship previously. [ANIMESH SARKAR] Taxonomy and Environmental Biology Laboratory Department of Botany University ofNorth Bengal Raja Ramrnoh~~arjeeling-734013 Date: ~-'it.t--05 ·-2014 Taxonomy & Environmental Biology Laboratory A . P . [)AS MSc, DIIT, PhD, FLS, FIAT Department of Botany FNScT, FEHT, FES, ISCON Professor North Bengal University Darjeeling 734 430 WB India Member: SSC-IUCN Phone: 091-353-2581847 (R), 2776337 (0) Chief Editor: PLEIONE Mobile: 091-9434061591; FAX: 091-353-2699001 Former President: IAAT e-mail: [email protected] April 15, 2014 TO WHOM IT MAY CONCERN This is my privilege to endorse that Mr. Animesh Sarkar, M.Sc. in Botany has carried out a piece of research work under my supervision.
    [Show full text]
  • Plant Biodiversity Science, Discovery, and Conservation: Case Studies from Australasia and the Pacific
    Plant Biodiversity Science, Discovery, and Conservation: Case Studies from Australasia and the Pacific Craig Costion School of Earth and Environmental Sciences Department of Ecology and Evolutionary Biology University of Adelaide Adelaide, SA 5005 Thesis by publication submitted for the degree of Doctor of Philosophy in Ecology and Evolutionary Biology July 2011 ABSTRACT This thesis advances plant biodiversity knowledge in three separate bioregions, Micronesia, the Queensland Wet Tropics, and South Australia. A systematic treatment of the endemic flora of Micronesia is presented for the first time thus advancing alpha taxonomy for the Micronesia-Polynesia biodiversity hotspot region. The recognized species boundaries are used in combination with all known botanical collections as a basis for assessing the degree of threat for the endemic plants of the Palau archipelago located at the western most edge of Micronesia’s Caroline Islands. A preliminary assessment is conducted utilizing the IUCN red list Criteria followed by a new proposed alternative methodology that enables a degree of threat to be established utilizing existing data. Historical records and archaeological evidence are reviewed to establish the minimum extent of deforestation on the islands of Palau since the arrival of humans. This enabled a quantification of population declines of the majority of plants endemic to the archipelago. In the state of South Australia, the importance of establishing concepts of endemism is emphasized even further. A thorough scientific assessment is presented on the state’s proposed biological corridor reserve network. The report highlights the exclusion from the reserve system of one of the state’s most important hotspots of plant endemism that is highly threatened from habitat fragmentation and promotes the use of biodiversity indices to guide conservation priorities in setting up reserve networks.
    [Show full text]
  • Andaman & Nicobar Islands, India
    RESEARCH Vol. 21, Issue 68, 2020 RESEARCH ARTICLE ISSN 2319–5746 EISSN 2319–5754 Species Floristic Diversity and Analysis of South Andaman Islands (South Andaman District), Andaman & Nicobar Islands, India Mudavath Chennakesavulu Naik1, Lal Ji Singh1, Ganeshaiah KN2 1Botanical Survey of India, Andaman & Nicobar Regional Centre, Port Blair-744102, Andaman & Nicobar Islands, India 2Dept of Forestry and Environmental Sciences, School of Ecology and Conservation, G.K.V.K, UASB, Bangalore-560065, India Corresponding author: Botanical Survey of India, Andaman & Nicobar Regional Centre, Port Blair-744102, Andaman & Nicobar Islands, India Email: [email protected] Article History Received: 01 October 2020 Accepted: 17 November 2020 Published: November 2020 Citation Mudavath Chennakesavulu Naik, Lal Ji Singh, Ganeshaiah KN. Floristic Diversity and Analysis of South Andaman Islands (South Andaman District), Andaman & Nicobar Islands, India. Species, 2020, 21(68), 343-409 Publication License This work is licensed under a Creative Commons Attribution 4.0 International License. General Note Article is recommended to print as color digital version in recycled paper. ABSTRACT After 7 years of intensive explorations during 2013-2020 in South Andaman Islands, we recorded a total of 1376 wild and naturalized vascular plant taxa representing 1364 species belonging to 701 genera and 153 families, of which 95% of the taxa are based on primary collections. Of the 319 endemic species of Andaman and Nicobar Islands, 111 species are located in South Andaman Islands and 35 of them strict endemics to this region. 343 Page Key words: Vascular Plant Diversity, Floristic Analysis, Endemcity. © 2020 Discovery Publication. All Rights Reserved. www.discoveryjournals.org OPEN ACCESS RESEARCH ARTICLE 1.
    [Show full text]
  • Other Contributions
    Other Contributions NATURE NOTES Amphibia: Anura Incilius occidentalis (Camerano, 1870). Maximum elevation. The Pine Toad, Incilus occidentalis (Bufonidae), is endemic to Mexico and is known from numerous localities in the states of Aguascalientes, Colima, Durango, Estado de México, Guanajuato, Guerrero, Hidalgo, Jalisco, Michoacán, Morelos, Nayarit, Oaxaca, Puebla, Querétaro, San Luis Potosí, Sinaloa, Tlaxcala, Veracruz, and Zacatecas, and occurs in a wide variety of habitats, including oak and pine-oak forests, scrublands, arid and semi-arid areas, and cloud forest, at elevations from 150 to 2,670 m (Vázquez- Díaz and Quintero-Díaz, 1997; 2005; Lemos-Espinal and Dixon, 2013, 2016; Ramírez-Bautista et al., 2014; Santos- Barrera, 2014). In the state of Aguascalientes, specimens have been reported at elevations from 1,560 m to 2,370 m (McCranie and Wilson, 2001). On 14 July 2017 at 1602 h, during a rainy day, two of us (GEQD, CCF) found a female I. occidentalis (total length = 74 mm; body mass = 121.5 g) under a rock in oak-pine forest at an elevation of 2,770 m in the Sierra Fría, Municipio de San José de Gracia, Aguascalientes (22.229874°N, -102.634953°W; WGS 84; Fig. 1). The toad was collected and photographed, and then released. A photo voucher of this individual is deposited in the University of Texas at Arlington Collection of Vertebrates Digital Collection (UTADC-8934). This voucher represents the highest known elevation for this species in the state of Aguascalientes, as well as for its entire range. Our record increases the known elevation of I. occidentalis by 100 m (Lemos-Espinal and Dixon, 2013; 2016), and confirms the presence of this species in pine-oak forest in the state of Aguascalientes.
    [Show full text]