Physiology Part I

Total Page:16

File Type:pdf, Size:1020Kb

Physiology Part I LECTURE NOTES For Health Science Students Physiology Part I Yekoye Abebe, Bhardwaj, G.P., Habtamu Mekonnen University of Gondar Jimma University In collaboration with the Ethiopia Public Health Training Initiative, The Carter Center, the Ethiopia Ministry of Health, and the Ethiopia Ministry of Education 2006 Funded under USAID Cooperative Agreement No. 663-A-00-00-0358-00. Produced in collaboration with the Ethiopia Public Health Training Initiative, The Carter Center, the Ethiopia Ministry of Health, and the Ethiopia Ministry of Education. Important Guidelines for Printing and Photocopying Limited permission is granted free of charge to print or photocopy all pages of this publication for educational, not-for-profit use by health care workers, students or faculty. All copies must retain all author credits and copyright notices included in the original document. Under no circumstances is it permissible to sell or distribute on a commercial basis, or to claim authorship of, copies of material reproduced from this publication. ©2006 by Yekoye Abebe, Bhardwaj, G.P., Habtamu Mekonnen All rights reserved. Except as expressly provided above, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without written permission of the author or authors. This material is intended for educational use only by practicing health care workers or students and faculty in a health care field. PREFACE We have prepared lecture note that fits the academic curriculum designed for the students of Health Sciences in Ethiopia. This lecture note has two parts. Part one includes the following five chapters: Principles of physiology, Excitable tissues (nerve and muscle), physiology of blood, Cardiovascular physiology and Respiratory physiology; Part two contains the following seven chapters: physiology of the renal system, physiology of the gastrointestinal system, physiology of the endocrine system, physiology of the reproductive system, Neurophysiology, physiology of the Special senses and the Autonomic nervous system. i ACKNOWLEDGEMENTS We are grateful to some students and teachers who have commented favorably on the clarity of the writing, and the emphasis on the core aspects of physiology. We express sincere appreciation to the secretaries for meticulous computer type settings of the teaching material. SEPTEMBER, 2004 GONDAR , ETHIOPIA ii TABLE OF CONTENTS Preface .................................................................................. .................. i Acknowledgement .................................................................. ...................ii Table of contents ................................................................... ................. iii List of tables ........................................................................... ................. v CHAPTER ONE: GENERAL PRINCIPLES OF HUMAN PHYSIOLOGY . 1 Introduction ............................................................................ ................. 2 Composition of the body ........................................................ .................. 4 Homeostasis .......................................................................... .................. 6 Cellular Physiology ................................................................ ............... 10 Organelles ............................................................................. ................ 13 Membrane transport ............................................................... ................ 26 Intercellular communication and signal transduction .............. ................ 33 Homeostatic Control .............................................................. ................ 41 Feedback mechanisms .......................................................... ................ 43 Cellular adaptation ................................................................. ................ 53 CHAPTER TWO: EXCITABLE TISSUE: NERVE AND MUSCLE .......... 60 Membrane potential .............................................................. ................ 60 Neurons ................................................................................. ................ 63 The action potential ................................................................ ................ 68 Neuromuscular junction/synapse ........................................... .............. 75 Physiology of the neuromuscular junction .............................. ................ 76 Mechanism of action of acetylcholine .................................... ................ 76 Chemical neurotransmitter ..................................................... ................ 79 Skeletal muscle ...................................................................... ................ 80 Excitation-Contraction Coupling ............................................. ................ 84 Smooth and cardiac muscle ................................................... ................ 92 CHAPTER THREE: CARDIOVASCULAR SYSTEM ............. ............... 99 The blood ............................................................................... ................ 99 iii Erythrocytes ........................................................................... .............. 104 Hemoglobin molecule: structure and function ....................... .............. 106 Blood Groups & Blood Transfusion ........................................ .............. 113 Leukocytes ............................................................................. .............. 118 Neutrophills ............................................................................ .............. 