Review Articles Current Problems Concerning Parasitology And

Total Page:16

File Type:pdf, Size:1020Kb

Review Articles Current Problems Concerning Parasitology And Annals of Parasitology 2012, 58(3), 111–123 Copyright© 2012 Polish Parasitological Society Review articles Current problems concerning Parasitology and Mycology with regard to diseases of the skin and its appendages 1 Joanna Błaszkowska, Anna Wójcik Chair of Biology and Medical Parasitology, Medical University of Lodz, 1 Hallera Square, 90-647 Lodz, Poland Corresponding author: Joanna Błaszkowska; E-mail: [email protected] ABSTRACT. Current issues concerning Parasitology and Mycology with regard to diseases of the skin and its appendages are presented. Aspects of diagnostics, clinical picture and therapy of skin and nail mycoses, as well as difficulties in the diagnosis and treatment of both native parasitoses (toxoplasmosis) and imported human tropical parasitoses (malaria, filariosis) have been emphasised. The clinical importance of environmental mould fungi in nosocomial infections and fungal meningitis, as well as selected properties of fungi isolated from patients with head and neck neoplasms treated by radiotherapy are discussed. Other mycological topics include the characteristics of newly- synthesized thiosemicarbazides and thiadiazoles as potential drugs against toxoplasmosis and their biological activity against Toxoplasma gondii tachyzoites, selected molecular mechanisms of resistance to azoles, Candida albicans strains and a new tool (barcoding DNA) for describing the biodiversity of potential allergenic molds. The importance of environmental factors in pathogenesis of mycoses and parasitoses is noted. The characteristics of pathogenic fungi isolated from natural ponds in Bialystok and potentially pathogenic yeast-like fungi isolated from children’s recreation areas in Lodz are presented. The ongoing problem of anthropozoonoses is considered, as are the roles of stray cats and dogs in contaminating soil with the developing forms of intestinal parasites. The characteristics of the human microbiome, including population composition, activity and their importance in normal human physiology, are presented, as are the major goals of the Human Microbiome Project initiated by National Institutes of Health (NIH). Key words: medical parasitology, mycology, parasitoses, mycoses During the last decades, a permanent increase in The spectrum of dermatophytes isolated from the number of fungal skin infections has been skin lesions has changed in the last 70 years in most observed worldwide. The high prevalence of European countries. Microsporum audouinii and superficial mycoses shows that approximately Epidermophyton floccosum , ranked highest before 20–25% of the world’s population has skin lesions, the Second World War in Germany, have been making these one of the most frequent forms of replaced by Trichophyton rubrum , which nowadays infection. Pathogens responsible for those diseases accounts for 80–90% of the strains, followed by are primarily geophilic, anthropophilic and T. mentagrophytes . This trend, also observed in the zoophilic dermatophytes from the genera Central and Northern Europe, is directly connected Trichophyton , Microsporum and Epidermophyton . with the increased incidence of tinea pedis. In There appears to be considerable inter and intra- contrast, in Southern Europe and in Arabic continental variability in the global incidence of countries, zoophilic dermatophytes, such as these fungal infections. Dermatophytes are Microsporum canis or Trichophyton verrucosum , keratinophilic and keratinolytic fungi, characterized are the most frequently isolated. In Europe, by a high affinity to keratin-containing tissues. In especially in Mediterranean countries, the incidence everyday clinical practice they are responsible for of M. canis infection has strongly increased during superficial mycoses of skin (tinea faciei, tinea the recent years and this dermatophyte is now the barbae, tinea corporis, tinea cruris, tinea manuum or most prevalent in tinea capitis in children [3]. tinea pedis), nails (onychomycosis, tinea unguium) Infections caused by dermatophytes have and hair (tinea capitis) [1,2]. become a very serious problem, not only a clinical 1 The review was supported by Medical University of Lodz, No 