On Some Established in the Beginning Century

Total Page:16

File Type:pdf, Size:1020Kb

On Some Established in the Beginning Century 1993 Asiatic Research Vol. 5, 147-165 I December Herpetological pp. The Ecology of the Caucasian Salamander (Mertensiella caucasica Waga) in a Local Population DAVID N. TARKHNISHVILI 1 AND IRINA. A. SERBINOVA2 'Institute of Zoology, Georgian Academy of Sciences, Tbilisi, Georgia ^Moscow Zoo, 123242 Moscow, Russia Abstract. -The different aspects of ecology of Mertensiella caucasica Waga, 1876 were investigated in a local population from Borjomi Canyon (central Georgia) for five years (1985-1990). The aspects of the is about 16.9 female. species' life cycle were more precisely determined. The main fecundity eggs per There are about 2 years in a period from egg deposition (June to first half of July) to the end of metamorphosis in nature. Animals have spent most of the time in shelters after metamorphosis. They a appear on the ground surface at night during the breeding period. Commonly the adults don't retreat to small great distance from population localities. Localities are situated in comparatively plots (100-300m) 1189 along the streams. Estimation of adult animal number showed that the population consists of specimens (1989). Annual adult survival is higher than known values of most amphibians (approaches 0.77). Larval survival is 0.27-0.32 in the second year of life. The characteristics of demography in on subUe constitution of (especially, low renewal rates) and spatial restriction localities depends mostly of M. the species (which is a result of allometric growth specifics). The small recent geographical range caucasica is explained as a result of morphological and ecological peculiarities. General morphological salamander tribe. constitution limits adaptive possibilities of any particular representative of die European lusitanica. This is an explanation of quite high ecological similarity of M. caucasica and Chioglossa Key Words: Amphibia, Caudata, Salamandridae, Mertensiella caucasica, Caucasus Mountains, Georgia, population ecology. Introduction stationary investigations about the ecology of the rare or narrow-ranged species. Long the Natural populations are the single way of term research of such species enlarges of the of wide species existence. Autoecological research knowledge biology doesn't allow a complete understanding of taxonomic groups. Moreover, these useful to find out the life of a species in nature. That is why investigations may be there must be information of life cycles, ways of rare species preservation. geographical range, population size, number dynamics, etc. On the other hand it A local population of the endemic from is hard to explain ecological aspects of the salamander, (Mertensiella caucasica), Caucasus of has been species existence without any information the western Georgia a five of their habitat preferences, feeding habits, investigated for year period (1985- additional breeding sites, etc. 1990). This work gives information about the life history of this By analyzing connections between species. species population ecology and autecology, of the as well as morphology and geographical The geographical distribution distribution, the most complete notion can Caucasian Salamander was mainly of this be formed. Investigations on some established in the beginning century. summarized amphibian species biology have allowed Information was by Nikolsky scientists to elaborate complex works (1913). Later investigations commonly localities or in connected with different aspects of their life took place in earlier reported areas. Some new localities for history. A wonderful example is Bell's adjacent works on the Smooth Newt (Bell and salamanders were found by Bakradze and Lawton, 1975; Bell, 1977). Tartarashvili (pers. comm.). The real geographic range of M. caucasica was There aren't many data of regular established. The Caucasian Salamander is © 1993 by Asiatic Herpetological Research Vol. 5 p. 148 Asiatic Herpetological Research December 1993 FIG. 1. Distribution of Mertensiella caucasica. distributed in external spurs of the sibiricus, more restricted to water habitats Trialetian Mountain Range. Probably it is than M. caucasica, is geographical limited the result of historical changes in the Kura by coniferous forests like M. caucasica in River bed (Fig. 1). Populations are mainly eastern localities (Paraskiv, 1953). Local distributed in the forest belt, but in some populations, distributed along tributaries of places they can be found close to subalpine the Chorokh and Kura rivers (in upper meadows. Humidity in the species' flow), are formed by salamanders within its locations reaches 1000 mm or more per area. Width of streams in salamander plots year (another narrow-ranged representative is not more that 1-1.5 m in spring and of the salamander tribe, Chioglossa because of stepped disposition of streams, lusitanica, has similar requirements of they run slowly in some places. There are humidity). many slowly draining pools about 20-30 cm in depth with a lot of shelters. The In the most dry part of the range