On the Performance of Differential Evolution for Hyperparameter Tuning
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
AI, Robots, and Swarms: Issues, Questions, and Recommended Studies
AI, Robots, and Swarms Issues, Questions, and Recommended Studies Andrew Ilachinski January 2017 Approved for Public Release; Distribution Unlimited. This document contains the best opinion of CNA at the time of issue. It does not necessarily represent the opinion of the sponsor. Distribution Approved for Public Release; Distribution Unlimited. Specific authority: N00014-11-D-0323. Copies of this document can be obtained through the Defense Technical Information Center at www.dtic.mil or contact CNA Document Control and Distribution Section at 703-824-2123. Photography Credits: http://www.darpa.mil/DDM_Gallery/Small_Gremlins_Web.jpg; http://4810-presscdn-0-38.pagely.netdna-cdn.com/wp-content/uploads/2015/01/ Robotics.jpg; http://i.kinja-img.com/gawker-edia/image/upload/18kxb5jw3e01ujpg.jpg Approved by: January 2017 Dr. David A. Broyles Special Activities and Innovation Operations Evaluation Group Copyright © 2017 CNA Abstract The military is on the cusp of a major technological revolution, in which warfare is conducted by unmanned and increasingly autonomous weapon systems. However, unlike the last “sea change,” during the Cold War, when advanced technologies were developed primarily by the Department of Defense (DoD), the key technology enablers today are being developed mostly in the commercial world. This study looks at the state-of-the-art of AI, machine-learning, and robot technologies, and their potential future military implications for autonomous (and semi-autonomous) weapon systems. While no one can predict how AI will evolve or predict its impact on the development of military autonomous systems, it is possible to anticipate many of the conceptual, technical, and operational challenges that DoD will face as it increasingly turns to AI-based technologies. -
Redalyc.Assessing the Performance of a Differential Evolution Algorithm In
Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Sistema de Información Científica Villalba-Morales, Jesús Daniel; Laier, José Elias Assessing the performance of a differential evolution algorithm in structural damage detection by varying the objective function Dyna, vol. 81, núm. 188, diciembre-, 2014, pp. 106-115 Universidad Nacional de Colombia Medellín, Colombia Available in: http://www.redalyc.org/articulo.oa?id=49632758014 Dyna, ISSN (Printed Version): 0012-7353 [email protected] Universidad Nacional de Colombia Colombia How to cite Complete issue More information about this article Journal's homepage www.redalyc.org Non-Profit Academic Project, developed under the Open Acces Initiative Assessing the performance of a differential evolution algorithm in structural damage detection by varying the objective function Jesús Daniel Villalba-Moralesa & José Elias Laier b a Facultad de Ingeniería, Pontificia Universidad Javeriana, Bogotá, Colombia. [email protected] b Escuela de Ingeniería de São Carlos, Universidad de São Paulo, São Paulo Brasil. [email protected] Received: December 9th, 2013. Received in revised form: March 11th, 2014. Accepted: November 10 th, 2014. Abstract Structural damage detection has become an important research topic in certain segments of the engineering community. These methodologies occasionally formulate an optimization problem by defining an objective function based on dynamic parameters, with metaheuristics used to find the solution. In this study, damage localization and quantification is performed by an Adaptive Differential Evolution algorithm, which solves the associated optimization problem. Furthermore, this paper looks at the proposed methodology’s performance when using different functions based on natural frequencies, mode shapes, modal flexibilities, modal strain energies and the residual force vector. -
DEPSO: Hybrid Particle Swarm with Differential Evolution Operator