124 Lymphocytes .......................................................................... .............. 126 The body defenses ................................................................ .............. 129 Hemostasis ............................................................................ .............. 132 Disorders of hemostasis ........................................................ .............. 138 The Heart ................................................................................ .............. 141 Innervations of the heart ........................................................ .............. 146 Electrocardiogram .................................................................. .............. 152 Venous system ...................................................................... .............. 167 Cardiac output ....................................................................... .............. 171 Microcirculation ...................................................................... .............. 184 Measurement of arterial pressure .......................................... .............. 188 Regulation of flow through blood vessels ............................... .............. 193 Circulatory shock ................................................................... .............. 209 Hypertension .......................................................................... .............. 213 Glossary ................................................................................. .............. 221 CHAPTER FOUR: THE RESPIRATORY SYSTEM ............... .............. 229 Function of the respiratory system ......................................... .............. 230 Functional anatomy of the respiratory system ....................... .............. 230 Pulmonary blood flow ............................................................. .............. 232 Lung volumes and capacities ................................................. .............. 232 Mechanics of breathing .......................................................... .............. 236 Diffusion of gases .................................................................. .............. 241 Gas transport in tissues ......................................................... .............. 245 Control of breathing ............................................................... .............. 258 Hypoxia .................................................................................. .............. 264 Disorders of the respiratory system ....................................... .............. 268 iv LIST OF TABLES Table 1. Elements in the human body .................................... .................. 5 Table 2. Components of body system .................................... .................. 6 Table 3. Concentration and permeability of ions responsible for membrane potential in a resting nerve cell ................................ ................ 61 Table 4. Concentration and electrical gradients ..................... ................ 61 Table 5. Fiber diameter and speed of signal conduction ........ ............... 66 Table 6. Blood constituents and their function ....................... .............. 101 Table 7. Elements of the Blood .............................................. .............. 102 Table 8. Plasma components and other characters ............... ............. 103 Table 9. Important carrier proteins of plasma ........................ ............ 104 Table 10. The major normal variants of hemoglobin ............... .............. 107 Table 11. Summery of ABO system ....................................... ............. 113 Table 12. ABO Blood groups: genotype and phenotype ........ ............. 115 Table 13. Choosing ABO-compatible
Recommended publications
  • M.S. and Ph.D. Sequences in Neuroscience and Physiology
    Neuroscience and Physiology are distinct but overlapping disciplines. • M.S. and Ph.D. students take three core Whereas Neuroscience investigates courses in neuroscience, physiology and neural substrates of behavior, Physiology biostatistics, and elective courses in more studies multiple functions. However, specific areas of these fields, as well as in M.S. and Ph.D. both seek to understand at an integrated related fields, such as cellular and level across molecules, cells, tissues, molecular biology, behavior, chemistry Sequences in whole organism, and environment. and psychology The workings of our brain and body • The curriculum provides a canonical Neuroscience and define us. When problems occur, results conceptual foundation for students can be devastating. According to the pursuing master’s and doctoral research in Physiology National Institutes of Health, neurological neuroscience and physiology and heart disease are two of the largest world health concerns and more than 50 • Our sequences provide a “cohort” million people in this country endure experience for new students, by offering a School of Biological some problem with the nervous system. cohesive curriculum for those students interested in pursuing graduate study in Sciences Our graduate sequences in Neuroscience neuroscience and physiology. and Physiology provide an exciting and Illinois State University challenging academic environment by combining research excellence with a strong commitment to education. We offer a comprehensive curriculum to graduate students interested in Neuroscience and Physiology. Both M.S. For more information, contact Dr. Paul A. and Ph.D. programs are also tightly Garris ([email protected]) or visit integrated into laboratory research. bio.illinoisstate.edu/graduate and goo.gl/9YTs4X Byron Heidenreich, Ph.D.