503/1-013-01/503-01 112 J. B³aszkowska, A. Wójcik one, but also with epidemiological and therapeutic smaller toenails was induced by T. mentagrophytes aspects. Clinical manifestations of mycoses vary and T. rubrum , whereas mycosis of the large toenail depending on the site of infestation and the type of was often associated with Candida species and also strain and therefore, accurate identification of the moulds of genera Fusarium , Alternaria , strain is crucial in order to facilitate rapid treatment Aspergillus , Scopulariopsis [4] . Interestingly and to prevent spread of the disease. Skin mycoses enough, S. brevicaulis , a common saprophytic often present a typical clinical picture, however, in fungus found in soil, on vegetables and other some cases they may mimic other disorders, such as organic waste, having a wide geographic pityriasis rosea Gibert, granuloma annulare, distribution, may be an etiological factor of skin sarcoidosis, urticaria, erythema annulare lesions in various locations and also generalized centrifugum, lupus erythematosus (especially mycoses. Several case reports have described subacute cutaneous form – SCLE), erythema S. bre vicaulis infections of deep tissue or skin in chronicum migrans, erythema multiforme, immunocompromised hosts and there have been psoriasis, eczema and contact dermatitis. Also, the sporadic cases of ocular infection. A case of slowly previous application of some drugs (such as progressive granulomatous face skin infection in an steroids, antihistamines, antibiotics or zinc otherwise healthy person has also been found [5]. ointment) may modify the presentation of Onychomycosis, infection of the nail plates, is dermatomycoses in some patients. Therefore, it is of caused by dermatophytes, nondermatophytes great importance to collect scrapings for moulds or yeast species. In the majority of patients, microscopy and culture before starting treatment onychomycosis is viewed as more than a mere with oral or topical antifungals (J. Narbutt; Medical cosmetic problem. In spite of improved personal University of Lodz). hygiene and living environment, nail mycoses The commonest risk factors for fungal skin continue to spread and persist. It has been estimated infections are: antibiotic and corticosteroid use, a that nail mycoses may concern nearly 30% of adults depressed immune system due to chemotherapy and in Europe, whereas their prevalence in Australia and HIV infection, the coexistence of diabetes, as well the United States accounts for 10% [6]. as environmental factors like increased moisture, Numerous studies have revealed that nearly 10% lifestyle, contact with soil, form of recreation and of the cases of onychomycosis are caused by taking part in different sports and, in some nondermatophyte molds (NDM): Scopulariopsis individuals, a genetic predisposition towards brevicaulis , Aspergillus spp ., Acremonium spp., mycoses. Religious ceremonies and traditions, like Fusarium sp ., Onychocola canadiensis , Nattrasia ritual ablutions, are also of the great importance. mangiferae , Alternaria spp ., Scytalidium dimidia - The relative occurrence of the etiologic agents and tum , S. hyalinum , Geotrichum candidum or Clado - fungal skin infections varies from country to spo rium carrionii . Unlike dermatophytes, those country and from one climatic region to another. In fungi are not keratolytic and can only invade a nail tropical countries, a warm and humid climate, plate previously destroyed due to trauma, crowded living and poor sanitary conditions all dermatophyte activity or another nail disease. For promote the spread of mycoses. It is worth noting this reason, the incidence of onychomycosis due to that mycoses of the skin covering the trunk and face NDM is estimated from 1.45 to 17.6% [7,8]. have been more frequently observed in those Keratinophilic molds may be either countries, whereas in a moderate climate, fungi contaminants of biological material in the mostly affect the feet and hands, particularly the laboratory or pathogens causing nail lesions, which nails. In Lodz (Poland), a higher prevalence of skin may create serious problems for the correct and nail lesions was noticed in middle-aged and diagnosis of NDM onychomycosis. Moreover, elderly patients as compared to young subjects, with diagnostic criteria are inconsistent between significantly