Credit Scoring Using Genetic Programming

Total Page:16

File Type:pdf, Size:1020Kb

Credit Scoring Using Genetic Programming NOVA IMS Credit Scoring Using Genetic Programming David Micha Horn Advisor: Professor Leonardo Vanneschi Internship report presented as partial requirement for obtaining the Master s degree in Advanced Analytics NOVA Information Management School Instituto Superior de Estatística e Gestão de Informação Universidade Nova de Lisboa CREDIT SCORING USING GENETIC PROGRAMMING by David Micha Horn Internship report presented as partial requirement for obtaining the Master’s degree in Advanced Analytics. Advisor: Leonardo Vanneschi November 2016 ACKNOWLEDGEMENTS “I am not going to thank anybody, because I did it all on my own” — Spike Milligan, on receiving the British Comedy Award for Lifetime Achievement I would like to thank my advisor Professor Leonardo Vanneschi who sparked my interest in Genetic Programming and gave me important remarks on the thesis. Furthermore, I would like to express my gratitude to Dr. Klaus-Peter Huber who gave me the opportunity todo an internship and write my thesis with Arvato Financial Solutions. My thank also goes to my advisor Sven Wessendorf for giving me guidance and the very necessary suggestions for improvements in this thesis. Special thanks to Dr. Karla Schiller for introducing and explaining the process of credit scoring to me. Additionally, I would like to thank her and Dr. Markus Höchststötter for letting me take part in their project, and thus providing me with a topic for this thesis. I gratefully acknowledge the support given by Achim Krauß and Hannes Klein towards my understanding of the data used in this thesis as well as Isabell Schmitt whose knowledge of administrative mechanisms and resources within Arvato Financial Solutions proved extremely beneficial for my work. Finally, I would like to thank everyone at NOVA IMS and Arvato Financial Solutions I met and worked with. i ABSTRACT Growing numbers in e-commerce orders lead to an increase in risk management to prevent default in payment. Default in payment is the failure of a customer to settle a bill within 90 days upon receipt. Frequently, credit scoring is employed to identify customers’ default probability. Credit scoring has been widely studied and many different methods in different fields of research have been proposed. The primary aim of this work is to develop a credit scoring model as a replacement for the pre risk check of the e-commerce risk management system risk solution services (rss). The pre risk check uses data of the order pro- cess and includes exclusion rules and a generic credit scoring model. The new model is supposed to work as a replacement for the whole pre risk check and has to be able to work in solitary and in unison with the rss main risk check. An application of Genetic Programming to credit scoring is presented. The model is developed on arealworld data set provided by Arvato Financial Solutions. The data set contains order requests processed by rss. Results show that Genetic Programming outperforms the generic credit scoring model of the pre risk check in bothclas- sification accuracy and profit. Compared with Logistic Regression, Support Vector Machines and Boosted Trees, Genetic Programming achieved a similar classificatory accuracy. Furthermore, the Genetic Programming model can be used in combination with the rss main risk check in order to create a model with higher discriminatory power than its individual models. KEYWORDS Risk Management; Credit Scoring; Genetic Programming; Machine Learning; Optimization ii INDEX List of Figures iv List of Tables v 1 Introduction 1 2 Theoretical Framework 4 3 risk solution service 10 4 Research Methodology 14 4.1 Dataset . 17 4.2 Genetic Programming . 21 4.2.1 Initialization . 22 4.2.2 Evaluation Criteria . 23 4.2.3 Selection . 25 4.2.4 Genetic Operators . 26 4.3 Applying Genetic Programming . 28 4.4 Calibration . 31 5 Results 34 5.1 Discriminatory Power of GP and Comparison to other Classifier . 35 5.2 Discriminatory Power of GP in Collaboration with the Credit Agency Score . 38 5.2.1 Varying Threshold . 38 5.2.2 Fixed Threshold . 40 6 Conclusion and Discussion 43 7 Limitations and Recommendations for Future Works 45 8 References 47 9 Appendix 53 iii LIST OF FIGURES 1 Relationship between Default Probability and Scores . 4 2 Example distributions of goods and bads . 4 3 rssSystem......................................... 10 4 rss Risk Management Services . 11 5 Risk Check . 11 6 Prescore Behavior in Score Range . 12 7 Prescore Distribution of Goods and Bads . 13 8 Overall Work Flow . 16 9 Discretization Plot . 20 10 Example Syntax Tree . 21 11 GP Process . 22 12 Confusion Matrix . 23 13 Example ROC curve . 24 14 Genetic Operators . 27 15 Median Fitness over all Runs . 28 16 Model with highest Fitness Value . 30 17 Calibration Plots . 32 18 GP Distribution . 35 19 ROC curve and PR diagram . 36 20 Score Distribution of ABIC and GP . 38 21 ROC curve and PR diagram for ABIC and GP . 