    [Show full text]
  • Impaired Production and Increased Apoptosis of Neutrophils in Granulocyte Colony-Stimulating Factor Receptor–Deficient Mice
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Immunity, Vol. 5, 491±501, November, 1996, Copyright 1996 by Cell Press Impaired Production and Increased Apoptosis of Neutrophils in Granulocyte Colony-Stimulating Factor Receptor±Deficient Mice Fulu Liu, Huai Yang Wu, Robin Wesselschmidt, decrease in granulocytic precursors in their bone mar- Tad Kornaga, and Daniel C. Link row (Lieschke et al., 1994). Division of Bone Marrow Transplantation In addition to its effect on granulopoiesis, G-CSF may and Stem Cell Biology also contribute to the regulation of multipotential hema- Department of Medicine topoietic progenitors. The administration of large doses Washington University Medical School of G-CSF is associated with a dramatic increase in the St. Louis, Missouri 63110-1093 levels of hematopoietic stem cells and progenitor cells in the peripheral blood (Bungart et al., 1990; de Haan et al., 1995). In vitro, direct effects of G-CSF on primitive progenitor cells have been demonstrated. G-CSF is able Summary to stimulate the formation of granulocyte/macrophage colonies (CFU-GM) from purified CD34-positiveprogeni- We have generated mice carrying a homozygous null tors (Haylock et al., 1992). Furthermore, like interleu- mutation in the granulocyte colony-stimulating factor kin-6 (IL-6), G-CSF exhibits synergistic activity with IL-3 receptor (G-CSFR) gene. G-CSFR-deficient mice have to support murine multipotential blast cell colony forma- decreased numbers of phenotypically normal circulat- tion in cultures of spleen cells from 5-fluorouracil- ing neutrophils. Hematopoietic progenitors are de- treated mice (Ikebuchi et al., 1988).
    [Show full text]
  • Hemoglobin : Its Protein of Molecular Weight 64,450 , in Human Beings It
    Hemoglobin : its protein of molecular weight 64,450 , in human beings it is enclose in the RBC .if it were in plasma, some of it leaks through the capillary membrane into the tissue space or through the glomerular membrane of the kidney into the glomerular filtrate each time the blood passes through the capillaries , high free plasma concentration of Hb increased blood viscosity and osmotic pressure. So for Hb to remain in the bloodstream , it must exist in the RBCs ,its major function is to carry O2 to the tissue and also it transport CO2 from the tissues to the lungs Normal hemoglobin type: Hb A: Its normal adult Hb . Its molecule consist of four polypeptide chains ,2 alpha (α) chains (each of which contains 141 amino acids) and 2 beta chains (each of which contains 146 amino acids).thus Hb A is designated α2 and β2. Hb A is predominant type of Hb in adult (95- 97% of total Hb) . Hb A2 : in the normal adult about 25% of the total Hb is Hb A2 in which chain are replaced by delta chains and is designated 2 α 2δ2 . Each δ chain also contain 146 amino acid but 10 amino acid differ from those in the β chain . Hb F (Fetal Hb): it is the main Hb in fetus and new born . It is 2α 2γ,gamma(γ) chain also has 146 amino acid but 37 amino acid differ from those in β chain, Hb F is replaced gradually by adult Hb soon after birth, usually at about 6 months to one year of age, the normal adult Hb predominates .