greater occurrence on the hands of mycological laboratories. Based on several studies, women than men (J. Kwaśniewska, E. Szefer, six major diagnostic criteria were identified: A. Jaskółowska; Medical University of Lodz). identification of the NDM in the nail by Mycosis of the large toenail was most frequently microscopy, the presence of mycelium elements diagnosed, while infection of the remaining (using a potassium hydroxide preparation – KOH toenails, foot skin and spaces between toes occurs with Parker ink or Calcofluor White; alternatively more rarely. In the majority of cases, mycosis of the KOH may be replaced by Na 2S or NaOH), isolation Current problems in Parasitology 113 in culture, repeated isolation in culture in different management of Candida related CNS infections time intervals, quantitative evaluation of inoculum, [10]. failure to isolate a dermatophyte in culture and A unique case of fungal meningitis with many histology (periodic acid Schiff). Most studies years’ course, probably stemming
Recommended publications
  • Identification, Genotyping, and Pathogenicity of Trichosporon Spp
    bioRxiv preprint doi: https://doi.org/10.1101/386581; this version posted August 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Identification, Genotyping, and Pathogenicity of Trichosporon spp. Isolated from 2 Giant Pandas 3 Xiaoping Ma1#, Yaozhang Jiang1#, Chengdong Wang2*,Yu Gu3*, Sanjie Cao1, Xiaobo 4 Huang1, Yiping Wen1, Qin Zhao1,Rui Wu1, Xintian Wen1, Qigui Yan1, Xinfeng Han1, 5 Zhicai Zuo1, Junliang Deng1, Zhihua Ren1, Shumin Yu1, Liuhong Shen1, Zhijun 6 Zhong1, Guangneng Peng1, Haifeng Liu1 , Ziyao Zhou1 7 1Key Laboratory of Animal Disease and Human Health of Sichuan Province , College 8 of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China; 9 2 China Conservation and Research Center for the Giant Panda, Ya'an, Sichuan 625000, 10 China. 11 3 College of Life Sciences, Sichuan Agricultural University, Chengdu, 611130, China. 12 *Co-corresponding authors: 13 ChengdongWang: [email protected] 14 Yu Gu: [email protected]; 15 #These authors contributed equally to this work and are co-first authors. 16 The methods were carried out in accordance with the approved guidelines. 17 All animal experiments were approved by the Sichuan Agricultural University animal 18 ethics committee. 19 1 bioRxiv preprint doi: https://doi.org/10.1101/386581; this version posted August 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Safety Precautions for Working with Cryptococcus Neoformans
    Safety Precautions for Working with Cryptococcus neoformans The basidiomycete fungus Cryptococcus neoformans is an invasive opportunistic pathogen of the central nervous system and the most frequent cause of fungal meningitis worldwide. Although Cryptococcus is a problem in the United States, it is significantly more prevalent and especially devastating in the developing world, such as sub-Saharan Africa, resulting in in more than 625,000 deaths per year worldwide. C. neoformans survives in the environment within soil, trees, and bird guano, where it can interact with wild animals or microbial predators, maintaining its virulence. Human infection is thought to be acquired by inhalation of desiccated yeast cells or spores from an environmental source. C. neoformans can colonize the host respiratory tract without producing any disease. Infection is typically asymptomatic, and it can be either cleared or enter a dormant, latent form. When host immunity is compromised, the dormant form can be reactivated and disseminate hematogenously to cause systemic infection. C. neoformans can infect or spread to any organ to cause localized infections involving the skin, eyes, myocardium, bones, joints, lungs, prostate gland, or urinary tract, in addition to its propensity to infect the central nervous systems. The following diseases and medications are risk factors for C. neoformans infection and are associated with at least some degree of immunosuppression: Ø HIV/AIDs (CD4 < 100cells/mm) Ø Corticosteroids or other immunosuppressive medications for cancer, chemotherapy, or organ transplants Ø Solid organ transplantations Ø Diabetes mellitus Ø Heart, lung, or liver disease Ø Pregnancy Even otherwise healthy, fully immunocompetent individuals can develop cryptococcosis, as may well be the case in a lab accident.