39 iv LIST OF TABLES 1 Discretization of Continuous Variables . 18 2 Input Variables . 19 3 GP Parameter Settings . 21 4 Occurrences of Variables . 29 5 Effect of IR on GP, SVM and BT . 36 6 Classifier Accuracies . 40 7 GP Order Value Comparison . 41 8 Deviation to GP . 42 v 1. INTRODUCTION E-commerce vendors in Germany have to deal with a peculiarity. Commonly used payment types like credit cards or PayPal represent a relatively low market share and the majority of orders are processed using open invoice instead. Using open invoice, a vendor bills his customers for goods and services only after delivery of the product. Thus, the vendor grants his customer a credit to the extend of the invoice. Usually, the vendor sends his customers an invoice statement as soon as the products are delivered or provided. The invoice contains a detailed statement of the transaction. Because the customer receives his purchase before payment, it is called ’open’ and once the payment is received the invoice is closed. Around 28% of customers in Germany choose open invoice as payment type, a market share that comes with reservations for the vendors (Frigge, 2016). Customers are used to pay using open invoice inanex- tend that it is a payment type selection requirement. Incidentally, around 30% of customers who abort the purchasing process do so because their desired payment type is unavailable and 68% of customers name open invoice the most desired payment type next to the ones already available (Fittkau & Maaß Consulting, 2014; Wach, 2011). However, open invoice is most prone to payment disruptions. Among the most common reasons vendors find that customers simply forget to settle the bill or delay the pay- ment on purpose but around 53% of vendors named insolvency as one of the most common reasons for payment disruption (Weinfurner et al., 2011). The majority of cases that conclude in default onpayment are assigned to orders with open invoice as payment type, with more than 8% of all orders defaulting (Seidenschwarz et al., 2014). E-commerce vendors find themselves in a conflict - offering open invoice decreases the order abortion rate but increases the default on payment rate. The former has a positive effect on revenue while the latter drives it down. Additionally, default on payment has a negative impact on the profit margin, due to costs arising through provision of services and advance payments to third parties. In order to break through this vicious circle vendors can fall back on a plethora ofmethods. Many tackle this conflict by implementing exclusion rules for customer groups they consider especially default-prone, for instance customers who are unknown to the vendor or whose order values are con- spicuously high. Another approach, used by more than 30% of e-Commerce vendors in Germany, is to fall back on external risk management services (Weinfurner et al., 2011). Risk management applications aim at detecting customers with a high risk of defaulting. Those appli- cations are frequently build using credit scoring models. Credit Scoring analyzes historical data inorder to isolate meaningful characteristics that are used to predict the probability of default (Mester, 1997). However, the probability of default is not an attribute of potential customers but merely a vendors’ assessment if the potential customer is a risk worth taking. Over the years, credit scoring has evolved from a vendors’ gut decision over subjective decision rules to a method based on statistically sound models (Thomas et al., 2002). Among the providers of risk management services in Germany is the risk management division of Arvato Financial Solutions (AFS), which provides a number of services including identification of individuals, evaluation of credit-worthiness and fraud recognition. The AFS databases consist of 21 million solvency observations totaling information of 7 million individuals in Germany, address and change in address information, bank account information as well as phone numbers, email addresses and device infor- mation. The risk management service for e-commerce is called risk solution service (rss). Rsscovers the entire order process and provides a number of services for every stage during the order process. The main services for evaluation of customers default probability is called risk check and split intoapre 1 risk check and a main risk check in order to satisfy different demands in an international environment. The main risk check is based on a credit agency score that uses country specific solvency information on individuals. Hence, the main risk check is inoperable in countries without accessible solvency infor- mation. Contrarily, the pre risk check was designed to be always operable and to ensure that therisk check returns an evaluation of the customers’ default probability. For this purpose, the pre riskcheck uses data transmitted by the customer during the order process. However, the pre risk check isbased on a generic model without statistical sound backup.
