An Underwater Acoustic Direct Sequence Spread Spectrum Communication System Using Dual Spread Spectrum Code*

Total Page:16

File Type:pdf, Size:1020Kb

An Underwater Acoustic Direct Sequence Spread Spectrum Communication System Using Dual Spread Spectrum Code* 972 Liu et al. / Front Inform Technol Electron Eng 2018 19(8):972-983 Frontiers of Information Technology & Electronic Engineering www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com ISSN 2095-9184 (print); ISSN 2095-9230 (online) E-mail: [email protected] An underwater acoustic direct sequence spread spectrum * communication system using dual spread spectrum code Lan-jun LIU†‡1, Jian-fen LI†1, Lin ZHOU1, Peng ZHAI1, Hao ZHAO1, Jiu-cai JIN2, Zhi-chao LV3 1College of Engineering, Ocean University of China, Qingdao 266100, China 2The First Institute of Oceanography, State Oceanic Administration, Qingdao 266061, China 3College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001, China †E-mail: [email protected]; [email protected] Received Nov. 10, 2017; Revision accepted July 30, 2018; Crosschecked Aug. 8, 2018 Abstract: With the goal of achieving high stability and reliability to support underwater point-to-point communications and code division multiple access (CDMA) based underwater networks, a direct sequence spread spectrum based underwater acoustic communication system using dual spread spectrum code is proposed. To solve the contradictions between the information data rate and the accuracy of Doppler estimation, channel estimation, and frame synchronization, a data frame structure based on dual spread spectrum code is designed. A long spread spectrum code is used as the training sequence, which can be used for data frame detection and synchronization, Doppler estimation, and channel estimation. A short spread spectrum code is used to modulate the effective information data. A delay cross-correlation algorithm is used for Doppler estimation, and a correlation algorithm is used for channel estimation. For underwater networking, each user is assigned a different pair of spread spectrum codes. Simulation results show that the system has a good anti-multipath, anti-interference, and anti-Doppler performance, the bit error rate can be smaller than 10−6 when the signal-to-noise ratio is larger than −10 dB, the data rate can be as high as 355 bits/s, and the system can be used in the downlink of CDMA based networks. Key words: Underwater acoustic communication; Direct sequence spread spectrum; Doppler estimation and compensation; Channel estimation and equalization; Gold code; Single carrier; Code division multiple access https://doi.org/10.1631/FITEE.1700746 CLC number: TN92 1 Introduction ignored. Because of the multipath effect, signal su- perposition at different levels of the receiver may An underwater acoustic channel has the charac- cause serious inter symbol interference (ISI). Because teristics of a strong multipath effect, frequen- of the frequency-selective fading and high noise in- cy-selective fading, high noise interference, low terference, underwater acoustic communication fail- sound propagation velocity, and a narrow bandwidth. ures may frequently occur (Chitre et al., 2004). Because of the low sound propagation velocity, the Therefore, it is difficult and challenging to build sta- Doppler frequency shift caused by the relative motion ble and reliable underwater acoustic communication among platforms or seawater movements cannot be systems. Currently, research on underwater acoustic ‡ Corresponding author communication technology is divided mainly into two * Project supported by the National Natural Science Foundation of categories: multi-carrier underwater acoustic China (Nos. 61431005, 51409235, and 61401111) and the Funda- (MC-UWA) communication technology, such as or- mental Research Funds for the Central Universities, China (No. 201213004) thogonal frequency division multiplexing (OFDM) ORCID: Lan-jun LIU, http://orcid.org/0000-0001-7650-9098 aiming to provide a high communication rate for a © Zhejiang University and Springer-Verlag GmbH Germany, part of relatively short distance channel or a high quality Springer Nature 2018 Liu et al. / Front Inform Technol Electron Eng 2018 19(8):972-983 973 channel, and single-carrier underwater acoustic blocks in a point-to-point communication system and (SC-UWA) communication technology which aims to recovers the original data by using different se- provide stable and reliable communication for a rela- quences to de-spread the received signal. DS/SS tively long distance channel. By dividing the channel technology not only supports point-to-point commu- frequency band into several sub-bands, OFDM uses nication, but also is an effective method for CDMA the orthogonality of the sub-carriers to transmit data. based networks (Liu et al., 2009). At the transmitter, Although it can greatly improve the system commu- different users’ data are spread by different spread nication rate, this approach may lead to a high spectrum sequences. At the receiver, different re- peak-to-average-power ratio (PAPR) of the system ceiver structures are designed to distinguish each and high environmental requirements. As a result, the user’s data. A set of correlators are used to distinguish OFDM technology is suitable for applications in- each user’s data (He et al., 2011). Aiming at the mul- volving relatively short distance communication and tichannel detection problem in CDMA communica- relatively good quality channel communication (Rojo tion, the symbol decision feedback (SDF) receiver and Stojanovic, 2010). Because it uses a single carrier and the chip hypothesis feedback (CHF) receiver to transmit data, SC-UWA communication has a low were proposed by Stojanovic and Freitag (2007), and PAPR. Furthermore, with the introduction of the the results showed that these two receivers can well spread spectrum technique, the SC-UWA system has a support a CDMA communication. Different spread strong capability to anti-multipath, anti-interference, spectrum schemes have been studied to support mul- and anti-frequency-selective fading (Yang and Yang, tiusers (Kumar and Kumar, 2015). The results showed 2008). Thus, the SC-UWA communication technol- that, compared with the Walsh-Hadamard (WH) code ogy with the spread spectrum technique is one of the scheme, the carrier interferometry (CI) code scheme solutions for long distance stable and reliable com- has a lower bit error rate (BER) and a better perfor- munication in a complex environment (Sozer et al., mance in supporting multiusers. 