    [Show full text]
  • Fungal Infections Fungi
    Antifungal, Antiprotozoal, Anthelmintic Drugs Dr n. med. Marta Jóźwiak-Bębenista Department of Pharmacology Medical University of Lodz Fungal infections • also called mycoses; widespread in the population (e.g. „athlete's foot” or „thrush”) • become a more serious problem (immunocompromised patients – even fetal!) • are more difficult to treat than bacterial infections • therapy of fungal infections usually requires prolonged treatment! • opportunistic infections- Pneumocystis carinii Fungi Yeasts Moulds Higher Fungi 1 Clinically important fungi may be classified into: • yeasts (e.g. Cryptococcus neoformans) • yeast-like fungi that produce a structure resembling a mycelium (e.g. Candida albicans) • filamentous fungi with a true mycelium (e.g. Trichophyton spp., Microsporum spp., Epidermophyton spp., Tinea spp., Aspergillus fumigatus ) • „dimorphic” fungi that, depending on nutritional constraints, may grow as either yeasts or filamentous fungi (e.g. Histoplasma capsulatum, Coccidioides immitis, Blastomyces dermatides) Fungal infections Superficial (topical) Systemic („disseminated”) 1. cutaneous surfaces - skin, nails, hair 2. mucous membrane surfaces - oropharynx, vagina Fungal infections Superficial Systemic • Dermatomycoses - infections • Candidiasis of the skin, hair and nails; caused by • Cryptococcal meningitis Trichophyton • Pulmonary aspergillosis Microsporum Epidermophyton • Blastomycosis Tinea capitis (scalp) • Histoplasmosis Tinea cruris (groin) • Coccidiomycosis Tinea pedis (athlete's foot) • Paracoccidiomycosis Tinea corporis
    [Show full text]
  • Department of Biological Sciences Redeemer's
    DEPARTMENT OF BIOLOGICAL SCIENCES REDEEMER’S UNIVERSITY MCB 313 PATHOGENIC MYCOLOGY DURUGBO ERNEST UZODIMMA (Ph.D.) COURSE OUTLINE 1. Introduction 2. Structure, reproduction and classification of pathogenic Fungi Eg. Aspergillus, Trichphyton spp., Tinea spp.,Yeasts 3.Superficial systematic mycoses and antimycoses 4. Fungal infections ( Candidiasis , Histoplasmosis etc) 5. Laboratory methods of study 5. Pathology and immunology 6. Cultivation techniques in Mycology Structure, Reproduction and Classification of Pathogenic Fungi About 30% of the 100,000 known species of Fungi make a living as parasites, or pathogens , mostly of plants. E. g Cryphonectria parasitica, the Ascomycete fungus causes chestnut blight. Fusarium circinatum causes pith pine canker a diseae that threatens pine worldwide. Puccinia graminis causes black stem rust of wheat. Some of the fungi that attack food crops are toxic to humans for example certain species of the ascomycete mold Aspergillus contaminate improperly stored grain and peanuts by secreting aflatoxins which are carcinogenic. The ascomycete Claviceps purpurea which grows on rye plants forming purple structures called ergots. If diseased rye is milled into flour and consumed it causes ergotism, a condition characterized by gangrene, nervous spasms, burning sensations, hallucinations, and temporary insanity. An epidemic of this around 944 C.E, killed more than 40,000 people in France. Animals are much less susceptible to parasitic fungi than plants. Only about 50 species of fungi are known to parasitize humans and animals . Such fungal infections are mycosis . Skin mycoses includes ringworm. The ascomycetes that causes ringworm can infect almost any skin surface. Most commonly, they grow on the feet, causing the intense itching and blisters known as athlete ’s foot.
    [Show full text]
  • DIFLUCAN Capsule and IV
    Generic Name: Fluconazole Trade Name: Diflucan CDS Effective Date: April 16, 2020 Supersedes: March 19, 2020 Approved by BPOM: April 19, 2021 PT. PFIZER INDONESIA Local Product Document Generic Name: Fluconazole Trade Name: Diflucan CDS Effective Date: April 16, 2020 Supersedes: March 19, 2020 DESCRIPTION Fluconazole is a bis-triazole: 2-(2,4-difluorophenyl)-1,3-bis (1H-1,2,4-triazol-1yl)-2 propanol. It has the following structural formula: N OH N N N CH2 C CH2 N N F F Fluconazole is a white to off-white crystalline powder which is sparingly soluble in water and saline. It has a molecular weight of 306.3. Diflucan capsules contain 50 mg and 150 mg of fluconazole and the following inactive ingredients: hard gelatin capsules (which may contain Blue 5 and other inert ingredients), lactose, corn starch, silicon dioxide, magnesium stearate and sodium lauryl sulfate. Diflucan for injection is an iso-osmotic, sterile, non-pyrogenic solution of fluconazole in a sodium chloride diluent. Each ml contains 2 mg of fluconazole and 9 mg of sodium chloride. The pH ranges from 4.0 to 8.6. Injection volumes of 100 ml are packaged in glass infusion vials. 2020-0059186 Page 1 of 19 Generic Name: Fluconazole Trade Name: Diflucan CDS Effective Date: April 16, 2020 Supersedes: March 19, 2020 Approved by BPOM: April 19, 2021 PHARMACOLOGICAL PROPERTIES Pharmacodynamic Properties Pharmacotherapeutic group: Antimycotics for systemic use, triazole derivatives, ATC code J02AC01. Mode of Action Fluconazole, a triazole antifungal agent, is a potent and specific inhibitor of fungal sterol synthesis. Its primary mode of action is the inhibition of fungal cytochrome P-450-mediated 14-alpha-lanosterol demethylation, an essential step in fungal ergosterol biosynthesis.