Recommended publications
  • Investigating the Parameter Space of Evolutionary Algorithms
    Sipper et al. BioData Mining (2018) 11:2 https://doi.org/10.1186/s13040-018-0164-x RESEARCH Open Access Investigating the parameter space of evolutionary algorithms Moshe Sipper1,2* ,WeixuanFu1,KarunaAhuja1 and Jason H. Moore1 *Correspondence: [email protected] Abstract 1Institute for Biomedical Informatics, Evolutionary computation (EC) has been widely applied to biological and biomedical University of Pennsylvania, data. The practice of EC involves the tuning of many parameters, such as population Philadelphia 19104-6021, PA, USA 2Department of Computer Science, size, generation count, selection size, and crossover and mutation rates. Through an Ben-Gurion University, Beer Sheva extensive series of experiments over multiple evolutionary algorithm implementations 8410501, Israel and 25 problems we show that parameter space tends to be rife with viable parameters, at least for the problems studied herein. We discuss the implications of this finding in practice for the researcher employing EC. Keywords: Evolutionary algorithms, Genetic programming, Meta-genetic algorithm, Parameter tuning, Hyper-parameter Introduction Evolutionary computation (EC) has been widely applied to biological and biomedical data [1–4]. One of the crucial tasks of the EC practitioner is the tuning of parameters. The fitness-select-vary paradigm comes with a plethora of parameters relating to the population, the generations, and the operators of selection, crossover, and mutation. It seems natural to ask whether the myriad parameters can be obtained through some clever methodology (perhaps even an evolutionary one) rather than by trial and error; indeed, as we shall see below, such methods have been previously devised. Our own interest in the issue of parameters stems partly from a desire to better understand evolutionary algo- rithms (EAs) and partly from our recent investigation into the design and implementation of an accessible artificial intelligence system [5].
    [Show full text]
  • Pygad: an Intuitive Genetic Algorithm Python Library
    PyGAD: An Intuitive Genetic Algorithm Python Library Ahmed Fawzy Gad School of Electrical Engineering and Computer Science University of Ottawa Ottawa, ON, Canada [email protected] Abstract—This paper introduces PyGAD, an open-source easy- to-use Python library for building the genetic algorithm. PyGAD supports a wide range of parameters to give the user control over everything in its life cycle. This includes, but is not limited to, population, gene value range, gene data type, parent selection, crossover, and mutation. PyGAD is designed as a general- purpose optimization library that allows the user to customize the fitness function. Its usage consists of 3 main steps: build the fitness function, create an instance of the pygad.GA class, and calling the pygad.GA.run() method. The library supports training deep learning models created either with PyGAD itself or with frameworks like Keras and PyTorch. Given its stable state, PyGAD is also in active development to respond to the user’s requested features and enhancement received on GitHub github.com/ahmedfgad/GeneticAlgorithmPython. PyGAD comes with documentation pygad.readthedocs.io for further details and examples. Keywords— genetic algorithm, evolutionary algorithm, optimiza- tion, deep learning, Python, NumPy, Keras, PyTorch I. INTRODUCTION Nature has inspired computer scientists to create algorithms for solving computational problems. These naturally-inspired algorithms are called evolutionary algorithms (EAs) [1] where the initial solution (or individual) to a given problem is evolved across multiple iterations aiming to increase its quality. The EAs can be categorized by different factors like the number of solutions used. Some EAs evolve a single initial solution (e.g.
