Freiberg Online Geology FOG Is an Electronic Journal Registered Under ISSN 1434-7512

Total Page:16

File Type:pdf, Size:1020Kb

Freiberg Online Geology FOG Is an Electronic Journal Registered Under ISSN 1434-7512 FOG Freiberg Online Geology FOG is an electronic journal registered under ISSN 1434-7512 2010, VOL 26 Nadja Schmidt Hydrogeological and hydrochemical inves- tigations at the Salar de Uyuni (Bolivia) with regard to the extraction of lithium 131 pages, 58 figures, 30 tables, 62 references II Acknowledgements First of all, my thanks go to Prof. Broder Merkel, my first supervisor, for providing the amazing topic and thus giving me the opportunity to work abroad, and for his support especially during the fieldwork and back in Germany. Further I want to sincerely thank Dipl.Geoökol. Robert Sieland for his engagement, his consequent advice and encouragement during the stay in Bolivia and the completion of the thesis in Freiberg. My special thanks go to Dr. Jaime Claros from the UATF in Potosí, who organized my stay and the field trips in Bolivia. The kind hospitality of him and his family and his sup- port in any form made my stay an impressive experience. My acknowledgements go to Juan Carlos Erquisia and Dr. Pedro Lopez from the UATF for introducing me into the investigation area, for their assistance in the field and for providing far more than scientific advice. I honestly enjoyed the interdisciplinary work in an international team as a valuable ex- perience. Therefore, I owe thanks to all members of the field trips, German and Boliv- ian students as well as Alberto, Gari and Fidel, for their engagement in the physically demanding work under challenging conditions. Further I generally want to thank the university of Potosí in Bolivia, and especially the rector Juan J. R. Bohorquez for permanent support, be it in material, personal or finan- cial form. My thanks go to the Bundesanstalt für Geowissenschaften und Rohstoffe in Hannover, especially to Mr. Schramm und Mr. Hammer, for the financial support of the field trip and for performing important parts of the analytical work. For laboratory assistance with the water analyses in Freiberg, I want to thank H.J. Pe- ter and Dr. S. Kummer, as well as J. Hubálkova for the advice with the CT analyses. I also want to thank the German Academic Exchange Survey (DAAD) for providing the financial base that actually made this stay abroad possible. Great thanks go to the team of chemistry students in Potosí for introducing me into the Bolivian culture, the way of life and the language. Of course, my sincere thanks go to my friends and my family, especially my parents, for their patience and mental support as well as for their willing to listen in good and in bad times. III Table of Contents 1 Introduction ................................................................................................... 1 1.1 Motivation ................................................................................................. 1 1.2 Universitary cooperation project “Salar de Uyuni” ..................................... 4 1.3 Objectives of the work............................................................................... 5 2 Description of the study area ...................................................................... 6 2.1 Geographic and geologic background ...................................................... 6 2.2 Contemporary hydrologic setting of the Altiplano ...................................... 8 2.3 Climatic conditions .................................................................................. 10 2.4 Sedimentology and Paleolakes ............................................................... 12 2.5 Brine chemistry and origin of solutes ...................................................... 14 3 Methods ....................................................................................................... 16 3.1 Drilling procedure .................................................................................... 16 3.1.1 First attempt .................................................................................. 16 3.1.2 Second attempt............................................................................. 17 3.1.3 Distribution of boreholes and drilling patterns ............................... 19 3.1.4 Sampling of salt cores .................................................................. 22 3.2 Well casing ............................................................................................. 23 3.3 Field analyses and brine sampling .......................................................... 24 3.4 Laboratory analyses ............................................................................... 27 3.4.1 Analyses of the core samples ....................................................... 27 3.4.1.1 Geochemical and mineralogical composition ................. 27 3.4.1.2 Computer tomography .................................................... 27 3.4.2 Analyses of the brine samples ...................................................... 29 3.4.2.1 Ion chromatography ........................................................ 29 3.4.2.2 Total inorganic and dissolved organic carbon ................ 29 3.4.2.3 Mass spectrometry with inductively coupled plasma ...... 30 3.4.2.4 Determination of viscosity and density ........................... 31 3.4.3 Methods of evaluation ................................................................... 32 3.4.3.1 Check for plausibility ....................................................... 32 3.4.3.2 Statistical data treatment ................................................ 32 3.5 Pumping Tests ........................................................................................ 34 4 Results and Evaluation .............................................................................. 