    [Show full text]
  • Biography (Modified, After Festetics 1983)
    Konrad Lorenz’s Biography (modified, after Festetics 1983) 1903: Konrad Zacharias Lorenz (KL) was born in Altenberg /Austria on Nov. 7 as the last of three children of Emma Lorenz and Dr. Adolf Lorenz, professor for orthopedics at the Medical branch of the University of Vienna. In the same year the representative and spacious Altenberg family home was finished. 1907: KL starts keeping animals, such as spotted newts in aquaria, raises some ducklings and is not pleased by his first experiences with a dachshound. Niko Tinbergen, his lifelong colleague and friend, is born on April 15 in Den Haag, The Netherlands. 1909: KL enters elementary school and engages in systematic studies in crustaceans. 1910: Oskar Heinroth, biologist and founder of "Vergleichende Verhaltensforschung" (comparative ethology) from Berlin and fatherlike scientific mentor of the young KL publishes his classical paper on the ethology of ducks. 1915: KL enters highschool (Schottengymnasium Wien), keeps and breeds songbirds. 1918: Wallace Craig publishes the comparative ethology of Columbidae (pigeons), a classics of late US biologist Charles O. Whitman, who was like O. Heinroth, a founding father of comparative ethology. 1921: KL excels in his final exams. Together with friend Bernhard Hellmann, he observes and experiments with aggression in a cichlid (Herichthys cyanoguttatum). This was the base for KL's psychohydraulic model of motivation. 1922: Father Adolf sends KL to New York to take 2 semesters of medicine courses at the ColumbiaUniversity, but mainly to interrupt the relationship of KL with longterm girlfriend Gretl Gebhart, his later wife. This paternal attempt to influence the mate choice of KL failed.
    [Show full text]
  • Metabolic Stable Isotope Fractionation
    Photograph by author, Gina M.A. Carroll Metabolic Stable Isotope Fractionation: Biogeochemical Approaches to Diagnosing Sickle Cell and Thalassemia Anemia in the Archaeological Record MSc Thesis Faculty of Archaeology MSc Proefschrift Faculteit der Archaeologie Gina M.A. Carroll 1 Photograph by Gina. M.A. Carroll Taken with permission from the Municipal Museum of Écija, Spain April 2014 Gina M.A. Carroll Alberta, Canada Leiden, The Netherlands [email protected] 1 Metabolic Stable Isotope Fractionation: Biogeochemical Approaches to Diagnosing Sickle Cell and Thalassemia Anemia in the Archaeological Record. MSc Thesis MSc Proefschrift Gina M.A. Carroll Human Osteology and Funerary s1371266 Archaeology MSc Thesis Archaeology University of Leiden Faculty of Archaeology ARCH 1044WY Prof. Dr. Waters-Rist Leiden, The Netherlands & Prof. Dr. Inskip Leiden, 26 May 2015 Final Draft. 2 TABLE OF CONTENTS DEDICATIONS ...................................................................................................................... 9 ACKNOWLEDGEMENTS .................................................................................................. 10 CHAPTER 1 INTRODUCTION ....................................................................... 12-30 1. BRIEF HISTORY OF ARCHAEOLOGICAL RESEARCH ........................................ 13 1.1. The Anemias in Archaeology ....................................................... 14 1.2. The Application of Stable Isotopes in Palaeopathology ............... 18 2. HYPOTHESIS ................................................................................................
    [Show full text]
  • Β-Adrenergic Modulation in Sepsis Etienne De Montmollin, Jerome Aboab, Arnaud Mansart and Djillali Annane
    Available online http://ccforum.com/content/13/5/230 Review Bench-to-bedside review: β-Adrenergic modulation in sepsis Etienne de Montmollin, Jerome Aboab, Arnaud Mansart and Djillali Annane Service de Réanimation Polyvalente de l’hôpital Raymond Poincaré, 104 bd Raymond Poincaré, 92380 Garches, France Corresponding author: Professeur Djillali Annane, [email protected] Published: 23 October 2009 Critical Care 2009, 13:230 (doi:10.1186/cc8026) This article is online at http://ccforum.com/content/13/5/230 © 2009 BioMed Central Ltd Abstract in the intensive care setting [4] – addressing the issue of its Sepsis, despite recent therapeutic progress, still carries unaccep- consequences in sepsis. tably high mortality rates. The adrenergic system, a key modulator of organ function and cardiovascular homeostasis, could be an The present review summarizes current knowledge on the interesting new therapeutic target for septic shock. β-Adrenergic effects of β-adrenergic agonists and antagonists on immune, regulation of the immune function in sepsis is complex and is time cardiac, metabolic and hemostasis functions during sepsis. A dependent. However, β activation as well as β blockade seems 2 1 comprehensive understanding of this complex regulation to downregulate proinflammatory response by modulating the β system will enable the clinician to better apprehend the cytokine production profile. 1 blockade improves cardiovascular homeostasis in septic animals, by lowering myocardial oxygen impact of β-stimulants and β-blockers in septic patients. consumption without altering organ perfusion, and perhaps by restoring normal cardiovascular variability. β-Blockers could also β-Adrenergic receptor and signaling cascade be of interest in the systemic catabolic response to sepsis, as they The β-adrenergic receptor is a G-protein-coupled seven- oppose epinephrine which is known to promote hyperglycemia, transmembrane domain receptor.