DEPSO: Hybrid Particle Swarm with Differential Evolution Operator Wen-Jun Zhang, Xiao-Feng Xie* Institute of Microelectronics, Tsinghua University, Beijing 100084, P. R. China *Email: [email protected] Abstract - A hybrid particle swarm with differential the particles oscillate in different sinusoidal waves and evolution operator, termed DEPSO, which provide the converging quickly , sometimes prematurely , especially bell-shaped mutations with consensus on the population for PSO with small w[20] or constriction coefficient[3]. diversity along with the evolution, while keeps the self- The concept of a more -or-less permanent social organized particle swarm dynamics, is proposed. Then topology is fundamental to PSO [10, 12], which means it is applied to a set of benchmark functions, and the the pbest and gbest should not be too closed to make experimental results illustrate its efficiency. some particles inactively [8, 19, 20] in certain stage of evolution. The analysis can be restricted to a single Keywords: Particle swarm optimization, differential dimension without loss of generality. From equations evolution, numerical optimization. (1), vid can become small value, but if the |pid-xid| and |pgd-xid| are both small, it cannot back to large value and 1 Introduction lost exploration capability in some generations. Such case can be occured even at the early stage for the Particle swarm optimization (PSO) is a novel multi- particle to be the gbest, which the |pid-xid| and |pgd-xid| agent optimization system (MAOS) inspired by social are zero , and vid will be damped quickly with the ratio w. behavior metaphor [12]. Each agent, call particle, flies Of course, the lost of diversity for |pid-pgd| is typically in a D-dimensional space S according to the historical occured in the latter stage of evolution process. -
A Covariance Matrix Self-Adaptation Evolution Strategy for Optimization Under Linear Constraints Patrick Spettel, Hans-Georg Beyer, and Michael Hellwig
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, MONTH XXXX 1 A Covariance Matrix Self-Adaptation Evolution Strategy for Optimization under Linear Constraints Patrick Spettel, Hans-Georg Beyer, and Michael Hellwig Abstract—This paper addresses the development of a co- functions cannot be expressed in terms of (exact) mathematical variance matrix self-adaptation evolution strategy (CMSA-ES) expressions. Moreover, if that information is incomplete or if for solving optimization problems with linear constraints. The that information is hidden in a black-box, EAs are a good proposed algorithm is referred to as Linear Constraint CMSA- ES (lcCMSA-ES). It uses a specially built mutation operator choice as well. Such methods are commonly referred to as together with repair by projection to satisfy the constraints. The direct search, derivative-free, or zeroth-order methods [15], lcCMSA-ES evolves itself on a linear manifold defined by the [16], [17], [18]. In fact, the unconstrained case has been constraints. The objective function is only evaluated at feasible studied well. In addition, there is a wealth of proposals in the search points (interior point method). This is a property often field of Evolutionary Computation dealing with constraints in required in application domains such as simulation optimization and finite element methods. The algorithm is tested on a variety real-parameter optimization, see e.g. [19]. This field is mainly of different test problems revealing considerable results. dominated by Particle Swarm Optimization (PSO) algorithms and Differential Evolution (DE) [20], [21], [22]. For the case Index Terms—Constrained Optimization, Covariance Matrix Self-Adaptation Evolution Strategy, Black-Box Optimization of constrained discrete optimization, it has been shown that Benchmarking, Interior Point Optimization Method turning constrained optimization problems into multi-objective optimization problems can achieve better performance than I. -
Investigating the Parameter Space of Evolutionary Algorithms
Sipper et al. BioData Mining (2018) 11:2 https://doi.org/10.1186/s13040-018-0164-x RESEARCH Open Access Investigating the parameter space of evolutionary algorithms Moshe Sipper1,2* ,WeixuanFu1,KarunaAhuja1 and Jason H. Moore1 *Correspondence: [email protected] Abstract 1Institute for Biomedical Informatics, Evolutionary computation (EC) has been widely applied to biological and biomedical University of Pennsylvania, data. The practice of EC involves the tuning of many parameters, such as population Philadelphia 19104-6021, PA, USA 2Department of Computer Science, size, generation count, selection size, and crossover and mutation rates. Through an Ben-Gurion University, Beer Sheva extensive series of experiments over multiple evolutionary algorithm implementations 8410501, Israel and 25 problems we show that parameter space tends to be rife with viable parameters, at least for the problems studied herein. We discuss the implications of this finding in practice