35 4.1 Core samples .......................................................................................... 35 4.1.1 Stratigraphy .................................................................................. 35 4.1.1.1 Drilling location SLT-01 .................................................. 36 4.1.1.2 Drilling location SLT-03 .................................................. 39 4.1.2 Rock quality and core loss ............................................................ 41 4.1.3 Chemical and mineralogical composition ...................................... 44 4.1.4 Porosity ......................................................................................... 49 4.2 Hydraulic conductivity ............................................................................. 53 4.3 Brine samples ......................................................................................... 60 4.3.1 On-Site parameters ...................................................................... 60 4.3.2 Photometry ................................................................................... 62 4.3.3 Total dissolved solids .................................................................... 63 4.3.4 Main anions and cations ............................................................... 64 4.3.5 Minor and trace elements ............................................................. 70 4.3.6 Evaluation of errors and check for plausibility ............................... 71 4.3.7 Statistical evaluation ..................................................................... 74 4.3.8 Modelling with PhreeqC ................................................................ 76 4.3.8.1 Ionic strength .................................................................. 76 4.3.8.2 Saturation index ............................................................. 77 4.3.9 Physical parameters ..................................................................... 80 4.3.9.1 Viscosity ......................................................................... 80 4.3.9.2 Density ........................................................................... 82 5 Discussion and conclusions ..................................................................... 84 5.1 Review of salt deposits ........................................................................... 85 5.2 Factors concerning brine evaporation ..................................................... 87 5.3 Chemical aspects of lithium recovery...................................................... 91 5.4 Environmental considerations ................................................................. 92 6 Perspectives and recommendations ........................................................ 93 7 Literature ..................................................................................................... 95 Appendix ........................................................................................................102 V List of Figures Fig. 1: Application of lithium in different industries (modified after Roskill 2009, in Angerer et al. 2009) ................................................................................... 2 Fig. 2: Schematic map of the Altiplano with main drainage basins (after Risacher & Fritz 2000) ................................................................................... 6 Fig. 3: Satellite image of the Salar de Uyuni with laterally adjacent mountain ranges and volcano summits, captured by the MODUS sensor of the satellite Terra (source: NASA) ....................................................................... 7 Fig. 4: N-S cross section of the northern and central basins of the Altiplano with recent and past lake levels (from Risacher & Fritz 2000) ............................... 8 Fig. 5: Climate diagrams for 3 locations in the Altiplano from north to south (data from www.worldclimate.com)
Recommended publications
  • Climate Variability of the Tropical Andes Since the Late Pleistocene
    Adv. Geosci., 22, 13–25, 2009 www.adv-geosci.net/22/13/2009/ Advances in © Author(s) 2009. This work is distributed under Geosciences the Creative Commons Attribution 3.0 License. Climate variability of the tropical Andes since the late Pleistocene A. Brauning¨ Institute for Geography, University of Erlangen-Nuremberg, Germany Received: 10 May 2009 – Revised: 12 June 2009 – Accepted: 17 June 2009 – Published: 13 October 2009 Abstract. Available proxy records witnessing palaeoclimate nual variations of summer rainfall on the Altiplano, which of the tropical Andes are comparably scarce. Major impli- is generally controlled by upper tropospheric easterlies and cations of palaeoclimate development in the humid and arid by the frequency and intensity of the El Nino-Southern˜ Os- parts of the Andes are briefly summarized. The long-term cillation (ENSO) phenomenon (Garreaud et al., 2003, 2008; behaviour of ENSO has general significance for the climatic Zech et al., 2008). The latter is modulated by the thermal history of the Andes due to its impact on regional circula- gradient of sea surface temperatures (SST) between the east- tion patterns and precipitation regimes, therefore ENSO his- ern and western tropical Pacific and by the strength and po- tory derived from non-Andean palaeo-records is highlighted. sition of the trade winds originating from the South Pacific Methodological constraints of the chronological precision Subtropical High (SPSH). If the SPSH shifts further equator and the palaeoclimatic interpretation of records derived from wards or loses strength, the polar front in the southeastern different natural archives, such as glacier sediments and ice Pacific might shift further north, leading to winter precipita- cores, lake sediments and palaeo-wetlands, pollen profiles tion in the southern part of the tropical Andes (van Geel et and tree rings are addressed and complementary results con- al., 2000).
