Studies on Turkey Parvoviruses Dissertation

Total Page:16

File Type:pdf, Size:1020Kb

Studies on Turkey Parvoviruses Dissertation STUDIES ON TURKEY PARVOVIRUSES DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Maria Vittoria Murgia Graduate Program in Veterinary Preventive Medicine The Ohio State University 2012 Dissertation Committee: Dr. Y. M. Saif (Advisor) Dr. D. J. Jackwood Dr. C-W Lee Dr. J. LeJeune Copyrighted by Maria Vittoria Murgia 2012 Abstract Turkey parvovirus belongs to the family Parvoviridae, subfamily Parvovirinae, genus parvovirus. It was identified in turkeys with enteritis for the first time in 1983. Since then there were no further reports on turkey parvovirus in the United States (US) until 2008 when Zsak et al. determined the partial sequence of the non structural (NS) gene of chicken and turkey parvoviruses and then in 2009 developed a PCR which was used to test fecal samples collected from various US states. A high prevalence of parvoviruses was detected by PCR in that study; however there was no information on the health status of the flocks from which the samples were collected. Moreover, there is no information regarding the pathogenesis of turkey parvoviruses and their involvement in the enteric diseases of poultry. The objectives of our studies were: 1. To determine the prevalence of parvovirus in various US states in different years 2. To determine the presence of other viruses in turkey poults in conjunction with parvoviruses 3. To develop a sensitive diagnostic assay for the detection of turkey parvoviruses in fecal samples 4. To determine the pathogenicity of parvovirus in SPF turkey poults. Intestinal content, feces or litter samples collected between 2000 and 2010 in four different states (Virginia, North Carolina, Pennsylvania, and Ohio) were used to address ii the first two objectives. Those samples were tested for parvovirus and other enteric viruses using PCR and RT-PCR with previously published primers and also with transmission electron microscopy. The overall prevalence of parvovirus (71.5%) was comparable with the previous studies. In our study, we had samples collected from birds of a wider age range and we compared the prevalence of parvoviruses in two age groups, 1-7 weeks and 8-19 weeks of age. We found that although parvovirus was widespread in both age groups, a significantly higher prevalence was detected in the older birds. Moreover, in the majority of the cases, parvovirus was detected in conjunction with other enteric viruses, such as astrovirus, reovirus and rotavirus. To support future surveillance and research, we develop Real-Time PCR test targeting a conserved region of the NS gene. This test showed the same analytical sensitivity and specificity compared to conventional PCR test and good intra and inter-assay repeatability. Moreover, it was shown to detect parvovirus’ DNA in field fecal samples. The real-time PCR is faster and it is possible to quantify the DNA which are advantages compared to the conventional PCR. Since we were not able to purify parvovirus, we determine the pathogenesis of parvovirus in combination with astrovirus and compare the outcome to that of astrovirus alone. In two different in vivo trials using 2-4 week-old SPF turkeys, we observed early replication of astrovirus in intestine and the parvovirus was detected in later time points when astrovirus shedding decreased. Our study shows potential viral interference among different enteric viruses and also shed light into the persistence or higher prevalence of parvovirus in turkeys of older ages in the field compared to astrovirus. iii Dedicated to my parents, my brother and my sister iv Acknowledgments I am very obliged to my advisor Dr. Yehia M. Saif for his guidance and support throughout my studies. He showed me how to look at everything with a positive attitude. He had always words of encouragement especially when the experiments did not work as expected. While working in his lab under his supervision I have grown as a scientist as well as a person and I will treasure this great experience for all of my life. I am grateful to my committee members Dr. Daral J. Jackwood, Dr. Chang-Won Lee, and Dr. Jeff LeJeune for their suggestions and comments. I am very thankful to Dr. Qiuhong Wang for her precious suggestions and comments. She always kept her door open when I needed her opinion. I would like to thank my labmates Dr. Abdul Rauf and former labmates Dr. Hadi Yassine and Dr. Yuxin Tang for their technical support and friendship. I am very thankful to Dr. Alex Rodriguez-Palaci and Dr. Kwonil Jung for their technical support and suggestions. I would like to thank Dr. Juliette Hanson, Kingsly Belin, Andrew Wright, Greg Myers, and Todd Root for their help with the animal care. I am very thankful to Ms. Robin Weimer and