    [Show full text]
  • DEAP: Evolutionary Algorithms Made Easy
    Journal of Machine Learning Research 13 (2012) 2171-2175 Submitted 7/11; Revised 4/12; Published 7/12 DEAP: Evolutionary Algorithms Made Easy Felix-Antoine´ Fortin [email protected] Franc¸ois-Michel De Rainville [email protected] Marc-Andre´ Gardner [email protected] Marc Parizeau [email protected] Christian Gagne´ [email protected] Laboratoire de vision et systemes` numeriques´ Departement´ de genie´ electrique´ et de genie´ informatique Universite´ Laval Quebec´ (Quebec),´ Canada G1V 0A6 Editor: Mikio Braun Abstract DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. Its design departs from most other existing frameworks in that it seeks to make algorithms explicit and data structures transparent, as opposed to the more common black-box frameworks. Freely avail- able with extensive documentation at http://deap.gel.ulaval.ca, DEAP is an open source project under an LGPL license. Keywords: distributed evolutionary algorithms, software tools 1. Introduction Evolutionary Computation (EC) is a sophisticated field with very diverse techniques and mecha- nisms, where even well designed frameworks can become quite complicated under the hood. They thus strive to hide the implementation details as much as possible, by providing large libraries of high-level functionalities, often in many different flavours. This is the black-box software model (Roberts and Johnson, 1997). The more elaborate these boxes become, the more obscure they are, and the less likely the commoner is to ever take a peek under the hood to consider making changes. But using EC to solve real-world problems most often requires the customization of algorithms.
    [Show full text]
  • An Open-Source Nature-Inspired Optimization Framework in Python
    EvoloPy: An Open-source Nature-inspired Optimization Framework in Python Hossam Faris1, Ibrahim Aljarah1, Seyedali Mirjalili2, Pedro A. Castillo3 and Juan J. Merelo3 1Department of Business Information Technology, King Abdullah II School for Information Technology, The University of Jordan, Amman, Jordan 2School of Information and Communication Technology, Griffith University, Nathan, Brisbane, QLD 4111, Australia 3ETSIIT-CITIC, University of Granada, Granada, Spain Keywords: Evolutionary, Swarm Optimization, Metaheuristic, Optimization, Python, Framework. Abstract: EvoloPy is an open source and cross-platform Python framework that implements a wide range of classical and recent nature-inspired metaheuristic algorithms. The goal of this framework is to facilitate the use of metaheuristic algorithms by non-specialists coming from different domains. With a simple interface and minimal dependencies, it is easier for researchers and practitioners to utilize EvoloPy for optimizing and benchmarking their own defined problems using the most powerful metaheuristic optimizers in the literature. This framework facilitates designing new algorithms or improving, hybridizing and analyzing the current ones. The source code of EvoloPy is publicly available at GitHub (https://github.com/7ossam81/EvoloPy). 1 INTRODUCTION between the swarm’s individuals. On the other hand, evolutionary-based algorithms In general, nature-inspired algorithms are population- are inspired by some concepts from the Darwinian based metaheuristics which are inspired by different theory about evolution and natural selection. Such phenomena in nature. Due to their stochastic and non- algorithms include Genetic algorithm (GA) (Hol- deterministic nature, there has been a growing interest land, 1992), Genetic Programming (GP)(Koza, 1992), in investigating their applications for solving complex and Evolution Strategy (ES) (Beyer and Schwefel, problems when the search space is extremely large 2002).