    [Show full text]
  • Tropical Climate Changes at Millennial and Orbital Timescales on the Bolivian Altiplano
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Earth and Atmospheric Sciences, Department Papers in the Earth and Atmospheric Sciences of 2-8-2001 Tropical Climate Changes at Millennial and Orbital Timescales on the Bolivian Altiplano Paul A. Baker Duke University, [email protected] Catherine A. Rigsby East Carolina University Geoffrey O. Seltzer Syracuse University Sherilyn C. Fritz University of Nebraska-Lincoln, [email protected] Tim K. Lowenstein SUNY Binghamton See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/geosciencefacpub Part of the Earth Sciences Commons Baker, Paul A.; Rigsby, Catherine A.; Seltzer, Geoffrey O.; Fritz, Sherilyn C.; Lowenstein, Tim K.; Bacher, Niklas P.; and Veliz, Carlos, "Tropical Climate Changes at Millennial and Orbital Timescales on the Bolivian Altiplano" (2001). Papers in the Earth and Atmospheric Sciences. 47. https://digitalcommons.unl.edu/geosciencefacpub/47 This Article is brought to you for free and open access by the Earth and Atmospheric Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in the Earth and Atmospheric Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Paul A. Baker, Catherine A. Rigsby, Geoffrey O. Seltzer, Sherilyn C. Fritz, Tim K. Lowenstein, Niklas P. Bacher, and Carlos Veliz This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ geosciencefacpub/47 Published in Nature 409 (February 8, 2001), pp. 698-701; doi In the summer of 1999 we drilled and continuously cored 10.1038/35055524 Copyright © 2001 Macmillan Magazines Ltd. the Salar de Uyuni to a depth of 220.6 m below the surface.
    [Show full text]
  • Vegetation and Climate Change on the Bolivian Altiplano Between 108,000 and 18,000 Years Ago
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DigitalCommons@University of Nebraska University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Earth and Atmospheric Sciences, Department Papers in the Earth and Atmospheric Sciences of 1-1-2005 Vegetation and climate change on the Bolivian Altiplano between 108,000 and 18,000 years ago Alex Chepstow-Lusty Florida Institute of Technology, [email protected] Mark B. Bush Florida Institute of Technology Michael R. Frogley Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL Paul A. Baker Duke University, [email protected] Sherilyn C. Fritz University of Nebraska-Lincoln, [email protected] See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/geosciencefacpub Part of the Earth Sciences Commons Chepstow-Lusty, Alex; Bush, Mark B.; Frogley, Michael R.; Baker, Paul A.; Fritz, Sherilyn C.; and Aronson, James, "Vegetation and climate change on the Bolivian Altiplano between 108,000 and 18,000 years ago" (2005). Papers in the Earth and Atmospheric Sciences. 30. https://digitalcommons.unl.edu/geosciencefacpub/30 This Article is brought to you for free and open access by the Earth and Atmospheric Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in the Earth and Atmospheric Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Alex Chepstow-Lusty, Mark B. Bush, Michael R. Frogley, Paul A. Baker, Sherilyn C. Fritz, and James Aronson This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ geosciencefacpub/30 Published in Quaternary Research 63:1 (January 2005), pp.