Ms. Hannah Gehman for their kindness and help during all these years. I am thankful to my fiancé Christian Cruz and his family for sharing with me this experience v Last but not least, I am obliged to my parents, Ms. Anna Franca Diana and Mr. Severino Murgia, by brother, Francesco, and my sister, Valeria, for supporting always my choices and for being close to me even if there is an ocean that physically separates us. I am appreciative to my aunt Mrs. Silvana Murgia, my grandmas Ms. Maria Mameli and Ms. Bonaria Argiolas for their encouragements throughout my life. I also would like to remember my grandpa Mr. Salvatore Murgia, which passed away few years ago, for his smile and his words of support. vi Vita July 1996 ........................................................High School Diploma, ........................................................................Liceo Classico “De Castro”, Oristano, Italy October 2003 ..................................................Laurea in Biotechnology, Bologna ........................................................................University, Bologna, Italy October to March 2004 ..................................Graduate visitor at the Virology Laboratory, .................................... Department of Veterinary Public Health and ....................................Animal Pathology, University of Bologna, ....................................Bologna, Italy March 2003 to July 2004 ...............................Visiting Scholar at Food animal Health ....................................Research Program, OARDC/OSU July 2004 to February 2005 ...........................Contract at Food animal Health ....................................Research Program, OARDC/OSU April 2005 to November 2005 .......................Contract at the Istituto Zooprofilattico ....................................Sperimentale Della Lombardia e Dell’Emilia ....................................Romagna, Brescia, Italy May 2006 to present ......................................Graduate Research Associate, Veterinary Preventive Medicine, The Ohio State University vii Publications 1. Tibor Farkas, Brittney Fey, Edwin Hargitt III, Mark Parcells, Brian Ladman, Maria Murgia, Yehia Saif. Detection of novel picornaviruses in chickens and turkeys. Virus Gene, accepted for publication November 2011. 2. Abdul Rauf, Mahesh Khatri, Maria V. Murgia, Kwonil Jung and Yehia M. Saif. Differential modulation of cytokine, chemokine and Toll like receptor expression in chickens infected with classical and variant infectious bursal disease virus. Veterinary Research (2011), 42(1):85. 3. Rauf A., Khatri M., Murgia M.V., Saif Y.M. Expression of perforin-granzyme pathway genes in the bursa of infectious bursal disease virus-infected chickens. Dev Comp Immunol (2011), 35(5): 620-627. 4. Tang, Y., Murgia, M.V., Ward, L., Saif, Y. M. Pathogenicity of turkey astroviruses in turkey embryos and poults. Avian Diseases (2006), 50(4): 526- 531. 5. Tang, Y., Murgia, M.V., Saif, Y. M. Molecular characterization of the capsid gene of two serotypes of turkey astroviruses. Avian Diseases (2005), 49(4): 514- 519. Fields of Study Major Field: Veterinary Preventive Medicine viii Table of Contents STUDIES ON TURKEY PARVOVIRUSES .................................................................. 1 DISSERTATION .............................................................................................................. 1 Abstract .............................................................................................................................. ii Acknowledgments ............................................................................................................. v Vita ................................................................................................................................... vii Publications .................................................................................................................... viii Fields of Study ................................................................................................................ viii Table of Contents ............................................................................................................. ix List of Tables ................................................................................................................... xii List of Figures ................................................................................................................. xiii Chapter 1: Literature Review of Animal Autonomously Replicating Parvoviruses .. 1 1.1 Etiology ................................................................................................................ 1 1.2 Epidemiology ...................................................................................................