    [Show full text]
  • Published on May 14, 2008 As Doi: 10.1183/09031936.00126507 ERJ
    ERJ Express. Published on May 14, 2008 as doi: 10.1183/09031936.00126507 ACCURACY AND RELIABILITY OF PULSE OXIMETRY AT DIFFERENT PaCO2 LEVELS Authors: Muñoz Xa,b,d , Torres Fc , Sampol Ga,d , Rios Jc , Martí Sa,d , Escrich Eb a) Servei de Pneumologia,Hospital Universitari Vall d’Hebron, Barcelona, Spain b) Departament de Biología Cel·lular, de Fisiologia i d’Immunologia, UAB, Barcelona, Spain c) Laboratorio de Bioestadística i Epidemiología (Universitat Autònoma de Barcelona); Servei de Farmacologia Clínica, IDIBAPS, (Hospital Clínic), Barcelona d) CIBER de Enfermedades Respiratorias (Ciberes) Correspondence to: Dr. Xavier Muñoz Servei de Pneumologia Hospital Vall d'Hebron Pº Vall d'Hebron, 119-129 08035 Barcelona Spain Telf: 00 34 93 2746157 Fax: 00 34 93 2746083 E-mail: [email protected] Short title: ACCURACY OF PULSE OXIMETRY AND PaCO2 LEVELS The first two authors have contributed equally to this study. Copyright 2008 by the European Respiratory Society. ABSTRACT Aim: To assess whether arterial carbon dioxide pressure (PaCO2) has an impact on agreement between oxygen saturation measured with pulse oximetry (SpO2) or arterial blood gas co- oximetry (SaO2). Methods: A study was performed on SaO2 and SpO2 determinations obtained simultaneously from 846 patients under assessment for long-term home oxygen therapy in a specialized outpatient clinic. Both measurements were taken with patients seated and breathing room air. Agreement between SaO2 and SpO2 results was analyzed by the Bland-Altman method and the Lin concordance coefficient. In addition, potential interactions of PaO2 or PaCO2 on agreement were analyzed by adjusted multivariate analysis. Results: At comparison of SaO2 and SpO2 results, the Bland-Altman technique yielded a bias (95% CI) of -1.24 (-6.86; 4.38) and -1.32 (-7.78; 5.15) when PaCO2 was higher than 48 mmHg or PaO2 lower than 54 mmHg, respectively.