    [Show full text]
  • Analysis of Open-Source Hyperparameter Optimization Software Trends
    International Journal of Advanced Culture Technology Vol.7 No.4 56-62 (2019) DOI 10.17703/IJACT.2019.7.4.56 IJACT 19-12-7 Analysis of Open-Source Hyperparameter Optimization Software Trends Yo-Seob Lee1, Phil-Joo Moon2* 1Professor, School of ICT Convergence, Pyeongtaek University E-mail: [email protected] 2Professor, Dept. of Information & Communication, Pyeongtaek University E-mail: [email protected] Abstract Recently, research using artificial neural networks has further expanded the field of neural network optimization and automatic structuring from improving inference accuracy. The performance of the machine learning algorithm depends on how the hyperparameters are configured. Open-source hyperparameter optimization software can be an important step forward in improving the performance of machine learning algorithms. In this paper, we review open-source hyperparameter optimization softwares. Keywords: Hyperparameter Optimization, Machine Learning, Deep Learning, AutoML 1. INTRODUCTION Recently, researches using artificial neural networks have further expanded the field of neural network optimization and automatic structuring from improving the inference accuracy of image, video and natural language based tasks. In addition, with recent interest in complex and computationally expensive machine learning models with many hyperparameters, such as the Automatic Machine Learning(AutoML) framework and deep neural networks, research on hyperparameter optimization(HPO) has begun again. The performance of machine learning algorithms significantly
    [Show full text]
  • Investigating the Parameter Space of Evolutionary Algorithms
    Sipper et al. BioData Mining (2018) 11:2 https://doi.org/10.1186/s13040-018-0164-x RESEARCH Open Access Investigating the parameter space of evolutionary algorithms Moshe Sipper1,2* ,WeixuanFu1,KarunaAhuja1 and Jason H. Moore1 *Correspondence: [email protected] Abstract 1Institute for Biomedical Informatics, Evolutionary computation (EC) has been widely applied to biological and biomedical University of Pennsylvania, data. The practice of EC involves the tuning of many parameters, such as population Philadelphia 19104-6021, PA, USA 2Department of Computer Science, size, generation count, selection size, and crossover and mutation rates. Through an Ben-Gurion University, Beer Sheva extensive series of experiments over multiple evolutionary algorithm implementations 8410501, Israel and 25 problems we show that parameter space tends to be rife with viable parameters, at least for the problems studied herein. We discuss the implications of this finding in practice for the researcher employing EC. Keywords: Evolutionary algorithms, Genetic programming, Meta-genetic algorithm, Parameter tuning, Hyper-parameter Introduction Evolutionary computation (EC) has been widely applied to biological and biomedical data [1–4]. One of the crucial tasks of the EC practitioner is the tuning of parameters. The fitness-select-vary paradigm comes with a plethora of parameters relating to the population, the generations, and the operators of selection, crossover, and mutation. It seems natural to ask whether the myriad parameters can be obtained through some clever methodology (perhaps even an evolutionary one) rather than by trial and error; indeed, as we shall see below, such methods have been previously devised. Our own interest in the issue of parameters stems partly from a desire to better understand evolutionary algo- rithms (EAs) and partly from our recent investigation into the design and implementation of an accessible artificial intelligence system [5].
    [Show full text]
  • DEAP Documentation Release 0.9.0
    DEAP Documentation Release 0.9.0 DEAP Project March 01, 2013 CONTENTS 1 Tutorial 1 1.1 Where to Start?..............................................1 1.2 Creating Types..............................................3 1.3 Next Step Toward Evolution.......................................9 1.4 Genetic Programming.......................................... 14 1.5 Speed up the evolution.......................................... 18 1.6 Using Multiple Processors........................................ 21 1.7 Benchmarking Against the Best (BBOB)................................ 22 2 Examples 25 2.1 Genetic Algorithm (GA)......................................... 25 2.2 Genetic Programming (GP)....................................... 32 2.3 Evolution Strategy (ES)......................................... 