    [Show full text]
  • Vegetation and Climate Change on the Bolivian Altiplano Between 108,000 and 18,000 Years Ago
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Earth and Atmospheric Sciences, Department Papers in the Earth and Atmospheric Sciences of 1-1-2005 Vegetation and climate change on the Bolivian Altiplano between 108,000 and 18,000 years ago Alex Chepstow-Lusty Florida Institute of Technology, [email protected] Mark B. Bush Florida Institute of Technology Michael R. Frogley Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL Paul A. Baker Duke University, [email protected] Sherilyn C. Fritz University of Nebraska-Lincoln, [email protected] See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/geosciencefacpub Part of the Earth Sciences Commons Chepstow-Lusty, Alex; Bush, Mark B.; Frogley, Michael R.; Baker, Paul A.; Fritz, Sherilyn C.; and Aronson, James, "Vegetation and climate change on the Bolivian Altiplano between 108,000 and 18,000 years ago" (2005). Papers in the Earth and Atmospheric Sciences. 30. https://digitalcommons.unl.edu/geosciencefacpub/30 This Article is brought to you for free and open access by the Earth and Atmospheric Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in the Earth and Atmospheric Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Alex Chepstow-Lusty, Mark B. Bush, Michael R. Frogley, Paul A. Baker, Sherilyn C. Fritz, and James Aronson This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ geosciencefacpub/30 Published in Quaternary Research 63:1 (January 2005), pp. 90-98; doi:10.1016/j.yqres.2004.09.008 Copyright © 2004 University of Washington; published by Elsevier Inc.
    [Show full text]
  • Lake Tauca Highstand (Heinrich Stadial 1A) Driven by a Southward Shift of the Bolivian High
    SCIENCE ADVANCES | RESEARCH ARTICLE CLIMATOLOGY Copyright © 2018 The Authors, some Lake Tauca highstand (Heinrich Stadial 1a) driven by a rights reserved; exclusive licensee southward shift of the Bolivian High American Association for the Advancement 1,2 1,3 1 4 1 of Science. No claim to Léo C. P. Martin *, Pierre-Henri Blard *, Jérôme Lavé , Thomas Condom , Mélody Prémaillon , original U.S. Government 5 5 6 1 1 Vincent Jomelli , Daniel Brunstein , Maarten Lupker , Julien Charreau , Véronique Mariotti , Works. Distributed 1 † 1 Bouchaïb Tibari , ASTER Team , Emmanuel Davy under a Creative Commons Attribution Heinrich events are characterized by worldwide climate modifications. Over the Altiplano endorheic basin (high trop- NonCommercial ical Andes), the second half of Heinrich Stadial 1 (HS1a) was coeval with the highstand of the giant paleolake Tauca. License 4.0 (CC BY-NC). However, the atmospheric mechanisms underlying this wet event are still unknown at the regional to global scale. We use cosmic-ray exposure ages of glacial landforms to reconstruct the spatial variability in the equilibrium line altitude of the HS1a Altiplano glaciers. By combining glacier and lake modeling, we reconstruct a precipitation map for the HS1a period. Our results show that paleoprecipitation mainly increased along the Eastern Cordillera, whereas the southwestern region of the basin remained relatively dry. This pattern indicates a southward expansion of the east- erlies, which is interpreted as being a consequence of a southward shift of the Bolivian High. The results provide a new understanding of atmospheric teleconnections during HS1 and of rainfall redistribution in a changing climate. INTRODUCTION tropical Brazil changed in pace with the Heinrich stadials (5, 13–15)and A major uncertainty in our understanding of 21st century climate numerous sites record wetter conditions during these episodes [see concerns the global redistribution of rainfall and modification of mon- compilations (15, 16)].
