Working Minutes of the Ephmra Classification Committee

Total Page:16

File Type:pdf, Size:1020Kb

Working Minutes of the Ephmra Classification Committee EphMRA Classification Committee August 2018 Provisional 2019 EphMRA ATC Developments The following new class structures were voted on by EphMRA/PBIRG in May/June 2018 and agreed in principle. These structures will now be used in the next part of the development process which is the detailed refinement of the rules. Please note that these new class structures are provisional at this time. The 2019 codes, descriptions and Guideline text will be finalised and published by the Committee at the end of 2018. The new structures then come into effect from the beginning of 2019. Monoclonal antibody antineoplastics L1G MONOCLONAL ANTIBODY ANTINEOPLASTICS L1G1 Monoclonal antibody antineoplastics, CD20 (new) Includes products containing obinutuzumab, ofatumumab, rituximab, rituximab with hyaluronidase, etc L1G2 Monoclonal antibody antineoplastics, VEGF/VEGFR (new) Includes products containing bevacizumab, ramucirumab, etc. L1G3 Monoclonal antibody antineoplastics, HER-2 (new) Includes products containing margetuximab, pertuzumab, trastuzumab, trastuzumab emtansine, etc L1G4 Monoclonal antibody antineoplastics, EGFR (new) Includes products containing cetuximab, necitumumab, nimotuzumab, panitumumab, etc. L1G5 Monoclonal antibody antineoplastics, PD-1/PD-L1 (new) Includes products containing atezolizumab, avelumab, durvalumab, nivolumab, pembrolizumab, etc. L1G9 Monoclonal antibody antineoplastics, other (new) Includes antibodies with other targets including other CD targets, CTLA-4 (ipilimumab), etc. Includes antibody drug conjugates (ADCs) if not classified with the target class (brentuximab vedotin, gemtuzumab ozogamicin, inotuzumab ozogamicin). Includes radio-labelled antibodies (ibritumomab tiuxetan, tositumomab iodine-131). Includes alemtuzumab, blinatumomab, brentuximab vedotin, catumaxomab, daratumumab, dinutuximab, elotuzumab, gemtuzumab ozogamicin, ibritumomab ©EphMRA 2018 Page 1 EphMRA Classification Committee August 2018 tiuxetan, inotuzumab ozogamicin, ipilimumab, mogamulizumab, olaratumab, racotumomab, rovalpituzumab tesirine, siltuximab, tositumomab, tositumomab iodine- 131, etc. Protein kinase inhibitor antineoplastics L1H PROTEIN KINASE INHIBITOR ANTINEOPLASTICS L1H1 Protein kinase inhibitor antineoplastics, BCR-ABL (new) Includes products containing bosutinib, dasatinib, imatinib, nilotinib, ponatinib, radotinib, etc. L1H2 Protein kinase inhibitor antineoplastics, EGFR (new) Includes products containing afatinib, erlotinib, gefitinib, icotinib, olmutinib, osimertinib, etc. L1H3 Protein kinase inhibitor antineoplastics, ALK (new) Includes products containing alectinib, brigatinib, ceritinib, crizotinib, etc. L1H4 Protein kinase inhibitor antineoplastics, BRAF/MEK (new) Includes products containing cobimetinib, dabrafenib, trametinib, vemurafenib, etc. L1H5 Protein kinase inhibitor antineoplastics, CDK 4/6 (new) Includes products containing abemaciclib, palbociclib, ribociclib, etc. L1H9 Protein kinase inhibitor antineoplastics, other (new) Includes all other protein kinase inhibitor antineoplastics, for example those inhibiting HER-2, JAK 1-2, BTK, Pi3K, etc. Includes acalabrutinib, apatinib, axitinib, cabozantinib, everolimus, ibrutinib, idelalisib, lapatinib, lenvatinib, midostaurin, neratinib, nintedanib, pazopanib, regorafenib, ruxolitinib, sorafenib, sunitinib, temsirolimus, tivozanib, vandetanib, etc. ©EphMRA 2018 Page 2 EphMRA Classification Committee August 2018 Lidomide antineoplastics L1X2 Lidomide antineoplastics (new) Includes products containing lenalidomide, pomalidomide or thalidomide for multiple myeloma and other cancers. Products containing thalidomide for both cancer and erythema nodosum leprosum (ENL) are classified here. Products containing thalidomide for ENL only are classified in L4X. PARP inhibitor antineoplastics L1X4 PARP inhibitor antineoplastics (new) Includes products containing niraparib, olaparib, rucaparib, talazoparib, veliparib, etc. CAR T-cell therapies L1X5 CAR T-cell therapies (new) Includes products containing axicabtagene ciloleucel, tisagenlecleucel, etc. LAMA/LABA/corticosteroid combinations R3L3 Long-acting anticholinergic combinations with both long-acting B2-agonists and with (new) corticosteroids, inhalant Includes products containing a triple combination of a long-acting anticholinergic, a long-acting B2-agonist and a corticosteroid. Includes glycopyrronium plus formoterol plus beclomethasone, tiotropium bromide plus formoterol plus ciclesonide, umeclidinium bromide plus vilanterol plus fluticasone, etc. ©EphMRA 2018 Page 3 .