1999; Yoshizawa et al., 2017). Moreover, the direct Doppler estimation and compensation is an im- sequence spread spectrum (DS/SS) scheme is a good portant part of high-performance underwater acoustic approach for implementing code division multiple communication. It includes mainly two technical access (CDMA) based underwater acoustic networks methods. One is the data-aided Doppler estimation (Yang, 2016). method, which involves an additional part to the data For most DS/SS underwater acoustic commu- frame, such as a chirp signal, a single frequency sig- nication systems, the information data are modulated nal, and a pseudo random sequence. Based on a cer- by a pseudo random sequence, such as the gold se- tain tolerance of Doppler shift, the chirp signal was quence, the m sequence, and the chaotic sequence used for Doppler frequency shift estimation by (Heidari-Bateni and McGillem, 1994; Palmese et al., transmitting ‘up’ and ‘down’ chirp signals to calculate 2007; Liu et al., 2017). A wideband signal is sent to the time shift (Diamant et al., 2012); the results the channel after carrier modulation. For a binary showed that a quadratic-frequency modulation (QFM) sequence, such as the gold sequence and the m se- chirp signal is more resilient to Doppler shift than a quence, the received signal is demodulated by a cor- linear frequency-modulation (LFM) chirp signal. The relation operation of the received signal and a copy of traditional Doppler factor estimation method involves the pseudo random sequence used by the transmitter a cross-correlation between the received aid data and (Huang and Sang, 2007; Zhang et al., 2007). For a the local copy of the aid data (Sharif et al., 2000), non-binary sequence, such as the chaotic sequence, which may sometimes fail to detect the correlation dual unscented Kalman filtering is used to recover the peak or have a peak fracture. To solve this problem, transmitted signal (Luca et al., 2005). Moreover, the He et al. (2010) proposed a delay cross-correlation chaotic sequence can be used in a secure communi- Doppler factor estimation method that uses the re- cation system (Shu et al., 2015). To improve the ceived aid data to perform a delay cross-correlation communication rate, the M-ary code shift keying with the received aid data. The data-aided methods scheme (Sun et al., 2014) uses different spread se- may reduce the effective data rate. The other method quences to modulate the different information data is the none-data-aided blind Doppler estimation. 974 Liu et al. / Front Inform Technol Electron Eng 2018 19(8):972-983 Cotae and Yang (2010) proposed a cyclostationary In summary, a large number of studies on un- blind Doppler estimation method that uses the derwater acoustic DS/SS systems have been carried m-sequence and the properties of the spectrum cor- out. Different signal processing algorithms have been relation function (SCF) to conduct Doppler estima- applied in these systems. For DS/SS systems, the tion. Simulation results showed that it could estimate larger the spread spectrum gain, the better the system the Doppler frequency shift well. Several blind Dop- BER performance. However, the larger the spread pler estimation methods were compared
Recommended publications
  • An Evaluation of Software Defined Radio – Main Document
    UNCLASSIFIED This document has been produced by QinetiQ, Defence and Technology Systems for Ofcom under contract number 410000262 and provides an evaluation of software defined radio. An Evaluation of Software Defined Radio – Main Document Editor: Dr. Taj A. Sturman QinetiQ/D&TS/COM/PUB0603670/Version 1.0 15th Mar 2006 Requests for wider use or release must be sought from: QinetiQ Ltd Cody Technology Park Farnborough Hampshire GU14 0LX Copyright © QinetiQ Ltd 2006 UNCLASSIFIED UNCLASSIFIED Administration page Customer Information Customer reference number N/A Project title An Evaluation of Software Defined Radio – Main Document Customer Organisation The Office of Communications (Ofcom) Customer contact Ahmad Atefi Contract number 410000262 Milestone number Of/Qi/002 Date due March 2006 Editor Taj A. Sturman MAL (801) 5378 PB315, QinetiQ, St. Andrews Rd, WR14 3PS [email protected] Principal authors Alister Burr University of York Julie Fitzpatrick QinetiQ Tim James Multiple Access Communications Ltd. Markus Rupp Technical University of Vienna Stephan Weiss University of Southampton Release Authority Name Ian Cox Post Business Group Manager Date of issue March 2006 Record of changes Issue Date Detail of Changes Version 0.1 05th Aug 2005 Creation of initial document including structure. Version 0.2 25th Aug 2005 First draft for review. Version 0.3 5th Mar 2006 Incorporation of reviewed comments. Version 1.0 15th Mar 2006 First Issue. QinetiQ/D&TS/COM/PUB0603670/Version 1.0 Page 2 UNCLASSIFIED UNCLASSIFIED Executive Summary This document provides an evaluation of software defined radio (SDR). In an SDR, some or all of the signal path and baseband processing is implemented by software, normally in the digital domain, that is, the term SDR refers to how the lower layer functionality is implemented.