of M. bottoms of streams and pools are covered caucasica, the eastern one, salamanders live with stones, and there is a lot of non- only in coniferous forest. When humidity decayed organic matter. Stepped reaches 1200 mm/year in the middle area, disposition of streams is formed by stoned they can also be found in subalpine conglomerations and fallen logs. meadows. Salamanders are distributed in Apparently, mountain ranges between deciduous forest only close to the Black stream canyons don't allow wide Sea coast, where humidity is very high salamander migration and local populations (2000-2400 mm/year; Fig. 1). The high are comparatively isolated. There is no dependence of the animal on humidity does evidence that direct migrations of animals not itself limit the species distribution, but occurs during their life cycle. Individuals determines sensitivity of specimens to other are found a maximum of 200-300 m environmental factors. It is very interesting distance from streams. that the rheophilous species Ranodon December 1993 Asiatic Herpetological Research Vol. 5 p. 149 yyj— stream bed and branches -*S —fallen trees and piles of stones O — large pools where larvae were found \ — steep banks where shelters are located FIG. 2. Schematic diagram of the study site for Mertensiella caucaska. Tfie Study Area of each adult animal was mapped, substrate type and distance from stream bank (more The studied population inhabits or less than 50 cm) was recorded. Adult coniferous forest ecosystems along the animals were marked individually by toe- second range tributary of the Kura River in clipping. Combinations from clipped digits Borjomi Canyon (eastern part of the in hind-limbs (not more than 2 in 1 foot) species' range) (Fig. 1). The plant responds to individual number of animals association is formed by Taxus baccate, from 1 to 99. Zero-1 clipped digit in the Picea orientalis and deciduous spots. The front leg mean number of hundred. Marks size of the inhabited location is a bit more of salamanders recaptured in the next year than 200 m, and it is situated between 1000 were renewed. Data of capture-recapture and 1300 m altitude, about 2 km from the were statistically counted as in Kaughley stream mouth. Slopes are precipitous, built (1977). Substrates of animals caught were by corrosion of underground tree roots or subdivided in 6 types: shallow water; sand relatively gradual, partially covered by and pebbles above water shore; wet stones; pteridium, Matteuccia struthiopteris, from wet ground; moss or lichens; dry ground the adjoining stream banks. There are and stones. These types were ranked some stone conglomerations and fallen according to their humidity. Basic trees in the study area, shown on the map investigations were conducted on 8-10 and (Fig. 2). Air temperature is close to stream 21-23 June, 1986, 24-28 June, and 5-7. water temperature (13-15°C in summer) in August, 1987, 3-5 and 21-24 July, 1988, shelters formed by stones and logs. 16 June- 12 July, 1989, 2-9 July, 1990. Dynamics of air temperature in Borjomi Canyon in May to July, 1989 is shown in We had 337 contacts with males and 202 Fig. 3. Quiet pools and shelters are relative with females (including specimens found rare, slopes are steeper and stream flow is two or more time). Recording of larvae faster at upper and lower localities. Density was conducted during night excursions. of salamanders here falls rapidly as well as away from the stream banks in these We caught females from nature in the places. reproductive period and obtained eggs using a hormonal stimulation method Methods (Gontcharov et al., 1989) to study some ecological and morphological features of The main quantitative data were obtained early development. Eggs were incubated in during excursions with a lantern after Weiss bowls in dechloronated water at a sunset along the study area. The location temperature of 14°C as well as in aquaria at Vol. 5 p. 150 Asiatic Herpetological Research December 1993 Date FIG. 3. Air temperature at the Mertensiella caucasica study site during the period of reproductive activity. Stippled bars represent periods of rainfall. -i precision of 0.1 mm. The coloration 40 Males Females patterns of some animals was also i- 30- recorded. X> S 20- 3 Results Z 10- The niche oflarvae and adult specimens. 12 3 4 YV~ i-2 5 6 Salamanders don't have an even Substrate distribution within the study site. Preference to every substrate depends on FIG. 4. Location of salamanders by substrate type. the amount of moisture of each 1- shallow water; 2- wet sand and pebbles; 3- wet particular substrate. of decreases stones; 4- moist ground; 5- moss or lichens; 6- dry Frequency captures with distance from water or stones. Solid bars represent males. Stippled bars potential represent females. shelters. The number of animals captured out of shelters depends on time and season. a temperature varying from 5-22°C. Before Most adult specimens were recorded close completion of metamorphosis, larvae were to the stream (less than 50 cm from the kept in 20 liter aquaria, where water was water shore): 60±4% of males, 62±5% of changed every third day.