Recommended publications
  • 02-09-2017 06:01:33Pm Esmo.Org Type
    08-09-2017 10:00 - 11:30 Type: Special Session Palma Title: Medical oncology as a contributor to global policy: How to improve national cancer Auditorium plans Chair(s): G. Curigliano, IT; L. Stevens, US 10:00 - 10:05 Introduction L. Stevens, Rio De Janeiro, BR 10:05 - 10:20 Overview of NCCP, including forming the multi-disciplinary and multi-sectoral partnership A. Ilbawi, Geneva, CH 10:20 - 10:35 Example from Central Asia Leadership Forum D. Kaidarova, Almaty, KZ 10:35 - 10:50 Example from Central Europe J. Jassem, Gdańsk, PL 10:50 - 11:05 Example from Eastern Europe S. Krasny, Minsk, BY 11:05 - 11:30 Interactive Q&A G. Curigliano, Milan, IT Last update: 02-09-2017 06:01:33pm esmo.org 12:00 - 13:30 Type: Opening session Madrid Auditorium Title: Opening session and Award lectures Chair(s): F. Ciardiello, IT 12:00 - 12:10 ESMO Presidential Address F. Ciardiello, Naples, IT 12:10 - 12:15 EACR Presidential Address A. Berns, Amsterdam, NL 12:15 - 12:20 Welcome to Madrid M. Martin Jimenez, Madrid, ES 12:20 - 12:25 ESMO 2017 Scientific Address A. Sobrero, Genova, IT 12:25 - 12:30 EACR 2017 Scientific Address R. Marais, Manchester, GB 12:30 - 12:32 Presentation of the ESMO Award by C. Zielinski, Vienna, AT 12:32 - 12:47 ESMO Award lecture - Oncology: The importance of teamwork M. Martin Jimenez, Madrid, ES 12:47 - 12:49 Presentation of the ESMO Translational Research Award by C. Zielinski, Vienna, AT 12:49 - 13:04 ESMO Translational Research Award lecture: Monitoring and targeting colorectal cancer evolution A.
    [Show full text]
  • Pharmacologic Considerations in the Disposition of Antibodies and Antibody-Drug Conjugates in Preclinical Models and in Patients
    antibodies Review Pharmacologic Considerations in the Disposition of Antibodies and Antibody-Drug Conjugates in Preclinical Models and in Patients Andrew T. Lucas 1,2,3,*, Ryan Robinson 3, Allison N. Schorzman 2, Joseph A. Piscitelli 1, Juan F. Razo 1 and William C. Zamboni 1,2,3 1 University of North Carolina (UNC), Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA; [email protected] (J.A.P.); [email protected] (J.F.R.); [email protected] (W.C.Z.) 2 Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; [email protected] 3 Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-919-966-5242; Fax: +1-919-966-5863 Received: 30 November 2018; Accepted: 22 December 2018; Published: 1 January 2019 Abstract: The rapid advancement in the development of therapeutic proteins, including monoclonal antibodies (mAbs) and antibody-drug conjugates (ADCs), has created a novel mechanism to selectively deliver highly potent cytotoxic agents in the treatment of cancer. These agents provide numerous benefits compared to traditional small molecule drugs, though their clinical use still requires optimization. The pharmacology of mAbs/ADCs is complex and because ADCs are comprised of multiple components, individual agent characteristics and patient variables can affect their disposition. To further improve the clinical use and rational development of these agents, it is imperative to comprehend the complex mechanisms employed by antibody-based agents in traversing numerous biological barriers and how agent/patient factors affect tumor delivery, toxicities, efficacy, and ultimately, biodistribution.