Recommended publications
  • Molecular Analysis of Carnivore Protoparvovirus Detected in White Blood Cells of Naturally Infected Cats
    Balboni et al. BMC Veterinary Research (2018) 14:41 DOI 10.1186/s12917-018-1356-9 RESEARCHARTICLE Open Access Molecular analysis of carnivore Protoparvovirus detected in white blood cells of naturally infected cats Andrea Balboni1, Francesca Bassi1, Stefano De Arcangeli1, Rosanna Zobba2, Carla Dedola2, Alberto Alberti2 and Mara Battilani1* Abstract Background: Cats are susceptible to feline panleukopenia virus (FPV) and canine parvovirus (CPV) variants 2a, 2b and 2c. Detection of FPV and CPV variants in apparently healthy cats and their persistence in white blood cells (WBC) and other tissues when neutralising antibodies are simultaneously present, suggest that parvovirus may persist long-term in the tissues of cats post-infection without causing clinical signs. The aim of this study was to screen a population of 54 cats from Sardinia (Italy) for the presence of both FPV and CPV DNA within buffy coat samples using polymerase chain reaction (PCR). The DNA viral load, genetic diversity, phylogeny and antibody titres against parvoviruses were investigated in the positive cats. Results: Carnivore protoparvovirus 1 DNA was detected in nine cats (16.7%). Viral DNA was reassembled to FPV in four cats and to CPV (CPV-2b and 2c) in four cats; one subject showed an unusually high genetic complexity with mixed infection involving FPV and CPV-2c. Antibodies against parvovirus were detected in all subjects which tested positive to DNA parvoviruses. Conclusions: The identification of FPV and CPV DNA in the WBC of asymptomatic cats, despite the presence of specific antibodies against parvoviruses, and the high genetic heterogeneity detected in one sample, confirmed the relevant epidemiological role of cats in parvovirus infection.
    [Show full text]
  • Genetic Content and Evolution of Adenoviruses Andrew J
    Journal of General Virology (2003), 84, 2895–2908 DOI 10.1099/vir.0.19497-0 Review Genetic content and evolution of adenoviruses Andrew J. Davison,1 Ma´ria Benko´´ 2 and Bala´zs Harrach2 Correspondence 1MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK Andrew Davison 2Veterinary Medical Research Institute, Hungarian Academy of Sciences, H-1581 Budapest, [email protected] Hungary This review provides an update of the genetic content, phylogeny and evolution of the family Adenoviridae. An appraisal of the condition of adenovirus genomics highlights the need to ensure that public sequence information is interpreted accurately. To this end, all complete genome sequences available have been reannotated. Adenoviruses fall into four recognized genera, plus possibly a fifth, which have apparently evolved with their vertebrate hosts, but have also engaged in a number of interspecies transmission events. Genes inherited by all modern adenoviruses from their common ancestor are located centrally in the genome and are involved in replication and packaging of viral DNA and formation and structure of the virion. Additional niche-specific genes have accumulated in each lineage, mostly near the genome termini. Capture and duplication of genes in the setting of a ‘leader–exon structure’, which results from widespread use of splicing, appear to have been central to adenovirus evolution. The antiquity of the pre-vertebrate lineages that ultimately gave rise to the Adenoviridae is illustrated by morphological similarities between adenoviruses and bacteriophages, and by use of a protein-primed DNA replication strategy by adenoviruses, certain bacteria and bacteriophages, and linear plasmids of fungi and plants.