    [Show full text]
  • Monocyte Alterations in Rheumatoid Arthritis Are Dominated by Preterm
    Ann Rheum Dis: first published as 10.1136/annrheumdis-2017-211649 on 30 November 2017. Downloaded from Basic and translational research EXTENDED REPORT Monocyte alterations in rheumatoid arthritis are dominated by preterm release from bone marrow and prominent triggering in the joint Biljana Smiljanovic,1 Anna Radzikowska,2 Ewa Kuca-Warnawin,2 Weronika Kurowska,2 Joachim R Grün,3 Bruno Stuhlmüller,1 Marc Bonin,1 Ursula Schulte-Wrede,3 Till Sörensen,1 Chieko Kyogoku,3 Anne Bruns,1 Sandra Hermann,1 Sarah Ohrndorf,1 Karlfried Aupperle,1 Marina Backhaus,1 Gerd R Burmester,1 Andreas Radbruch,3 Andreas Grützkau,3 Wlodzimierz Maslinski,2 Thomas Häupl1 Handling editor Tore K Kvien ABSTRACT of life.1 2 Infiltration of monocytes along with T and Objective Rheumatoid arthritis (RA) accompanies B cells into the joint and production of inflamma- ► Additional material is published online only. To view infiltration and activation of monocytes in inflamed tory mediators characterise the immunopathology please visit the journal online joints. We investigated dominant alterations of RA of this disease. The influence of the monocytic (http:// dx. doi. org/ 10. 1136/ monocytes in bone marrow (BM), blood and inflamed lineage in shaping the immune response is substan- annrheumdis- 2017- 211649). joints. tial and interferes with both the innate and adap- Methods CD14+ cells from BM and peripheral blood tive arm of immunity. Thus, it is not surprising 1Department of Rheumatology and Clinical Immunology, (PB) of patients with RA and osteoarthritis (OA) were that controlling inflammation in disease-modifying Charité Universitätsmedizin, profiled with GeneChip microarrays.D etailed functional antirheumatic drug (DMARD) non-responders Berlin, Germany analysis was performed with reference transcriptomes may be achieved when targeting monocyte-derived 2 Department of Pathophysiology of BM precursors, monocyte blood subsets, monocyte cytokines, tumour necrosis factor (TNF), inter- and Immunology, National activation and mobilisation.
    [Show full text]
  • Human Anatomy and Physiology
    LECTURE NOTES For Nursing Students Human Anatomy and Physiology Nega Assefa Alemaya University Yosief Tsige Jimma University In collaboration with the Ethiopia Public Health Training Initiative, The Carter Center, the Ethiopia Ministry of Health, and the Ethiopia Ministry of Education 2003 Funded under USAID Cooperative Agreement No. 663-A-00-00-0358-00. Produced in collaboration with the Ethiopia Public Health Training Initiative, The Carter Center, the Ethiopia Ministry of Health, and the Ethiopia Ministry of Education. Important Guidelines for Printing and Photocopying Limited permission is granted free of charge to print or photocopy all pages of this publication for educational, not-for-profit use by health care workers, students or faculty. All copies must retain all author credits and copyright notices included in the original document. Under no circumstances is it permissible to sell or distribute on a commercial basis, or to claim authorship of, copies of material reproduced from this publication. ©2003 by Nega Assefa and Yosief Tsige All rights reserved. Except as expressly provided above, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without written permission of the author or authors. This material is intended for educational use only by practicing health care workers or students and faculty in a health care field. Human Anatomy and Physiology Preface There is a shortage in Ethiopia of teaching / learning material in the area of anatomy and physicalogy for nurses. The Carter Center EPHTI appreciating the problem and promoted the development of this lecture note that could help both the teachers and students.
    [Show full text]
  • James Watson and Francis Crick
    James Watson and Francis Crick https://www.ducksters.com/biography/scientists/watson_and_crick.php biographyjameswatsonandfranciscrick.mp3 Occupation: Molecular biologists Born: Crick: June 8, 1916 Watson: April 6, 1928 Died: Crick: July 28, 2004 Watson: Still alive Best known for: Discovering the structure of DNA Biography: James Watson James Watson was born on April 6, 1928 in Chicago, Illinois. He was a very intelligent child. He graduated high school early and attended the University of Chicago at the age of fifteen. James loved birds and initially studied ornithology (the study of birds) at college. He later changed his specialty to genetics. In 1950, at the age of 22, Watson received his PhD in zoology from the University of Indiana. James Watson and Francis Crick https://www.ducksters.com/biography/scientists/watson_and_crick.php James D. Watson. Source: National Institutes of Health In 1951, Watson went to Cambridge, England to work in the Cavendish Laboratory in order to study the structure of DNA. There he met another scientist named Francis Crick. Watson and Crick found they had the same interests. They began working together. In 1953 they published the structure of the DNA molecule. This discovery became one of the most important scientific discoveries of the 20th century. Watson (along with Francis Crick, Rosalind Franklin, and Maurice Wilkins) was awarded the Nobel Prize in Physiology or Medicine in 1962 for the discovery of the DNA structure. He continued his research into genetics writing several textbooks as well as the bestselling book The Double Helix which chronicled the famous discovery. Watson later served as director of the Cold Spring Harbor Lab in New York where he led groundbreaking research into cancer.