    [Show full text]
  • A General Framework for Analyzing, Characterizing, and Implementing Spectrally Modulated, Spectrally Encoded Signals
    Air Force Institute of Technology AFIT Scholar Theses and Dissertations Student Graduate Works 9-2006 A General Framework for Analyzing, Characterizing, and Implementing Spectrally Modulated, Spectrally Encoded Signals Marcus L. Roberts Follow this and additional works at: https://scholar.afit.edu/etd Part of the Systems and Communications Commons Recommended Citation Roberts, Marcus L., "A General Framework for Analyzing, Characterizing, and Implementing Spectrally Modulated, Spectrally Encoded Signals" (2006). Theses and Dissertations. 3336. https://scholar.afit.edu/etd/3336 This Dissertation is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact [email protected]. A General Framework for Analyzing, Characterizing, and Implementing Spectrally Modulated, Spectrally Encoded Signals DISSERTATION Marcus L. Roberts, Major, USAF AFIT/DS/ENG/06-06 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. The views expressed in this dissertation are those of the author and do not reflect the official policy or position of the United States Air Force, Department of Defense, or the United States Government. AFIT/DS/ENG/06-06 A General Framework for Analyzing, Characterizing, and Implementing Spectrally Modulated, Spectrally Encoded Signals DISSERTATION Presented to the Faculty Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Marcus L.
    [Show full text]
  • Abstract a Software-Defined Radio Based on the Unified
    ABSTRACT A SOFTWARE-DEFINED RADIO BASED ON THE UNIFIED SMSE FRAMEWORK by Robert James Graessle The purpose of this research was to implement a software-defined radio based on a recently developed framework for constructing various spectrally-modulated, spectrally-encoded (SMSE) signals. Two candidate waveforms (MC-CDMA and TDCS) are selected to demonstrate the capabilities of the framework, and they are modulated using antipodal signaling. A transmitter and receiver are each implemented on separate digital signal processor starting kits (DSK). A channel simulator consisting of additive white Gaussian noise and narrowband BPSK interferers is implemented on an FPGA. Burst transmissions from transmitter to receiver through the channel simulator are conducted to evaluate the bit-error rate performance of the system. Results from floating point simulation, fixed point simulation and hardware implementation are presented. The bit-error results from the hardware implementation closely match theoretical results. Also, TDCS is shown to mitigate effects of narrowband interference compared to MC- CDMA. A SOFTWARE-DEFINED RADIO BASED ON THE UNIFIED SMSE FRAMEWORK A Thesis Submitted to the Faculty of Miami University in partial fulfillment of the requirements for the degree of Master of Science Department of Electrical & Computer Engineering by Robert James Graessle Miami University Oxford, Ohio 2010 Advisor________________________ Dr. Chi-Hao Cheng Reader_________________________ Dr. Dmitriy Garmatyuk Reader_________________________ Dr. Vasu Chakravarthy
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,628,231 B2 Shattil (45) Date of Patent: Apr
    USOO9628231B2 (12) United States Patent (10) Patent No.: US 9,628,231 B2 Shattil (45) Date of Patent: Apr. 18, 2017 (54) SPREADING AND PRECODING IN OFDM (58) Field of Classification Search None (71) Applicant: Genghiscomm Holdings, LLC, See application file for complete search history. Boulder, CO (US) (72) Inventor: Steve Shattil, Cheyenne, WY (US) (56) References Cited (73) Assignee: Genghiscomm Holdings, LLC, U.S. PATENT DOCUMENTS Boulder, CO (US) 4,164,714 A 8, 1979 Swanson 4,471,399 A 9, 1984 Udren (*) Notice: Subject to any disclaimer, the term of this (Continued) patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days. FOREIGN PATENT DOCUMENTS (21) Appl. No.: 15/149.382 JP HO833.1093 12/1996 WO 0237771 5, 2002 (22) Filed: May 9, 2016 OTHER PUBLICATIONS (65) Prior Publication Data US 2016/O254889 A1 Sep. 1, 2016 ITU-T G.992.1, “Asymmetric Digital Subscriber Line (ADSL) Related U.S. Application Data transceivers' Jun. 1999. (G.dmt). (Continued) (60) Continuation-in-part of application No. 14/727,769, filed on Jun. 1, 2015, which is a continuation of Primary Examiner — Diane Lo (Continued) (74) Attorney, Agent, or Firm — Steven J Shattil (51) Int. Cl. (57) ABSTRACT H04L 5/00 (2006.01) An OFDM transmitter spreads original data symbols with a HD4L 2/24 (2006.01) complex-valued spreading matrix derived from a discrete (Continued) Fourier transform. Spread data symbols are mapped to (52) U.S. Cl. OFDM Subcarriers. Spreading and mapping are configured CPC ........ H04L 5/0035 (2013.01); H04J 13/0003 to produce a transmitted spread-OFDM signal with a low (2013.01); H04J 13/004 (2013.01); H04L peak-to-average power ratio (PAPR) and orthogonal code 12/2854 (2013.01); H04L 27/2602 (2013.01); spaces.