    [Show full text]
  • Dinutuximab for the Treatment of Pediatric Patients with High-Risk Neuroblastoma
    Expert Review of Clinical Pharmacology ISSN: 1751-2433 (Print) 1751-2441 (Online) Journal homepage: http://www.tandfonline.com/loi/ierj20 Dinutuximab for the treatment of pediatric patients with high-risk neuroblastoma Jaume Mora To cite this article: Jaume Mora (2016): Dinutuximab for the treatment of pediatric patients with high-risk neuroblastoma, Expert Review of Clinical Pharmacology, DOI: 10.1586/17512433.2016.1160775 To link to this article: http://dx.doi.org/10.1586/17512433.2016.1160775 Accepted author version posted online: 02 Mar 2016. Published online: 21 Mar 2016. Submit your article to this journal Article views: 21 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=ierj20 Download by: [Hospital Sant Joan de Deu], [Jaume Mora] Date: 30 March 2016, At: 23:12 EXPERT REVIEW OF CLINICAL PHARMACOLOGY, 2016 http://dx.doi.org/10.1586/17512433.2016.1160775 DRUG PROFILE Dinutuximab for the treatment of pediatric patients with high-risk neuroblastoma Jaume Mora Department of Pediatric Onco-Hematology and Developmental Tumor Biology Laboratory, Hospital Sant Joan de Déu, Passeig Sant Joan de Déu, Barcelona, Spain ABSTRACT ARTICLE HISTORY Neuroblastoma (NB) is the most common extra cranial solid tumor of childhood, with 60% of patients Received 14 December 2015 presenting with high risk (HR) NB by means of clinical, pathological and biological features. The 5-year Accepted 29 February 2016 survival rate for HR-NB remains below 40%, with the majority of patients suffering relapse from Published online chemorefractory tumor. Immunotherapy is the main strategy against minimal residual disease and 21 March 2016 clinical experience has mostly focused on monoclonal antibodies (MoAb) against the glycolipid dis- KEYWORDS ialoganglioside GD2.
    [Show full text]
  • Nimotuzumab, an Antitumor Antibody That Targets the Epidermal Growth Factor Receptor, Blocks Ligand Binding While Permitting the Active Receptor Conformation
    Published OnlineFirst July 7, 2009; DOI: 10.1158/0008-5472.CAN-08-4518 Experimental Therapeutics, Molecular Targets, and Chemical Biology Nimotuzumab, an Antitumor Antibody that Targets the Epidermal Growth Factor Receptor, Blocks Ligand Binding while Permitting the Active Receptor Conformation Ariel Talavera,1,2 Rosmarie Friemann,2,3 Silvia Go´mez-Puerta,1 Carlos Martinez-Fleites,4 Greta Garrido,1 Ailem Rabasa,1 Alejandro Lo´pez-Requena,1 Amaury Pupo,1 Rune F. Johansen,3 Oliberto Sa´nchez,5 Ute Krengel,2 and Ernesto Moreno1 1Center of Molecular Immunology, Havana, Cuba; 2Department of Chemistry, University of Oslo, Oslo, Norway; and 3Center for Molecular and Behavioral Neuroscience, Institute of Medical Microbiology, University of Oslo, Rikshospitalet HF, Oslo, Norway; 4Department of Chemistry, University of York, Heslington, York, United Kingdom; and 5Center for Genetic Engineering and Biotechnology, Havana, Cuba Abstract region of the EGFR (eEGFR), leaving the dimerization ‘‘arm’’ in Overexpression of the epidermal growth factor (EGF) receptor domain II ready for binding a second monomer (4, 5). It has been (EGFR) in cancer cells correlates with tumor malignancy and shown that the eEGFR adopts a ‘‘tethered’’ or inactive conformation poor prognosis for cancer patients. For this reason, the EGFR in the absence of EGF (6). In this characteristic conformation, has become one of the main targets of anticancer therapies. the dimerization arm is hidden by interactions with domain IV, Structural data obtained in the last few years have revealed whereas domains I and III remain separated. Thus, to adopt the the molecular mechanism for ligand-induced EGFR dimeriza- ‘‘extended’’ or active conformation observed in the crystal structure tion and subsequent signal transduction, and also how this of the complex with EGF (4), the receptor must undergo a major signal is blocked by either monoclonal antibodies or small conformational change that brings together domains I and III (6).