for the researcher employing EC. Keywords: Evolutionary algorithms, Genetic programming, Meta-genetic algorithm, Parameter tuning, Hyper-parameter Introduction Evolutionary computation (EC) has been widely applied to biological and biomedical data [1–4]. One of the crucial tasks of the EC practitioner is the tuning of parameters. The fitness-select-vary paradigm comes with a plethora of parameters relating to the population, the generations, and the operators of selection, crossover, and mutation. It seems natural to ask whether the myriad parameters can be obtained through some clever methodology (perhaps even an evolutionary one) rather than by trial and error; indeed, as we shall see below, such methods have been previously devised. Our own interest in the issue of parameters stems partly from a desire to better understand evolutionary algo- rithms (EAs) and partly from our recent investigation into the design and implementation of an accessible artificial intelligence system [5]. -
Differential Evolution Particle Swarm Optimization for Digital Filter Design
Missouri University of Science and Technology Scholars' Mine Electrical and Computer Engineering Faculty Research & Creative Works Electrical and Computer Engineering 01 Jun 2008 Differential Evolution Particle Swarm Optimization for Digital Filter Design Bipul Luitel Ganesh K. Venayagamoorthy Missouri University of Science and Technology Follow this and additional works at: https://scholarsmine.mst.edu/ele_comeng_facwork Part of the Electrical and Computer Engineering Commons Recommended Citation B. Luitel and G. K. Venayagamoorthy, "Differential Evolution Particle Swarm Optimization for Digital Filter Design," Proceedings of the IEEE Congress on Evolutionary Computation, 2008. CEC 2008. (IEEE World Congress on Computational Intelligence), Institute of Electrical and Electronics Engineers (IEEE), Jun 2008. The definitive version is available at https://doi.org/10.1109/CEC.2008.4631335 This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in Electrical and Computer Engineering Faculty Research & Creative Works by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. Differential Evolution Particle Swarm Optimization for Digital Filter Design Bipul Luitel, 6WXGHQW0HPEHU ,((( and Ganesh K. Venayagamoorthy, 6HQLRU0HPEHU,((( Abstract— In this paper, swarm and evolutionary algorithms approximate the ideal filter. Since population based have been applied for the design of digital filters. Particle stochastic search methods have proven to be effective in swarm optimization (PSO) and differential evolution particle multidimensional nonlinear environment, all of the swarm optimization (DEPSO) have been used here for the constraints of filter design can be effectively taken care of design of linear phase finite impulse response (FIR) filters. -
Differential Evolution with Deoptim
CONTRIBUTED RESEARCH ARTICLES 27 Differential Evolution with DEoptim An Application to Non-Convex Portfolio Optimiza- tween upper and lower bounds (defined by the user) tion or using values given by the user. Each generation involves creation of a new population from the cur- by David Ardia, Kris Boudt, Peter Carl, Katharine M. rent population members fxi ji = 1,. .,NPg, where Mullen and Brian G. Peterson i indexes the vectors that make up the population. This is accomplished using differential mutation of Abstract The R package DEoptim implements the population members. An initial mutant parame- the Differential Evolution algorithm. This al- ter vector vi is created by choosing three members of gorithm is an evolutionary technique similar to the population, xi1 , xi2 and xi3 , at random. Then vi is classic genetic algorithms that is useful for the generated as solution of global optimization problems. In this note we provide an introduction to the package . vi = xi + F · (xi − xi ), and demonstrate its utility for financial appli- 1 2 3 cations by solving a non-convex portfolio opti- where F is a positive scale factor, effective values for mization problem. which are typically less than one. After the first mu- tation operation, mutation is continued until d mu- tations have been made, with a crossover probability Introduction CR 2 [0,1]. The crossover probability CR controls the fraction of the parameter values that are copied from Differential Evolution (DE) is a search heuristic intro- the mutant. Mutation is applied in this way to each duced by Storn and Price(1997). Its remarkable per- member of the population. -