    [Show full text]
  • Salar De Uyuni 20 Frequently Asked Questions
    B2B TRAINING KIT COURSE 3 SALAR DE UYUNI 20 FREQUENTLY ASKED QUESTIONS BBoolilviviaie: nT:h De iLea grrgöeßste S Saaltl zFplafat ninn teh dee Wr Woreldlt PAGE 2 Content 20 questions and answers about the salt desert of Bolivia, which every travel agency and every traveler should know 3 INTRODUCTION 5 20 FREQUENTLY ASKED QUESTIONS 6 General Information 8 Documents, Visa and Vaccinations 9 Climate in the Region 11 Trips in the Region 16 Accommodation in Uyuni 18 Other Concerns 22 Special: What to Pack for Uyuni 24 SUMMARY 26 ABOUT LOGISTUR Introduction PAGE 4 This is the third part of our training kit about El Salar de Uyuni, also known as the salt desert of Bolivia. In this course 3 you will find the 20 most frequently asked questions that everyone deals with when planning their trip to El Salar de Uyuni. This course is structured in a way that it serves as an essential guide for anyone interested in tourism in the region. If you have not yet read course 1 (Overview of the Salar de Uyuni), we recommend that you take a look at it. In Course 1 we will talk about the destination itself: The origin, historical data, demography, biodiversity and everything you need to know about the world's largest salt desert. Please also read course 2 (Travel planning Salar de Uyuni). In this course we will talk about all the important information needed to plan and carry out the trip and to sell this destination (arrival in Uyuni, places of interest, types of excursions, challenges in the region).
    [Show full text]
  • Convergent Margin Magmatism in the Central Andes and Its Near Antipodes in Western Indonesia: Spatiotemporal and Geochemical Considerations
    AN ABSTRACT OF THE DISSERTATION OF Morgan J. Salisbury for the degree of Doctor of Philosophy in Geology presented on June 3, 2011. Title: Convergent Margin Magmatism in the Central Andes and its Near Antipodes in Western Indonesia: Spatiotemporal and Geochemical Considerations Abstract approved: ________________________________________________________________________ Adam J.R. Kent This dissertation combines volcanological research of three convergent continental margins. Chapters 1 and 5 are general introductions and conclusions, respectively. Chapter 2 examines the spatiotemporal development of the Altiplano-Puna volcanic complex in the Lípez region of southwest Bolivia, a locus of a major Neogene ignimbrite flare- up, yet the least studied portion of the Altiplano-Puna volcanic complex of the Central Andes. New mapping and laser-fusion 40Ar/39Ar dating of sanidine and biotite from 56 locations, coupled with paleomagnetic data, refine the timing and volumes of ignimbrite emplacement in Bolivia and northern Chile to reveal that monotonous intermediate volcanism was prodigious and episodic throughout the complex. 40Ar/39Ar age determinations of 13 ignimbrites from northern Chile previously dated by the K-Ar method improve the overall temporal resolution of Altiplano-Puna volcanic complex development. Together with new and updated volume estimates, the new age determinations demonstrate a distinct onset of Altiplano-Puna volcanic complex ignimbrite volcanism with modest output rates beginning ~11 Ma, an episodic middle phase with the highest eruption rates between 8 and 3 Ma, followed by a general decline in volcanic output. The cyclic nature of individual caldera complexes and the spatiotemporal pattern of the volcanic field as a whole are consistent with both incremental construction of plutons as well as a composite Cordilleran batholith.