    [Show full text]
  • Estado Clínico-Oncológico De Pacientes Incluidos En El Ensayo Clínico RANIDO Tratados Con Racotumomab O Nimotuzumab
    ISSN-E: 1990-7990 RNPS:2008 Univ Méd Pinareña. Septiembre-Diciembre 2020; 16(3):e503 ARTÍCULO ORIGINAL Estado clínico-oncológico de pacientes incluidos en el ensayo clínico RANIDO tratados con Racotumomab o Nimotuzumab Clinical-oncological status of patients included in RANIDO clinical trial treated with Racotumomab or Nimotuzumab César Adrián Blanco-Gómez1 , Ana Lázara Delgado-Reyes1 , Laura Elena Valdés-Rocubert1 , Rolando David Hernández-Godínez2 , Martha Elena Gómez-Vázquez3 1Universidad de Ciencias Médicas de Pinar del Río. Facultad de Ciencias Médicas “Dr. Ernesto Guevara de la Serna”. Pinar del Río, Cuba. 2Universidad de Ciencias Médicas de Granma. Hospital Provincial Universitario “Carlos Manuel de Céspedes”. Granma, Cuba. 3Universidad de Ciencias Médicas de Pinar del Río. Policlínico Universitario “Raúl Sánchez Rodríguez”. Pinar del Río, Cuba. Recibido: 16 de febrero de 2020 | Aceptado: 25 de abril de 2020 | Publicado: 17 de mayo de 2020 Citar como: Blanco-Gómez CA, Delgado-Reyes AL, Valdés-Rocubert LE, Hernández-Godínez RD, Gómez-Vázquez ME. Estado clínico- oncológico de pacientes incluidos en el ensayo clínico RANIDO tratados con Racotumomab o Nimotuzumab. Univ Méd Pinareña [Internet]. 2020 [citado: Fecha de Acceso]; 16(3):e503. Disponible en: http://www.revgaleno.sld.cu/index.php/ump/article/view/503 RESUMEN Introducción: RANIDO es un ensayo clínico extendido hasta la atención primaria de salud con el objetivo de evaluar la eficacia de los productos biotecnológicos cubanos Racotumomab y Nimotuzumab para el tratamiento del cáncer de pulmón de células no pequeñas. Objetivo: caracterizar clínico-oncológicamente a los pacientes incluidos en el ensayo clínico RANIDO tratados con Racotumomab y Nimotuzumab en Pinar del Río entre enero de 2013 y enero de 2018.