    [Show full text]
  • ICTV Virus Taxonomy Profile: Parvoviridae
    ICTV VIRUS TAXONOMY PROFILES Cotmore et al., Journal of General Virology 2019;100:367–368 DOI 10.1099/jgv.0.001212 ICTV ICTV Virus Taxonomy Profile: Parvoviridae Susan F. Cotmore,1,* Mavis Agbandje-McKenna,2 Marta Canuti,3 John A. Chiorini,4 Anna-Maria Eis-Hubinger,5 Joseph Hughes,6 Mario Mietzsch,2 Sejal Modha,6 Mylene Ogliastro,7 Judit J. Penzes, 2 David J. Pintel,8 Jianming Qiu,9 Maria Soderlund-Venermo,10 Peter Tattersall,1,11 Peter Tijssen12 and ICTV Report Consortium Abstract Members of the family Parvoviridae are small, resilient, non-enveloped viruses with linear, single-stranded DNA genomes of 4–6 kb. Viruses in two subfamilies, the Parvovirinae and Densovirinae, are distinguished primarily by their respective ability to infect vertebrates (including humans) versus invertebrates. Being genetically limited, most parvoviruses require actively dividing host cells and are host and/or tissue specific. Some cause diseases, which range from subclinical to lethal. A few require co-infection with helper viruses from other families. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the Parvoviridae, which is available at www.ictv.global/report/parvoviridae. Table 1. Characteristics of the family Parvoviridae Typical member: human parvovirus B19-J35 G1 (AY386330), species Primate erythroparvovirus 1, genus Erythroparvovirus, subfamily Parvovirinae Virion Small, non-enveloped, T=1 icosahedra, 23–28 nm in diameter Genome Linear, single-stranded DNA of 4–6 kb with short terminal hairpins Replication Rolling hairpin replication, a linear adaptation of rolling circle replication. Dynamic hairpin telomeres prime complementary strand and duplex strand-displacement synthesis; high mutation and recombination rates Translation Capped mRNAs; co-linear ORFs accessed by alternative splicing, non-consensus initiation or leaky scanning Host range Parvovirinae: mammals, birds, reptiles.
    [Show full text]
  • Protoparvovirus Knocking at the Nuclear Door
    viruses Review Protoparvovirus Knocking at the Nuclear Door Elina Mäntylä 1 ID , Michael Kann 2,3,4 and Maija Vihinen-Ranta 1,* 1 Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, FI-40500 Jyvaskyla, Finland; elina.h.mantyla@jyu.fi 2 Laboratoire de Microbiologie Fondamentale et Pathogénicité, University of Bordeaux, UMR 5234, F-33076 Bordeaux, France; [email protected] 3 Centre national de la recherche scientifique (CNRS), Microbiologie Fondamentale et Pathogénicité, UMR 5234, F-33076 Bordeaux, France 4 Centre Hospitalier Universitaire de Bordeaux, Service de Virologie, F-33076 Bordeaux, France * Correspondence: maija.vihinen-ranta@jyu.fi; Tel.: +358-400-248-118 Received: 5 September 2017; Accepted: 29 September 2017; Published: 2 October 2017 Abstract: Protoparvoviruses target the nucleus due to their dependence on the cellular reproduction machinery during the replication and expression of their single-stranded DNA genome. In recent years, our understanding of the multistep process of the capsid nuclear import has improved, and led to the discovery of unique viral nuclear entry strategies. Preceded by endosomal transport, endosomal escape and microtubule-mediated movement to the vicinity of the nuclear envelope, the protoparvoviruses interact with the nuclear pore complexes. The capsids are transported actively across the nuclear pore complexes using nuclear import receptors. The nuclear import is sometimes accompanied by structural changes in the nuclear envelope, and is completed by intranuclear disassembly of capsids and chromatinization of the viral genome. This review discusses the nuclear import strategies of protoparvoviruses and describes its dynamics comprising active and passive movement, and directed and diffusive motion of capsids in the molecularly crowded environment of the cell.
    [Show full text]
  • THE ROLE of BOVINE ADENOVIRUS-3 PROTEIN V (Pv) in VIRUS REPLICATION
    THE ROLE OF BOVINE ADENOVIRUS-3 PROTEIN V (pV) IN VIRUS REPLICATION A Thesis Submitted to the Faculty of Graduate Studies and Research in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the Department of Veterinary Microbiology University of Saskatchewan Saskatoon By Xin Zhao © Copyright Xin Zhao, June 2016. All rights reserved PERMISSION TO USE In presenting this thesis in partial fulfillment of the requirements for a postgraduate degree from the University of Saskatchewan, I agree that the libraries of this university may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, whole or in part, for scholarly purposes may be granted by the professors who supervised my thesis work or in their absence, the Head of the Department or the Dean of the college in which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without any written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis. Request for permission to copy or to make other use of material in this thesis in whole or part should be addressed to: Head of the Department of Veterinary Microbiology University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B4 i ABSTRACT Bovine adenovirus type 3 (BAdV-3), which is a non-enveloped icosahedral particle with a double-stranded DNA genome of 34,446 base pair, has been developed as a vaccine vector.