44 2.4 Particle Swarm Optimization (PSO)................................... 49 2.5 Estimation of Distribution Algorithms (EDA).............................. 52 2.6 Distributed Task Manager (DTM).................................... 53 3 API 57 3.1 Core Architecture............................................ 57 3.2 Evolutionary Tools............................................ 60 3.3 Algorithms................................................ 78 3.4 Covariance Matrix Adaptation Evolution Strategy........................... 82 3.5 Genetic Programming.......................................... 82 3.6 Distributed Task Manager Overview................................... 84 3.7 Benchmarks............................................... 92 4 What’s New? 103 4.1
    [Show full text]
  • Evolutionary Algorithms*
    Evolutionary Algorithms* David W. Corne and Michael A. Lones School of Mathematical and Computer Sciences Heriot-Watt University, Edinburgh, EH14 4AS 1. Introduction Evolutionary algorithms (EAs) are population-based metaheuristics. Historically, the design of EAs was motivated by observations about natural evolution in biological populations. Recent varieties of EA tend to include a broad mixture of influences in their design, although biological terminology is still in common use. The term ‘EA’ is also sometimes extended to algorithms that are motivated by population-based aspects of EAs, but which are not directly descended from traditional EAs, such as scatter search. The term evolutionary computation is also used to refer to EAs, but usually as a generic term that includes optimisation algorithms motivated by other natural processes, such as particle swarm optimisation and artificial immune systems. Although these algorithms often resemble EAs, this is not always the case, and they will not generally be discussed in this chapter. For a discussion of their commonalities and differences, the reader is referred to [1]. Over the years, EAs have become an extremely rich and diverse field of study, and the sheer number of publications in this area can create challenges to people new to the field. To address this, this chapter aims to give a concise overview of EAs and their application, with an emphasis on contemporary rather than historical usage. The main classes of EA in contemporary usage are (in order of popularity) genetic algorithms (GAs), evolution strategies (ESs), differential evolution (DE) and estimation of distribution algorithms (EDAs). Multi-objective evolutionary algorithms (MOEAs), which generalise EAs to the multiple objective case, and memetic algorithms (MAs), which hybridise EAs with local search, are also popular, particularly within applied work.
    [Show full text]
  • Opytimizer:Anature-Inspired Python Optimizer
    OPYTIMIZER:ANATURE-INSPIRED PYTHON OPTIMIZER APREPRINT Gustavo H. de Rosa, Douglas Rodrigues, João P. Papa Department of Computing São Paulo State University Bauru, São Paulo - Brazil [email protected], [email protected], [email protected] December 3, 2020 ABSTRACT Optimization aims at selecting a feasible set of parameters in an attempt to solve a particular problem, being applied in a wide range of applications, such as operations research, machine learning fine- tuning, and control engineering, among others. Nevertheless, traditional iterative optimization methods use the evaluation of gradients and Hessians to find their solutions, not being practical due to their computational burden and when working with non-convex functions. Recent biological- inspired methods, known as meta-heuristics, have arisen in an attempt to fulfill these problems. Even though they do not guarantee to find optimal solutions, they usually find a suitable solution. In this paper, we proposed a Python-based meta-heuristic optimization framework denoted as Opytimizer. Several methods and classes are implemented to provide a user-friendly workspace among diverse meta-heuristics, ranging from evolutionary- to swarm-based techniques. Keywords Python · Optimization · Meta-Heuristics 1 Introduction Mathematics is a formal basis for the representation and solution to the most diverse tasks, being applied throughout several fields of interest. Economy, Geophysics, Electrical Engineering, Mechanical Engineering, Civil Engineering, among others, are some examples of areas that use mathematical concepts in order to solve their challenges. The necessity of finding a suitable set of information (parameters) to solve a specific application fostered the study of mathematical programming, commonly known as optimization.