    [Show full text]
  • Targeted and Novel Therapy in Advanced Gastric Cancer Julie H
    Selim et al. Exp Hematol Oncol (2019) 8:25 https://doi.org/10.1186/s40164-019-0149-6 Experimental Hematology & Oncology REVIEW Open Access Targeted and novel therapy in advanced gastric cancer Julie H. Selim1 , Shagufta Shaheen2 , Wei‑Chun Sheu3 and Chung‑Tsen Hsueh4* Abstract The systemic treatment options for advanced gastric cancer (GC) have evolved rapidly in recent years. We have reviewed the recent data of clinical trial incorporating targeted agents, including inhibitors of angiogenesis, human epidermal growth factor receptor 2 (HER2), mesenchymal–epithelial transition, epidermal growth factor receptor, mammalian target of rapamycin, claudin‑18.2, programmed death‑1 and DNA. Addition of trastuzumab to platinum‑ based chemotherapy has become standard of care as front‑line therapy in advanced GC overexpressing HER2. In the second‑line setting, ramucirumab with paclitaxel signifcantly improves overall survival compared to paclitaxel alone. For patients with refractory disease, apatinib, nivolumab, ramucirumab and TAS‑102 have demonstrated single‑agent activity with improved overall survival compared to placebo alone. Pembrolizumab has demonstrated more than 50% response rate in microsatellite instability‑high tumors, 15% response rate in tumors expressing programmed death ligand 1, and non‑inferior outcome in frst‑line treatment compared to chemotherapy. This review summarizes the current state and progress of research on targeted therapy for advanced GC. Keywords: Gastric cancer, Targeted therapy, Human epidermal growth factor receptor 2, Programmed death‑1, Vascular endothelial growth factor receptor 2 Background GC mortality which is consistent with overall decrease in Gastric cancer (GC), including adenocarcinoma of the GC-related deaths [4]. gastroesophageal junction (GEJ) and stomach, is the ffth Tere have been several eforts to perform large-scale most common cancer and the third leading cause of can- molecular profling and classifcation of GC.
    [Show full text]
  • Monoclonal Antibodies As Treatment Modalities in Head and Neck Cancers
    AIMS Medical Science, Volume 2 (4): 347–359. DOI: 10.3934/medsci.2015.4.347 Received date 29 August 2015, Accepted date 28 October 2015, Published date 3 November 2015 http://www.aimspress.com/ Review article Monoclonal Antibodies as Treatment Modalities in Head and Neck Cancers Vivek Radhakrishnan *, Mark S. Swanson, and Uttam K. Sinha Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA * Correspondence: E-mail: [email protected]; Tel.: 714-423-0679. Abstract: The standard treatments of surgery, radiation, and chemotherapy in head and neck squamous cell carcinomas (HNSCC) causes disturbance to normal surrounding tissues, systemic toxicities and functional problems with eating, speaking, and breathing. With early detection, many of these cancers can be effectively treated, but treatment should also focus on retaining the function of the proximal nerves, tissues and vasculature surrounding the tumor. With current research focused on understanding pathogenesis of these cancers in a molecular level, targeted therapy using monoclonal antibodies (MoAbs), can be modified and directed towards tumor genes, proteins and signal pathways with the potential to reduce unfavorable side effects of current treatments. This review will highlight the current MoAb therapies used in HNSCC, and discuss ongoing research efforts to develop novel treatment agents with potential to improve efficacy, increase overall survival (OS) rates and reduce toxicities. Keywords: monoclonal antibodies; hnscc, cetuximab; cisplatin; tumor antigens; immunotherapy; genome sequencing; HPV tumors AIMS Medical Science Volume 2, Issue 4, 347-359. 348 1. Introduction Head and neck cancer accounts for about 3% of all cancers in the United States.
    [Show full text]
  • Download Product Insert (PDF)
    PRODUCT INFORMATION Radotinib Item No. 19923 CAS Registry No.: 926037-48-1 Formal Name: 4-methyl-N-[3-(4-methyl-1H-imidazol-1-yl)-5- (trifluoromethyl)phenyl]-3-[[4-(2-pyrazinyl)-2- N pyrimidinyl]amino]-benzamide H N Synonym: IY-5511 N N MF: C H F N O N N N 27 21 3 8 O FW: 530.5 H N Purity: ≥98% UV/Vis.: λmax: 215, 270 nm CF3 Supplied as: A crystalline solid Storage: -20°C Stability: ≥2 years Information represents the product specifications. Batch specific analytical results are provided on each certificate of analysis. Laboratory Procedures Radotinib is supplied as a crystalline solid. A stock solution may be made by dissolving the radotinib in the solvent of choice. Radotinib is soluble in organic solvents such as DMSO and dimethyl formamide, which should be purged with an inert gas. The solubility of radotinib in these solvents is approximately 10 and 3 mg/ml, respectively. Description Radotinib is a selective second generation tyrosine kinase inhibitor that targets both the wild-type and mutant forms of Bcr-Abl, with an IC50 value of 30.6 nM in Ba/F3 human chronic myeloid leukemia cells expressing the wild-type form.1 Radotinib also inhibits platelet-derived growth factor receptors (PDGFRs) α 2,3 and β with IC50 values of 75.5 and 130 nM, respectively. Binding of radotinib to Bcr-Abl in vitro inhibits the phosphorylation of the downstream signaling mediator CrkL.3 In acute myeloid leukemia cells, in vitro treatment with radotinib at doses of 10-100 µM reduces viability, activates the mitochondrial apoptosis pathway, and promotes expression of the differentiation marker CD11b.2 References 1.