    [Show full text]
  • Avian Influenza Adenovirus-Vectored in Ovo Vaccination: Combination with Marek’S Disease Vaccine
    Avian Influenza Adenovirus-Vectored in Ovo Vaccination: Combination with Marek’s Disease Vaccine by Cassandra Jean Breedlove A thesis submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Master of Science Auburn, Alabama August 6, 2011 Keywords: Avian Influenza virus, recombinant vaccine, adenovirus, chickens Approved by Haroldo Toro, Chair, Professor of Pathobiology Stuart Price, Associate Professor of Pathobiology Vicky van Santen, Professor of Pathobiology Abstract Protective immunity against avian influenza (AI) can be elicited in chickens in a single-dose regimen by in ovo vaccination with a replication competent adenovirus (RCA)-free human adenovirus serotype 5 (Ad)-vector encoding either the AI virus H5 (AdH5) or H7 hemagglutinins (HA). In ovo vaccination is likely one of the most efficient mass vaccination delivery routes in commercial chickens. From an applied perspective, it is relevant to clarify whether other vaccines routinely delivered by the same route would interfere with Ad-vector vaccination when applied simultaneously. Marek’s disease virus (MDV) vaccination is routinely performed in ovo in the U.S. poultry industry. The overall aim of this study was to evaluate the effects of combined in ovo vaccination with the experimental AdH5 recombinant vaccine and commercially available MDV vaccines. When the AdH5 vaccine was used in combination with MDV vaccines, chickens responding to the AdH5 vaccine had similar AI antibody levels compared to AdH5-only vaccinated birds. However, combined vaccinated groups showed reduced vaccine coverage to AI which suggests some level of interference. The combination of AdH5 with MDV Rispens/HVT affected the vaccine coverage to AI more severely.
    [Show full text]
  • Diversity and Evolution of Viral Pathogen Community in Cave Nectar Bats (Eonycteris Spelaea)
    viruses Article Diversity and Evolution of Viral Pathogen Community in Cave Nectar Bats (Eonycteris spelaea) Ian H Mendenhall 1,* , Dolyce Low Hong Wen 1,2, Jayanthi Jayakumar 1, Vithiagaran Gunalan 3, Linfa Wang 1 , Sebastian Mauer-Stroh 3,4 , Yvonne C.F. Su 1 and Gavin J.D. Smith 1,5,6 1 Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; [email protected] (D.L.H.W.); [email protected] (J.J.); [email protected] (L.W.); [email protected] (Y.C.F.S.) [email protected] (G.J.D.S.) 2 NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077, Singapore 3 Bioinformatics Institute, Agency for Science, Technology and Research, Singapore 138671, Singapore; [email protected] (V.G.); [email protected] (S.M.-S.) 4 Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore 5 SingHealth Duke-NUS Global Health Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore 168753, Singapore 6 Duke Global Health Institute, Duke University, Durham, NC 27710, USA * Correspondence: [email protected] Received: 30 January 2019; Accepted: 7 March 2019; Published: 12 March 2019 Abstract: Bats are unique mammals, exhibit distinctive life history traits and have unique immunological approaches to suppression of viral diseases upon infection. High-throughput next-generation sequencing has been used in characterizing the virome of different bat species. The cave nectar bat, Eonycteris spelaea, has a broad geographical range across Southeast Asia, India and southern China, however, little is known about their involvement in virus transmission.