    [Show full text]
  • Fungal Infections of the Central Nervous System in HIV-Negative Patients: Experience from a Tertiary Referral Center of South India
    Original Article Fungal infections of the central nervous system in HIV-negative patients: Experience from a tertiary referral center of South India K. N. Ramesha, Mahesh P. Kate, Chandrasekhar Kesavadas1, V. V. Radhakrishnan2, S. Nair3, Sanjeev V. Thomas Departments of Neurology, 1Neuroradiology, 2Neuropatholgy and 3Neurosurgery, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum-695 011, India Abstract Objective: To describe the clinical, radiological, and cerebrovascular fluid (CSF) findings and the outcome of microbiologically or histopathologically proven fungal infections of the central nervous system (CNS) in HIV-negative patients. Methodology and Results: We identified definite cases of CNS mycosis by screening the medical records of our institute for the period 2000–2008. The clinical and imaging details and the outcome were abstracted from the medical records and entered in a structured proforma. There were 12 patients with CNS mycosis (i.e., 2.7% of all CNS infections treated in this hospital); six (50%) had cryptococcal infection, three (25%) had mucormycosis, and two had unclassified fungal infection. Four (33%) of them had diabetes as a predisposing factor. The common presentations were meningoencephalitis (58%) and polycranial neuritis (41%). Magnetic resonance imaging revealed hydrocephalus in 41% and meningeal enhancement in 25%, as well as some unusual findings such as subdural hematoma in the bulbocervical region, carpeting lesion of the base of the skull, and enhancing lesion in the cerebellopontine angle. The CSF showed pleocytosis (66%), hypoglycorrhachia (83%), and elevated protein levels (100%). The diagnosis was confirmed by meningocortical biopsy (in three cases), paranasal sinus biopsy (in four cases), CSF culture (in three cases), India ink preparation (in four cases), or by cryptococcal polysaccharide antigen test (in three cases).
    [Show full text]
  • Identification, Genotyping, and Pathogenicity of Trichosporon Spp
    bioRxiv preprint doi: https://doi.org/10.1101/386581; this version posted August 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Identification, Genotyping, and Pathogenicity of Trichosporon spp. Isolated from 2 Giant Pandas 3 Xiaoping Ma1#, Yaozhang Jiang1#, Chengdong Wang2*,Yu Gu3*, Sanjie Cao1, Xiaobo 4 Huang1, Yiping Wen1, Qin Zhao1,Rui Wu1, Xintian Wen1, Qigui Yan1, Xinfeng Han1, 5 Zhicai Zuo1, Junliang Deng1, Zhihua Ren1, Shumin Yu1, Liuhong Shen1, Zhijun 6 Zhong1, Guangneng Peng1, Haifeng Liu1 , Ziyao Zhou1 7 1Key Laboratory of Animal Disease and Human Health of Sichuan Province , College 8 of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China; 9 2 China Conservation and Research Center for the Giant Panda, Ya'an, Sichuan 625000, 10 China. 11 3 College of Life Sciences, Sichuan Agricultural University, Chengdu, 611130, China. 12 *Co-corresponding authors: 13 ChengdongWang: [email protected] 14 Yu Gu: [email protected]; 15 #These authors contributed equally to this work and are co-first authors. 16 The methods were carried out in accordance with the approved guidelines. 17 All animal experiments were approved by the Sichuan Agricultural University animal 18 ethics committee. 19 1 bioRxiv preprint doi: https://doi.org/10.1101/386581; this version posted August 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Towards an Integrated Phylogenetic Classification of the Tremellomycetes
    http://www.diva-portal.org This is the published version of a paper published in Studies in mycology. Citation for the original published paper (version of record): Liu, X., Wang, Q., Göker, M., Groenewald, M., Kachalkin, A. et al. (2016) Towards an integrated phylogenetic classification of the Tremellomycetes. Studies in mycology, 81: 85 http://dx.doi.org/10.1016/j.simyco.2015.12.001 Access to the published version may require subscription. N.B. When citing this work, cite the original published paper. Permanent link to this version: http://urn.kb.se/resolve?urn=urn:nbn:se:nrm:diva-1703 available online at www.studiesinmycology.org STUDIES IN MYCOLOGY 81: 85–147. Towards an integrated phylogenetic classification of the Tremellomycetes X.-Z. Liu1,2, Q.-M. Wang1,2, M. Göker3, M. Groenewald2, A.V. Kachalkin4, H.T. Lumbsch5, A.M. Millanes6, M. Wedin7, A.M. Yurkov3, T. Boekhout1,2,8*, and F.-Y. Bai1,2* 1State Key Laboratory for Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; 2CBS Fungal Biodiversity Centre (CBS-KNAW), Uppsalalaan 8, Utrecht, The Netherlands; 3Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig 38124, Germany; 4Faculty of Soil Science, Lomonosov Moscow State University, Moscow 119991, Russia; 5Science & Education, The Field Museum, 1400 S. Lake Shore Drive, Chicago, IL 60605, USA; 6Departamento de Biología y Geología, Física y Química Inorganica, Universidad Rey Juan Carlos, E-28933 Mostoles, Spain; 7Department of Botany, Swedish Museum of Natural History, P.O. Box 50007, SE-10405 Stockholm, Sweden; 8Shanghai Key Laboratory of Molecular Medical Mycology, Changzheng Hospital, Second Military Medical University, Shanghai, PR China *Correspondence: F.-Y.