    [Show full text]
  • Intraperitoneal Chemotherapy for Gastric Cancer with Peritoneal Carcinomatosis: Is HIPEC the Only Answer?
    Modern Chemotherapy, 2014, 3, 11-19 Published Online April 2014 in SciRes. http://www.scirp.org/journal/mc http://dx.doi.org/10.4236/mc.2014.32003 Intraperitoneal Chemotherapy for Gastric Cancer with Peritoneal Carcinomatosis: Is HIPEC the Only Answer? Ka-On Lam1*, Betty Tsz-Ting Law2, Simon Ying-Kit Law2, Dora Lai-Wan Kwong1 1Department of Clinical Oncology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China 2Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China Email: *[email protected] Received 13 January 2014; revised 16 February 2014; accepted 26 February 2014 Academic Editor: Stephen L. Chan, The Chinese University of Hong Kong, Hong Kong, China Copyright © 2014 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract Gastric cancer with peritoneal carcinomatosis is notorious for its dismal prognosis. While the pa- thophysiology of peritoneal dissemination is still controversial, the rapid downhill course is uni- versal. Patients usually suffer abdominal distension, intestinal obstruction and various complica- tions before they succumb after a median of 3 - 6 months. Although not adopted in most interna- tional treatment guidelines, intraperitoneal chemotherapy has growing evidence compared with conventional systemic chemotherapy for the treatment of peritoneal carcinomatosis. Cytoreduc- tive surgery with hyperthermic intraperitoneal chemotherapy is well-established for clinical ben- efit but is technically demanding with substantial treatment-related morbidities and mortality. On the other hand, normothermic intraperitoneal chemotherapy in the form of bidirectional neoad- juvant treatment is promising with various newer chemotherapeutic agents.
    [Show full text]
  • Advances in the Treatment of Hematologic Malignancies a Review of Newly Approved Drugs
    Advances in the Treatment of Hematologic Malignancies A Review of Newly Approved Drugs Katherine Shah, PharmD, BCOP Clinical Pharmacy Specialist, Hematology/Oncology Emory University Hospital / Winship Cancer Institute Disclosures • I do not (nor does any immediate family member have) a vested interest in or affiliation with any corporate organization offering financial support or grant monies for this continuing education activity or any affiliation with an organization whose philosophy could potentially bias my presentation • There was no financial support obtained for this CPE activity 1 Objectives • Discuss the pharmacologic principles of several new agents approved for use in hematologic malignancies – Drug class – Mechanism of action – Clinical trial highlights • Review approved dosing and recommend appropriate clinical monitoring and management of toxicities of new agents covered – Dosing recommendations for new agents – Side effect profile – Clinical management Approvals 1980‐2014 http://innovation.org/images/dmImage/SourceImage/lg_FDA_Approval.jpg 2 2014 Novel Drug Approvals Nature Reviews Drug Discovery 14, 77–81(2015) doi:10.1038/nrd4545 Select 2014 Novel Oncology Drugs Drug Indication Approval Date Siltuximab (Sylvant) Multicentric Castleman’s April 2014 Disease Belinostat (Beleodaq) Peripheral T‐cell Lymphoma July 2014 Idelalisib (Zydelig) CLL, Follicular NHL, SLL July 2014 Netupitant and Nausea/vomiting October 2014 palonosetron (Akynzeo) Blinatumomab Acute Lymphoblastic December 2014 (Blincyto) Leukemia, Ph‐ Ph-= Philadelphia
    [Show full text]
  • Cancer Drug Shortages: Who's Minding the Store?