    [Show full text]
  • Sdr3-17 Physiology and Organismal Biology Flyer
    Concentration in Physiology and Organismal Biology Physiology and organismal biology are broad, integrative, and overlapping disciplines that generally focus on the study of life above the cellular level. Physiology integrates molecular, cellular, systems, and whole-body functions of organisms. Related courses in the department mainly emphasize the study of vertebrates and provide a foundation for the understanding of the mechanical, physical, and biochemical basis of human physiology. Organismal biology focuses on the mechanisms that contribute to the form, function, and behavior of whole organisms. Courses in this area approach these subjects in an ecological and evolutionary context. The concentration offers opportunities to gain hands-on experience through upper-level electives that include a laboratory section (e.g., Human Anatomy, Human Physiology) or advanced experience courses (e.g., Topics in Biomechanics, Cancer as a Metabolic Disease). Additionally, research, mentoring, or teaching opportunities may be arranged with core faculty. This concentration prepares students for a wide variety of career paths, including the perusal of advanced degrees in human and veterinary medicine and graduate research in ecology, evolutionary biology, and applied natural sciences. Graduates with this concentration may also pursue employment in an array of fields including animal science, biology education, biotechnology, wildlife and fisheries biology, exercise physiology, pharmaceutical/biotechnology research, natural resource management, or conservation. GENERAL BIOLOGY COURSE REQUIREMENTS FOR THE BIOLOGY BS DEGREE 1. BIOL 2000 Molecules and Cells 2. BIOL 2010 Ecology and Evolution 3. BIOL 2040 Investigations in Molecular Cell Biology 4. Category A: Genetics and Genomics. Choose one course from the following • BIOL 3050 Genetics • BIOL 3150 Introduction to Genomics • BIOL 3060 Introduction to Genetics (summer only) 5.
    [Show full text]
  • What Are the Health Effects from Exposure to Carbon Monoxide?
    CO Lesson 2 CARBON MONOXIDE: LESSON TWO What are the Health Effects from Exposure to Carbon Monoxide? LESSON SUMMARY Carbon monoxide (CO) is an odorless, tasteless, colorless and nonirritating Grade Level: 9 – 12 gas that is impossible to detect by an exposed person. CO is produced by the Subject(s) Addressed: incomplete combustion of carbon-based fuels, including gas, wood, oil and Science, Biology coal. Exposure to CO is the leading cause of fatal poisonings in the United Class Time: 1 Period States and many other countries. When inhaled, CO is readily absorbed from the lungs into the bloodstream, where it binds tightly to hemoglobin in the Inquiry Category: Guided place of oxygen. CORE UNDERSTANDING/OBJECTIVES By the end of this lesson, students will have a basic understanding of the physiological mechanisms underlying CO toxicity. For specific learning and standards addressed, please see pages 30 and 31. MATERIALS INCORPORATION OF TECHNOLOGY Computer and/or projector with video capabilities INDIAN EDUCATION FOR ALL Fires utilizing carbon-based fuels, such as wood, produce carbon monoxide as a dangerous byproduct when the combustion is incomplete. Fire was important for the survival of early Native American tribes. The traditional teepees were well designed with sophisticated airflow patterns, enabling fires to be contained within the shelter while minimizing carbon monoxide exposure. However, fire was used for purposes other than just heat and cooking. According to the historian Henry Lewis, Native Americans used fire to aid in hunting, crop management, insect collection, warfare and many other activities. Today, fire is used to heat rocks used in sweat lodges.
    [Show full text]