    [Show full text]
  • Estimation of Direct Healthcare Costs of Fungal Diseases in the United States
    HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Clin Infect Manuscript Author Dis. Author manuscript; Manuscript Author available in PMC 2020 May 17. Published in final edited form as: Clin Infect Dis. 2019 May 17; 68(11): 1791–1797. doi:10.1093/cid/ciy776. Estimation of direct healthcare costs of fungal diseases in the United States Kaitlin Benedict, Brendan R. Jackson, Tom Chiller, and Karlyn D. Beer Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA Abstract Background: Fungal diseases range from relatively minor superficial and mucosal infections to severe, life-threatening systemic infections. Delayed diagnosis and treatment can lead to poor patient outcomes and high medical costs. The overall burden of fungal diseases in the United States is challenging to quantify because they are likely substantially underdiagnosed. Methods: To estimate total national direct medical costs associated with fungal diseases from a healthcare payer perspective, we used insurance claims data from the Truven Health MarketScan® 2014 Research Databases, combined with hospital discharge data from the 2014 Healthcare Cost and Utilization Project National Inpatient Sample and outpatient visit data from the 2005–2014 National Ambulatory Medical Care Survey and the National Hospital Ambulatory Medical Care Survey. All costs were adjusted to 2017 dollars. Results: We estimate that fungal diseases cost more than $7.2 billion in 2017, including $4.5 billion from 75,055 hospitalizations and $2.6 billion from 8,993,230 outpatient visits. Hospitalizations for Candida infections (n=26,735, total cost $1.4 billion) and Aspergillus infections (n=14,820, total cost $1.2 billion) accounted for the highest total hospitalization costs of any disease.
    [Show full text]
  • Morphological and Biochemical Characterization of the Aetiological Agents of White Piedra
    786 Mem Inst Oswaldo Cruz, Rio de Janeiro, Vol. 103(8): 786-790, December 2008 Morphological and biochemical characterization of the aetiological agents of white piedra Alba Regina Magalhães1/+, Silvia Susana Bona de Mondino1, Manuela da Silva2, Marilia Martins Nishikawa3 Laboratório de Micologia, Instituto Biomédico 1Programa de Pós-Graduação em Patologia, Departamento de Patologia, Universidade Federal Fluminense, Rua Marquês de Paraná 303, 24030-210, Niterói, RJ, Brasil 2Programa de Pós-Graduação em Vigilância Sanitária 3Setor de Fungos de Referência, Departamento de Microbiologia, Instituto Nacional de Controle de Qualidade-Fiocruz, Rio de Janeiro, RJ, Brasil The Trichosporon genus is constituted by many species, of which Trichosporon ovoides and Trichosporon inkin are the causative agents of white piedra. They can cause nodules in genital hair or on the scalp. At present, Brazilian laboratory routines generally do not include the identification of the species of Trichosporon genus, which, although morphologically and physiologically distinct, present many similarities, making the identification difficult. The aim of this study was to identify the aetiological agents at the species level of white piedra from clinical specimens. Therefore, both the macro and micro morphology were studied, and physiological tests were performed. Tricho- sporon spp. was isolated from 10 clinical samples; T. ovoides was predominant, as it was found in seven samples, while T. inkin was identified just in two samples. One isolate could not be identified at the species level. T. inkin was identified for the first time as a white piedra agent in the hair shaft on child under the age of 10. Key words: Trichosporon - white piedra - mycosis - phenotypic identification Trichosporon Behrend is a genus that belongs to White piedra, a mycosis that occurs in some animals, the Basidiomycota phylum, the Hymenomycetes class such as horses, monkeys and domestic animals, as well and the Trichosporonales order (Fell et al.