    ✽ ✽ [ News ✽ Analysis ✽ Commentary ✽ Controversy ] February 25, 2011 Vol. 33 No. 4 oncology-times.com Publishing for O33 Years NCOLOGY The Independent TIMES Hem/Onc News Source Cancer Drug Shortages: Who’s Minding the Store? he recent shortages of certain chemotherapy agents and other key drugs raise Tquestions about who’s in charge of the national drug supply and how to ensure availability when there are limited fi nancial incentives and no mandates that manu- facturers notify the FDA about upcoming shortages. Here’s what experts are saying. Page 25 iStockphoto.com/klenova ASCO: For Patients with Advanced Cancer, Start Frank Talks about Options Soon after Diagnosis p.22 iStockphoto.com ODAC Backs FDA on Post-Marketing Medical Home Concept Comes Studies for Accelerated-Approval to Oncology p.45 Drugs p.8 [ ALSO ] SHOP TALK . 4 JOE SIMONE: The Self-Referral Boom . .15 MIKKAEL SEKERES: On (cology) Language . .16 Colorectal Cancer: Best to Start Chemo by 4 Weeks After Surgery . 18 Breast Cancer: 4 Cycles of Adjuvant Chemo Usually Suffi cient . 36 WENDY HARPHAM: ‘It’s OK’. 40 POETRY BY CANCER CAREGIVERS . 47 Ph+ ALL: Early Use of Imatinib Extends Long-Term Survival. 49 Twitter.com/OncologyTimes PERIODICALS bitly.com/oncologytimes 9 oncology times Saturating Liver Cancers with Chemotherapy Found to Extend Survival & Decrease Toxicity athing liver tumors in chemo- The study included 93 patients: said Charles Nutting, DO, FSIR, an Btherapy increases survival, accord- 44 received PHP and 49 had interventional radiologist at Swedish ing to a Phase III trial reported at the standard treatment (typically systemic Medical Center in Denver.
    [Show full text]
  • SYLVANT (Siltuximab) for Injection, for Intravenous Infusion Institute Prompt Anti-Infective Therapy and Do Not Administer Initial U.S
    ------------------------WARNINGS AND PRECAUTIONS----------------------- HIGHLIGHTS OF PRESCRIBING INFORMATION • Concurrent Active Severe Infections These highlights do not include all the information needed to use o Do not administer SYLVANT to patients with severe infections SYLVANT™ safely and effectively. See full prescribing information for until the infection resolves. (2) SYLVANT. o Monitor patients receiving SYLVANT closely for infections. SYLVANT (siltuximab) for Injection, for Intravenous infusion Institute prompt anti-infective therapy and do not administer Initial U.S. Approval: [yyyy] SYLVANT until the infection resolves. (2) ----------------------------INDICATIONS AND USAGE---------------------------- • Vaccinations: Do not administer live vaccines because IL-6 inhibition SYLVANT is an interleukin-6 (IL-6) antagonist indicated for the treatment of may interfere with the normal immune response to new antigens. (5.2) patients with multicentric Castleman’s disease (MCD) who are human • Infusion Related Reactions: Administer SYLVANT in a setting that immunodeficiency virus (HIV) negative and human herpesvirus-8 (HHV-8) provides resuscitation equipment, medication, and personnel trained to negative. (1) provide resuscitation. (6.1) • Gastrointestinal (GI) perforation: Use with caution in patients who may Limitation of Use be at increased risk. Promptly evaluate patients presenting with SYLVANT was not studied in patients with MCD who are HIV positive or symptoms that may be associated or suggestive of GI perforation. (5.4) HHV-8 positive because SYLVANT did not bind to virally produced IL-6 in a nonclinical study. ------------------------------ADVERSE REACTIONS------------------------------- The most common adverse reactions (>10% compared to placebo) during -----------------------DOSAGE AND ADMINISTRATION----------------------- treatment with SYLVANT in the MCD clinical trial were pruritus, increased For intravenous infusion only. weight, rash, hyperuricemia, and upper respiratory tract infection.
    [Show full text]