The Use of Differential Evolution Algorithm for Solving Chemical Engineering Problems
Rev Chem Eng 2016; 32(2): 149–180 Elena Niculina Dragoi and Silvia Curteanu* The use of differential evolution algorithm for solving chemical engineering problems DOI 10.1515/revce-2015-0042 become more available, and the industry is on the lookout Received July 10, 2015; accepted December 11, 2015; previously for increased productivity and minimization of by-product published online February 8, 2016 formation (Gujarathi and Babu 2009). In addition, there are many problems that involve a simultaneous optimiza- Abstract: Differential evolution (DE), belonging to the tion of many competing specifications and constraints, evolutionary algorithm class, is a simple and power- which are difficult to solve without powerful optimization ful optimizer with great potential for solving different techniques (Tan et al. 2008). In this context, researchers types of synthetic and real-life problems. Optimization have focused on finding improved approaches for opti- is an important aspect in the chemical engineering area, mizing different aspects of real-world problems, includ- especially when striving to obtain the best results with ing the ones encountered in the chemical engineering a minimum of consumed resources and a minimum of area. Optimizing real-world problems supposes two steps: additional by-products. From the optimization point of (i) constructing the model and (ii) solving the optimiza- view, DE seems to be an attractive approach for many tion model (Levy et al. 2009). researchers who are trying to improve existing systems or The model (which is usually represented by a math- to design new ones. In this context, here, a review of the ematical description of the system under consideration) most important approaches applying different versions has three main components: (i) variables, (ii) constraints, of DE (simple, modified, or hybridized) for solving spe- and (iii) objective function (Levy et al. -
Differential Evolution Based Feature Selection and Classifier Ensemble
Differential Evolution based Feature Selection and Classifier Ensemble for Named Entity Recognition Utpal Kumar Sikdar Asif Ekbal∗ Sriparna Saha∗ Department of Computer Science and Engineering Indian Institute of Technology Patna, Patna, India ßutpal.sikdar,asif,sriparna}@iitp.ac.in ABSTRACT In this paper, we propose a differential evolution (DE) based two-stage evolutionary approach for named entity recognition (NER). The first stage concerns with the problem of relevant feature selection for NER within the frameworks of two popular machine learning algorithms, namely Conditional Random Field (CRF) and Support Vector Machine (SVM). The solutions of the final best population provides different diverse set of classifiers; some are effective with respect to recall whereas some are effective with respect to precision. In the second stage we propose a novel technique for classifier ensemble for combining these classifiers. The approach is very general and can be applied for any classification problem. Currently we evaluate the pro- posed algorithm for NER in three popular Indian languages, namely Bengali, Hindi and Telugu. In order to maintain the domain-independence property the features are selected and developed mostly without using any deep domain knowledge and/or language dependent resources. Experi- mental results show that the proposed two stage technique attains the final F-measure values of 88.89%, 88.09% and 76.63% for Bengali, Hindi and Telugu, respectively. The key contribu- tions of this work are two-fold, viz. (i). proposal of differential evolution (DE) based feature selection and classifier ensemble methods that can be applied to any classification problem; and (ii). scope of the development of language independent NER systems in a resource-poor scenario. -
An Introduction to Differential Evolution