    [Show full text]
  • Across the Arid Diagonal: Deglaciation of the Western Andean Cordillera in Southwest Bolivia and Northern Chile
    Cuadernos de Investigación Geográfica ISSN 0211-6820 2017 Nº 43 (2) pp. 667-696 Geographical Research Letters eISSN 1697-9540 DOI: http://doi.org/10.18172/cig.3209 © Universidad de La Rioja ACROSS THE ARID DIAGONAL: DEGLACIATION OF THE WESTERN ANDEAN CORDILLERA IN SOUTHWEST BOLIVIA AND NORTHERN CHILE D. WARD*, R. THORNTON, J. CESTA Dept. of Geology, University of Cincinnati, Cincinnati, OH 45221 USA ABSTRACT. Here we review published cosmogenic records of glaciation and deglaciation from the western cordillera of the arid subtropical Andes of northern Chile and southwest Bolivia. Specifically, we examine seven published studies describing exposure ages from moraines and glaciated bedrock spanning the glaciological Arid Diagonal, the region of the dry Andes where there is no clear evidence for glaciation over at least the last global glaciation. We also present new cosmogenic 36Cl exposure ages from two previously undated sets of moraines in the deglaciated region near 22ºS. Taken together, these records indicate that the most extensive regional glaciation occurred ca. 35-45 ka, followed by slow, punctuated retreat through the global last glacial maximum, and rapid retreat after ~15-17 ka. In the vicinity of the large Altiplanic lakes that existed during the late glacial stage, the 15-17 ka moraines overrode the earlier moraines, whereas elsewhere regionally, on both sides of the Arid Diagonal, late glacial wet periods are represented only by less-prominent moraines in more retracted positions. A Través de la Diagonal Árida: la deglaciación de la Cordillera Andina Occidental en el suroeste de Bolivia y el norte de Chile RESUMEN. En este trabajo se revisan los registros cosmogénicos de la glaciación y deglaciación publicados previamente sobre la cordillera occidental de los Andes subtropicales áridos del norte de Chile y el suroeste de Bolivia.
    [Show full text]
  • Antarctic-Like Temperature Variations in the Tropical Andes Recorded by Glaciers and Lakes During the Last Deglaciation L
    Antarctic-like temperature variations in the Tropical Andes recorded by glaciers and lakes during the last deglaciation L. Martin, P.-H Blard, J Lavé, V. Jomelli, J. Charreau, T. Condom, M. Lupker, Maurice Arnold, Georges Aumaitre, D.L. Bourlès, et al. To cite this version: L. Martin, P.-H Blard, J Lavé, V. Jomelli, J. Charreau, et al.. Antarctic-like temperature variations in the Tropical Andes recorded by glaciers and lakes during the last deglaciation. Quaternary Science Reviews, Elsevier, 2020, 247, pp.106542. 10.1016/j.quascirev.2020.106542. hal-03029770 HAL Id: hal-03029770 https://hal.univ-lorraine.fr/hal-03029770 Submitted on 2 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License 1 Antarctic-like temperature variations in the Tropical Andes 2 recorded by glaciers and lakes during the last deglaciation 3 L.C.P. Martina,b*, P.-H. Blarda,c*, J. Lavéa, V. Jomellid,e, J. Charreaua, T. Condomf, M. Lupkerg, 4 ASTER Teame# 5 a. CRPG, UMR7358 CNRS - Université de Lorraine, 54500 Vandœuvre-lès-Nancy, France 6 b.
    [Show full text]
  • Geography of the Central Andes
    : ' ; ,!.',:.,': 1 : -.. :;i:. / - ..; ^i;.^!. i;J ;.;.;.;> ; ,\v 'J.'' GEOGRAPHY OF THE ALAN G. OGILVIE AMERICAN GEOGRAPHICAL,. SOCIETY map of Hispanic America- PUBLrcAT.iON#o, t . Digitized by the Internet Archive in 2011 with funding from The Library of Congress http://www.archive.org/details/geographyofcentrOOogil -HV OF THE ) AMERICAN GEOGRAPHICAL SOCIETY MAP OF HISPANIC AMERICA PUBLICATION NO. i , GEOGRAPHY OF THE CENTRAL ANDES A Handbook to Accompany the LA PAZ Sheet of the Map of Hispanic America on the Millionth Scale BY ALAN G. OGILVIE, M.A., B.Sc. (Oxon.) WITH AN INTRODUCTION BY ISAIAH BOWMAN PUBLISHED BY THE AMERICAN GEOGRAPHICAL SOCIETY OF NEW YORK BROADWAY AT I56TH STREET 1922 Vzziz COPYRIGHT, 1922 BY THE AMERICAN GEOGRAPHICAL SOCIETY OF NEW YORK THE CONDE NAST PRESS GREENWICH, CONN. N-8'23 ©CH690901 CONTENTS PART I THE LA PAZ SHEET OF THE 1:1,000,000 MAP PART II GEOGRAPHY OF THE LA PAZ SHEET AREA CHAPTER PAGE I General View 13 II Geological Structure and Land Forms .... 31 III Minerals and Mines 49 IV The Ocean \ . 61 V The Climate 67 VI Drainage, Water Supply, and Soils 95 VII The Natural Vegetation 109 VIII Animal Life 122 IX The Inhabitants and Their Adaptation to the Environment 136 Appendix A, The Social and Religious Organiza- tion of the Plateau Indians ... 199 Appendix B, The Problem of Tacna and Arica . 203 Appendix C, Selected Bibliography 211 Appendix D, Conversion Tables 224 Index 233 1 1 LIST OF ILLUSTRATIONS PLATE PAGE I Map showing distribution of population .... facing 146 II Map showing utilization of land facing 174 FIG.