    [Show full text]
  • Downloaded From
    This is the author’s version of a work that was submitted/accepted for pub- lication in the following source: Agdas, Duzgun, Warne, David J., Osio-Norgaard, Jorge, & Masters, For- rest J. (2018) Utility of Genetic Algorithms for Solving Large Scale Construction Time/Cost Trade-off problems. Journal of Computing in Civil Engineering, 32(1), pp. 1-10. This file was downloaded from: https://eprints.qut.edu.au/107593/ c c 2017 American Society of Civil Engineers License: Creative Commons: Attribution-Noncommercial 4.0 Notice: Changes introduced as a result of publishing processes such as copy-editing and formatting may not be reflected in this document. For a definitive version of this work, please refer to the published source: https://doi.org/10.1061/(ASCE)CP.1943-5487.0000718 1 UTILITY OF GENETIC ALGORITHMS FOR SOLVING LARGE SCALE 2 CONSTRUCTION TIME-COST TRADE-OFF PROBLEMS 1 2 3 4 3 Duzgun Agdas, PhD , David J. Warne , Jorge Osio-Norgaard , and Forrest J. Masters, PhD 1 4 School of Civil Engineering and Built Environment, Queensland University of Technology 5 (QUT), 2 George Street, Brisbane, QLD 4001, Australia. Email: [email protected] 2 6 High Performance Computing and Research Support, Queensland University of Technology 7 (QUT), 2 George Street, Brisbane, QLD 4001, Australia. 3 8 The Department of Civil, Environmental and Architectural Engineering, University of Colorado 9 Boulder, Boulder, CO, 80309, USA. 4 10 Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA. 11 ABSTRACT 12 The Time/Cost Trade-off (TCT) problem has long been a popular optimization question for 13 construction engineering and management researchers.
    [Show full text]
  • DEAP: Evolutionary Algorithms Made Easy
    JournalofMachineLearningResearch13(2012)2171-2175 Submitted 7/11; Revised 4/12; Published 7/12 DEAP: Evolutionary Algorithms Made Easy Felix-Antoine´ Fortin [email protected] Franc¸ois-Michel De Rainville [email protected] Marc-Andre´ Gardner [email protected] Marc Parizeau [email protected] Christian Gagne´ [email protected] Laboratoire de vision et systemes` numeriques´ Departement´ de genie´ electrique´ et de genie´ informatique Universite´ Laval Quebec´ (Quebec),´ Canada G1V 0A6 Editor: Mikio Braun Abstract DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. Its design departs from most other existing frameworks in that it seeks to make algorithms explicit and data structures transparent, as opposed to the more common black-box frameworks. Freely avail- able with extensive documentation at http://deap.gel.ulaval.ca, DEAP is an open source project under an LGPL license. Keywords: distributed evolutionary algorithms, software tools 1. Introduction Evolutionary Computation (EC) is a sophisticated field with very diverse techniques and mecha- nisms, where even well designed frameworks can become quite complicated under the hood. They thus strive to hide the implementation details as much as possible, by providing large libraries of high-level functionalities, often in many different flavours. This is the black-box software model (Roberts and Johnson, 1997). The more elaborate these boxes become, the more obscure they are, and the less likely the commoner is to ever take a peek under the hood to consider making changes. But using EC to solve real-world problems most often requires the customization of algorithms.
    [Show full text]
  • Development of an Open-Source Multi-Objective Optimization Toolbox
    Link¨opingUniversity Department of Management and Engineering Division of Machine Design Development of an Open-source Multi-objective Optimization Toolbox Multidisciplinary design optimization of spiral staircases Soheila AEENI Academic supervisor: Camilla WEHLIN Examiner: Johan PERSSON Link¨oping2019 Master's Thesis LIU-IEI-TEK-A{19/03416{SE 2 Abstract The industrial trend is currently to increase product customization, and at the same time decrease cost, manufacturing errors, and time to delivery. These are the main goal of the e-FACTORY project which is initiated at Link¨opinguniversity to develop a digital framework that integrates digitization technologies to stay ahead of the competitors. e-FACTORY will help companies to obtain a more efficient and integrated product configuration and production planning process. This thesis is a part of the e-FACTORY project with Weland AB which main mission is the optimization of spiral staircase towards multiple disciplines such as cost and comfortability. Today this is done manually and the iteration times are usually long. Automating this process could save a lot of time and money. The thesis has two main goals, the first part is related to develop a generic multi-objective optimization toolbox which contains NSGA-II and it is able to solve different kinds of optimization problems and should be easy to use as much as pos- sible. The MOO-toolbox is evaluated with different kinds of optimization problems and the results were compared with other toolboxes. The results seem confident and reliable for a generic toolbox. The second goal is to implement the optimiza- tion problem of the spiral staircase in the MOO-toolbox.
    [Show full text]