    [Show full text]
  • 12 Tremellomycetes and Related Groups
    12 Tremellomycetes and Related Groups 1 1 2 1 MICHAEL WEIß ,ROBERT BAUER ,JOSE´ PAULO SAMPAIO ,FRANZ OBERWINKLER CONTENTS I. Introduction I. Introduction ................................ 00 A. Historical Concepts. ................. 00 Tremellomycetes is a fungal group full of con- B. Modern View . ........................... 00 II. Morphology and Anatomy ................. 00 trasts. It includes jelly fungi with conspicuous A. Basidiocarps . ........................... 00 macroscopic basidiomes, such as some species B. Micromorphology . ................. 00 of Tremella, as well as macroscopically invisible C. Ultrastructure. ........................... 00 inhabitants of other fungal fruiting bodies and III. Life Cycles................................... 00 a plethora of species known so far only as A. Dimorphism . ........................... 00 B. Deviance from Dimorphism . ....... 00 asexual yeasts. Tremellomycetes may be benefi- IV. Ecology ...................................... 00 cial to humans, as exemplified by the produc- A. Mycoparasitism. ................. 00 tion of edible Tremella fruiting bodies whose B. Tremellomycetous Yeasts . ....... 00 production increased in China alone from 100 C. Animal and Human Pathogens . ....... 00 MT in 1998 to more than 250,000 MT in 2007 V. Biotechnological Applications ............. 00 VI. Phylogenetic Relationships ................ 00 (Chang and Wasser 2012), or extremely harm- VII. Taxonomy................................... 00 ful, such as the systemic human pathogen Cryp- A. Taxonomy in Flow
    [Show full text]
  • Candida Meningitis in an Immunocompetent Patient Detected Through (1!3)-Beta-D-Glucan
    International Journal of Infectious Diseases 51 (2016) 25–26 Contents lists available at ScienceDirect International Journal of Infectious Diseases jou rnal homepage: www.elsevier.com/locate/ijid Case Report Candida meningitis in an immunocompetent patient detected through (1!3)-beta-D-glucan a,b, a,b a,b a,b a,b Mark K. Farrugia *, Evan P. Fogha , Abdul R. Miah , Joel Yednock , H. Carl Palmer , a,b John Guilfoose a West Virginia University School of Medicine, Morgantown, West Virginia, USA b Department of Medicine, West Virginia University Health Sciences Center, PO Box 91601, Medical Center Dr., Morgantown, WV 26506, USA A R T I C L E I N F O S U M M A R Y Article history: A 44-year-old female presented with a 3-month history of headache, dizziness, nausea, and vomiting. Received 29 July 2016 Her past medical history was significant for long-standing intravenous drug abuse. Shortly after Received in revised form 23 August 2016 admission, the patient became hypertensive and febrile, with fever as high as 38.8 8C. The lumbar Accepted 24 August 2016 puncture profile supported an infectious process; however multiple cultures of blood and cerebrospinal Corresponding Editor: Eskild Petersen, fluid (CSF) did not initially show growth of organisms. Finally after 9 days of incubation, a CSF culture Aarhus, Denmark showed evidence of a few colonies of Candida albicans. To confirm the diagnosis, preserved CSF from that sample was tested for (1!3)-b-D-glucan, showing levels >500 pg/ml. This report illustrates a rare Keywords: complication of intravenous drug use in an immunocompetent patient and demonstrates the utility of Intravenous drug abuse (1!3)-b-D-glucan testing in possible Candida meningitis.
    [Show full text]