    [Show full text]
  • Baker-Fritzqsr2015.Pdf
    Quaternary Science Reviews 124 (2015) 31e47 Contents lists available at ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev Invited review Nature and causes of Quaternary climate variation of tropical South America Paul A. Baker a, b, *, Sherilyn C. Fritz c, d a Division of Earth and Ocean Sciences, Duke University, Durham, NC 27708, USA b Yachay Tech University, School of Geological Sciences and Engineering, San Miguel de Urcuqui, Hacienda San Jose, Imbabura, Ecuador c Department of Earth and Atmospheric Sciences, University of Nebraska e Lincoln, Lincoln, NE 68588-0340, USA d School of Biological Sciences, University of Nebraska e Lincoln, Lincoln, NE 68588-0340, USA article info abstract Article history: This selective review of the Quaternary paleoclimate of the South American summer monsoon (SASM) Received 11 February 2015 domain presents viewpoints regarding a range of key issues in the field, many of which are unresolved Received in revised form and some of which are controversial. (1) El Nino-Southern~ Oscillation variability, while the most 8 June 2015 important global-scale mode of interannual climate variation, is insufficient to explain most of the Accepted 10 June 2015 variation of tropical South American climate observed in both the instrumental and the paleoclimate Available online xxx records. (2) Significant climate variation in tropical South America occurs on seasonal to orbital (i.e. multi-millennial) time scales as a result of sea-surface temperature (SST) variation and ocean Keywords: e Paleoclimate atmosphere interactions of the tropical Atlantic. (3) Decadal-scale climate variability, linked with this Monsoon tropical Atlantic variability, has been a persistent characteristic of climate in tropical South America for at Amazon least the past half millennium, and likely, far beyond.
    [Show full text]
  • Impact of Bolivian Paleolake Evaporation
    Impact of Bolivian paleolake evaporation on the δ18O of the Andean glaciers during the last deglaciation (18.5–11.7 ka): diatom-inferred δ18O values and hydro-isotopic modeling Benjamin Quesada, Florence Sylvestre, Françoise Vimeux, Jessica Black, Christine Paillès, Corinne Sonzogni, Anne Alexandre, Pierre-Henri Blard, Alain Tonetto, Jean-Charles Mazur, et al. To cite this version: Benjamin Quesada, Florence Sylvestre, Françoise Vimeux, Jessica Black, Christine Paillès, et al.. Impact of Bolivian paleolake evaporation on the δ18O of the Andean glaciers during the last deglacia- tion (18.5–11.7 ka): diatom-inferred δ18O values and hydro-isotopic modeling. Quaternary Science Reviews, Elsevier, 2015, 120, pp.93-106. 10.1016/j.quascirev.2015.04.022. hal-01909526 HAL Id: hal-01909526 https://hal.archives-ouvertes.fr/hal-01909526 Submitted on 14 Dec 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Quaternary Science Reviews 120 (2015) 93e106 Contents lists available at ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev
    [Show full text]