    [Show full text]
  • Diversity and Evolution of Novel Invertebrate DNA Viruses Revealed by Meta-Transcriptomics
    viruses Article Diversity and Evolution of Novel Invertebrate DNA Viruses Revealed by Meta-Transcriptomics Ashleigh F. Porter 1, Mang Shi 1, John-Sebastian Eden 1,2 , Yong-Zhen Zhang 3,4 and Edward C. Holmes 1,3,* 1 Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life & Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia; [email protected] (A.F.P.); [email protected] (M.S.); [email protected] (J.-S.E.) 2 Centre for Virus Research, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia 3 Shanghai Public Health Clinical Center and School of Public Health, Fudan University, Shanghai 201500, China; [email protected] 4 Department of Zoonosis, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China * Correspondence: [email protected]; Tel.: +61-2-9351-5591 Received: 17 October 2019; Accepted: 23 November 2019; Published: 25 November 2019 Abstract: DNA viruses comprise a wide array of genome structures and infect diverse host species. To date, most studies of DNA viruses have focused on those with the strongest disease associations. Accordingly, there has been a marked lack of sampling of DNA viruses from invertebrates. Bulk RNA sequencing has resulted in the discovery of a myriad of novel RNA viruses, and herein we used this methodology to identify actively transcribing DNA viruses in meta-transcriptomic libraries of diverse invertebrate species. Our analysis revealed high levels of phylogenetic diversity in DNA viruses, including 13 species from the Parvoviridae, Circoviridae, and Genomoviridae families of single-stranded DNA virus families, and six double-stranded DNA virus species from the Nudiviridae, Polyomaviridae, and Herpesviridae, for which few invertebrate viruses have been identified to date.
    [Show full text]
  • Soybean Thrips (Thysanoptera: Thripidae) Harbor Highly Diverse Populations of Arthropod, Fungal and Plant Viruses
    viruses Article Soybean Thrips (Thysanoptera: Thripidae) Harbor Highly Diverse Populations of Arthropod, Fungal and Plant Viruses Thanuja Thekke-Veetil 1, Doris Lagos-Kutz 2 , Nancy K. McCoppin 2, Glen L. Hartman 2 , Hye-Kyoung Ju 3, Hyoun-Sub Lim 3 and Leslie. L. Domier 2,* 1 Department of Crop Sciences, University of Illinois, Urbana, IL 61801, USA; [email protected] 2 Soybean/Maize Germplasm, Pathology, and Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, Urbana, IL 61801, USA; [email protected] (D.L.-K.); [email protected] (N.K.M.); [email protected] (G.L.H.) 3 Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 300-010, Korea; [email protected] (H.-K.J.); [email protected] (H.-S.L.) * Correspondence: [email protected]; Tel.: +1-217-333-0510 Academic Editor: Eugene V. Ryabov and Robert L. Harrison Received: 5 November 2020; Accepted: 29 November 2020; Published: 1 December 2020 Abstract: Soybean thrips (Neohydatothrips variabilis) are one of the most efficient vectors of soybean vein necrosis virus, which can cause severe necrotic symptoms in sensitive soybean plants. To determine which other viruses are associated with soybean thrips, the metatranscriptome of soybean thrips, collected by the Midwest Suction Trap Network during 2018, was analyzed. Contigs assembled from the data revealed a remarkable diversity of virus-like sequences. Of the 181 virus-like sequences identified, 155 were novel and associated primarily with taxa of arthropod-infecting viruses, but sequences similar to plant and fungus-infecting viruses were also identified.