    [Show full text]
  • Multicarrier Cdma Systems with Mimo Technology
    MULTICARRIER CDMA SYSTEMS WITH MIMO TECHNOLOGY A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Engineering and Physical Sciences 2010 By Antonis Phasouliotis MACS Research Group School of Electrical and Electronic Engineering Contents List of Abbreviations 9 List of Notations 11 Abstract 12 Declaration 13 Copyright 14 Acknowledgements 17 1 Introduction 18 1.1 Wireless Communication & Cellular Systems Background . 18 1.2 Motivation . 20 1.3 Achievements & Contributions . 22 1.4 List of publications . 23 1.5 Thesis Outline . 24 2 Theoretical Background 26 2.1 Wireless Communication Channels . 26 2.1.1 Large-scale Path Loss and Shadowing . 27 2.1.2 Small-scale Multipath Fading . 28 2 2.1.2.1 Multipath Channel Model . 29 2.1.2.2 Multipath Channel Characteristics . 31 2.1.3 Fading Channels . 32 2.1.3.1 Flat Fading . 32 2.1.3.2 Frequency Selective Fading . 33 2.1.4 Diversity Techniques . 33 2.2 Multicarrier and Multiple Access Systems . 35 2.2.1 Orthogonal Frequency Division Multiplexing (OFDM) . 36 2.2.1.1 Principle of OFDM . 36 2.2.1.2 OFDM System Model . 37 2.2.1.3 Performance of OFDM . 39 2.2.2 Code Division Multiple Access (CDMA) . 41 2.2.2.1 Direct Sequence Code Division Multiple Access (DS-CDMA) . 41 2.2.2.2 Performance of DS-CDMA . 43 2.2.3 Multi Carrier Code Division Multiple Access (MC-CDMA) 44 2.2.3.1 System Model . 45 2.2.3.2 Performance of MC-CDMA .
    [Show full text]
  • PHY-Layer Resiliency in OFDM Communications: a Tutorial
    292 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 17, NO. 1, FIRST QUARTER 2015 PHY-Layer Resiliency in OFDM Communications: A Tutorial Chowdhury Shahriar, Student Member, IEEE,MattLaPan,Student Member, IEEE, Marc Lichtman, Student Member, IEEE, T. Charles Clancy, Senior Member, IEEE, Robert McGwier, Senior Member, IEEE, Ravi Tandon, Member, IEEE, Shabnam Sodagari, Senior Member, IEEE, and Jeffrey H. Reed, Fellow, IEEE Abstract—This tutorial paper addresses the physical layer se- In recent years, the Federal Communications Commission curity concerns and resiliency of Orthogonal Frequency Division (FCC) has freed up the 700 MHz band (running from 698– Multiplexing (OFDM) communications; the de facto air-interface 806 MHz) as a result of the Digital Television transition and of most modern wireless broadband standards including 3GPP Long Term Evolution (LTE) and WiMAX. The paper starts with a made it available for both commercial wireless and public brief introduction to the OFDM waveform and then reviews the ro- safety communications [1]. The FCC has allocated portions bustness of the existing OFDM waveform in the presence of noise, of the 700 MHz band (24 MHz bandwidth) to establish a multipath fading, and interference. The paper then moves on to nationwide, interoperable wireless broadband communications build comprehensive adversarial models against OFDM wave- network that will benefit state and local public safety users. forms. Robustness of OFDM is first investigated under AWGN noise and noise-like jamming attack scenarios, then under uncor- FCC then auctioned licenses to use the remaining 700 MHz related yet colored interferences from modulated sources (both band for commercial mobile broadband services for smart- intentional and unintentional).
    [Show full text]