An Introduction to Differential Evolution Kelly Fleetwood Synopsis • Introduction • Basic Algorithm • Example • Performance • Applications The Basics of Differential Evolution • Stochastic, population-based optimisation algorithm • Introduced by Storn and Price in 1996 • Developed to optimise real parameter, real valued functions • General problem formulation is: D For an objective function f : X ⊆ R → R where the feasible region X 6= ∅, the minimisation problem is to find x∗ ∈ X such that f(x∗) ≤ f(x) ∀x ∈ X where: f(x∗) 6= −∞ Why use Differential Evolution? • Global optimisation is necessary in fields such as engineering, statistics and finance • But many practical problems have objective functions that are non- differentiable, non-continuous, non-linear, noisy, flat, multi-dimensional or have many local minima, constraints or stochasticity • Such problems are difficult if not impossible to solve analytically • DE can be used to find approximate solutions to such problems Evolutionary Algorithms • DE is an Evolutionary Algorithm • This class also includes Genetic Algorithms, Evolutionary Strategies and Evolutionary Programming Initialisation Mutation Recombination Selection Figure 1: General Evolutionary Algorithm Procedure Notation • Suppose we want to optimise a function with D real parameters • We must select the size of the population N (it must be at least 4) • The parameter vectors have the form: xi,G = [x1,i,G, x2,i,G, . xD,i,G] i = 1, 2, . , N. where G is the generation number. Initialisation Initialisation Mutation Recombination Selection -
Pygad: an Intuitive Genetic Algorithm Python Library
PyGAD: An Intuitive Genetic Algorithm Python Library Ahmed Fawzy Gad School of Electrical Engineering and Computer Science University of Ottawa Ottawa, ON, Canada [email protected] Abstract—This paper introduces PyGAD, an open-source easy- to-use Python library for building the genetic algorithm. PyGAD supports a wide range of parameters to give the user control over everything in its life cycle. This includes, but is not limited to, population, gene value range, gene data type, parent selection, crossover, and mutation. PyGAD is designed as a general- purpose optimization library that allows the user to customize the fitness function. Its usage consists of 3 main steps: build the fitness function, create an instance of the pygad.GA class, and calling the pygad.GA.run() method. The library supports training deep learning models created either with PyGAD itself or with frameworks like Keras and PyTorch. Given its stable state, PyGAD is also in active development to respond to the user’s requested features and enhancement received on GitHub github.com/ahmedfgad/GeneticAlgorithmPython. PyGAD comes with documentation pygad.readthedocs.io for further details and examples. Keywords— genetic algorithm, evolutionary algorithm, optimiza- tion, deep learning, Python, NumPy, Keras, PyTorch I. INTRODUCTION Nature has inspired computer scientists to create algorithms for solving computational problems. These naturally-inspired algorithms are called evolutionary algorithms (EAs) [1] where the initial solution (or individual) to a given problem is evolved across multiple iterations aiming to increase its quality. The EAs can be categorized by different factors like the number of solutions used. Some EAs evolve a single initial solution (e.g. -
DEAP: Evolutionary Algorithms Made Easy
Journal of Machine Learning Research 13 (2012) 2171-2175 Submitted 7/11; Revised 4/12; Published 7/12 DEAP: Evolutionary Algorithms Made Easy Felix-Antoine´ Fortin [email protected] Franc¸ois-Michel De Rainville [email protected] Marc-Andre´ Gardner [email protected] Marc Parizeau [email protected] Christian Gagne´ [email protected] Laboratoire de vision et systemes` numeriques´ Departement´ de genie´ electrique´ et de genie´ informatique Universite´ Laval Quebec´ (Quebec),´ Canada G1V 0A6 Editor: Mikio Braun Abstract DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. Its design departs from most other existing frameworks in that it seeks to make algorithms explicit and data structures transparent, as opposed to the more common black-box frameworks. Freely avail- able with extensive documentation at http://deap.gel.ulaval.ca, DEAP is an open source project under an LGPL license. Keywords: distributed evolutionary algorithms, software tools 1. Introduction Evolutionary Computation (EC) is a sophisticated field with very diverse techniques and mecha- nisms, where even well designed frameworks can become quite complicated under the hood. They thus strive to hide the implementation details as much as possible, by providing large libraries of high-level functionalities, often in many different flavours. This is the black-box software model (Roberts and Johnson, 1997). The more elaborate these boxes become, the more obscure they are, and the less likely the commoner is to ever take a peek under the hood to consider making changes. But using EC to solve real-world problems most often requires the customization of algorithms.