    [Show full text]
  • Chronic Viral Infections Vs. Our Immune System: Revisiting Our View of Viruses As Pathogens
    Chronic Viral Infections vs. Our Immune System: Revisiting our view of viruses as pathogens Tiffany A. Reese Assistant Professor Departments of Immunology and Microbiology Challenge your idea of classic viral infection and disease • Define the microbiome and the virome • Brief background on persistent viruses • Illustrate how viruses change disease susceptibility – mutualistic symbiosis – gene + virus = disease phenotype – virome in immune responses Bacteria-centric view of the microbiome The microbiome defined Definition of microbiome – Merriam-Webster 1 :a community of microorganisms (such as bacteria, fungi, and viruses) that inhabit a particular environment and especially the collection of microorganisms living in or on the human body 2 :the collective genomes of microorganisms inhabiting a particular environment and especially the human body Virome Ø Viral component of the microbiome Ø Includes both commensal and pathogenic viruses Ø Viruses that infect host cells Ø Virus-derived elements in host chromosomes Ø Viruses that infect other organisms in the body e.g. phage/bacteria Viruses are everywhere! • “intracellular parasites with nucleic acids that are capable of directing their own replication and are not cells” – Roossinck, Nature Reviews Microbiology 2011. • Viruses infect all living things. • We are constantly eating and breathing viruses from our environment • Only a small subset of viruses cause disease. • We even carry viral genomes as part of our own genetic material! Diverse viruses all over the body Adenoviridae Picornaviridae
    [Show full text]
  • Module1: General Concepts
    NPTEL – Biotechnology – General Virology Module1: General Concepts Lecture 1: Virus history The history of virology goes back to the late 19th century, when German anatomist Dr Jacob Henle (discoverer of Henle’s loop) hypothesized the existence of infectious agent that were too small to be observed under light microscope. This idea fails to be accepted by the present scientific community in the absence of any direct evidence. At the same time three landmark discoveries came together that formed the founding stone of what we call today as medical science. The first discovery came from Louis Pasture (1822-1895) who gave the spontaneous generation theory from his famous swan-neck flask experiment. The second discovery came from Robert Koch (1843-1910), a student of Jacob Henle, who showed for first time that the anthrax and tuberculosis is caused by a bacillus, and finally Joseph Lister (1827-1912) gave the concept of sterility during the surgery and isolation of new organism. The history of viruses and the field of virology are broadly divided into three phases, namely discovery, early and modern. The discovery phase (1886-1913) In 1879, Adolf Mayer, a German scientist first observed the dark and light spot on infected leaves of tobacco plant and named it tobacco mosaic disease. Although he failed to describe the disease, he showed the infectious nature of the disease after inoculating the juice extract of diseased plant to a healthy one. The next step was taken by a Russian scientist Dimitri Ivanovsky in 1890, who demonstrated that sap of the leaves infected with tobacco mosaic disease retains its infectious property even after its filtration through a Chamberland filter.
    [Show full text]
  • Carnivore Protoparvovirus 1 Nonstructural Protein 1 (NS1) Gene
    Techne ® qPCR test Carnivore protoparvovirus 1 Nonstructural protein 1 (NS1) gene 150 tests For general laboratory and research use only Quantification of Carnivore protoparvovirus 1 genomes. 1 Advanced kit handbook HB10.03.07 Introduction to Carnivore protoparvovirus 1 Carnivore Protoparvovirus 1 is a genus in the virus family Parvoviridae, one of eight genera that contain viruses which infect vertebrate hosts and together make up the subfamily Parvovirinae. The conserved Nonstructural protein 1 (NS1) gene is the target for this genesig® detection kit. Carnivore protoparvovirus 1 is a small, linear, single-stranded DNA virus, with an icosahedral capsid that is non enveloped. The genome ranges from 4-6kb and as 2 open reading frames. 5’ ORF encodes 2 nonstructural proteins (NS1 & NS2) and the 3’ ORF encodes the capsid proteins. Five species are currently recognised, and most of these contain several different named viruses, virus strains, genotypes or serotypes. Due to the wide variety of types available, there are 4 species which prevalence is relatively high and are defined by the encoding for a particular replication protein, NS1 which is at least 85% identical to the protein encoded by other members of the species. Recognised species in genus Protoparvovirus include: Carnivore protoparvovirus 1 (includes canine arvovirus & feline parvovirus) Primate protoparvovirus 1 Rodent protoparvovirus Rodent protoparvovirus 2 (rat parvovirus 1) Ungulate parvovirus 1 (porcine parvovirus) Another virus in this group - Tusavirus 1 - has been reported from humans from Tunisia, Finland, Bhutan and Burkina Faso. Generalised symptoms are lethargy, vomiting, loss of appetite and diarrhoea which can cause dehydration. Carnivore protoparvovirus 1 in cats is known as Feline parvovirus (FPV) and can cause enteritis, panleukopnia and cerebellar ataxia in cats.Carnivore protoparvovirus 1 in dogs is called Canine parvovirus (CPV), can cause intestinal and lifelong cardiac disease in dogs.
    [Show full text]