Recommended publications
  • High Diversity of Frankia and Ectomycorrhizal Fungi Revealed from Alnus Glutinosa Subsp
    Alder and the Golden Fleece: high diversity of Frankia and ectomycorrhizal fungi revealed from Alnus glutinosa subsp. barbata roots close to a Tertiary and glacial refugium Melanie Roy, Adrien Pozzi, Raphaëlle Gareil, Melissande Nagati, Sophie Manzi, Imen Nouioui, Nino Sharikadze, Patricia Jargeat, Hervé Gryta, Pierre-Arthur Moreau, et al. To cite this version: Melanie Roy, Adrien Pozzi, Raphaëlle Gareil, Melissande Nagati, Sophie Manzi, et al.. Alder and the Golden Fleece: high diversity of Frankia and ectomycorrhizal fungi revealed from Alnus glutinosa subsp. barbata roots close to a Tertiary and glacial refugium. PeerJ, PeerJ, 2017, 10.7717/peerj.3479. hal-01570368 HAL Id: hal-01570368 https://hal.archives-ouvertes.fr/hal-01570368 Submitted on 29 Jul 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Alder and the Golden Fleece: high diversity of Frankia and ectomycorrhizal fungi revealed from Alnus glutinosa subsp. barbata roots close to a Tertiary and glacial refugium Melanie Roy1, Adrien C. Pozzi2, Raphaëlle Gareil1, Melissande Nagati1, Sophie
    [Show full text]
  • Status and Protection of Globally Threatened Species in the Caucasus
    STATUS AND PROTECTION OF GLOBALLY THREATENED SPECIES IN THE CAUCASUS CEPF Biodiversity Investments in the Caucasus Hotspot 2004-2009 Edited by Nugzar Zazanashvili and David Mallon Tbilisi 2009 The contents of this book do not necessarily reflect the views or policies of CEPF, WWF, or their sponsoring organizations. Neither the CEPF, WWF nor any other entities thereof, assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, product or process disclosed in this book. Citation: Zazanashvili, N. and Mallon, D. (Editors) 2009. Status and Protection of Globally Threatened Species in the Caucasus. Tbilisi: CEPF, WWF. Contour Ltd., 232 pp. ISBN 978-9941-0-2203-6 Design and printing Contour Ltd. 8, Kargareteli st., 0164 Tbilisi, Georgia December 2009 The Critical Ecosystem Partnership Fund (CEPF) is a joint initiative of l’Agence Française de Développement, Conservation International, the Global Environment Facility, the Government of Japan, the MacArthur Foundation and the World Bank. This book shows the effort of the Caucasus NGOs, experts, scientific institutions and governmental agencies for conserving globally threatened species in the Caucasus: CEPF investments in the region made it possible for the first time to carry out simultaneous assessments of species’ populations at national and regional scales, setting up strategies and developing action plans for their survival, as well as implementation of some urgent conservation measures. Contents Foreword 7 Acknowledgments 8 Introduction CEPF Investment in the Caucasus Hotspot A. W. Tordoff, N. Zazanashvili, M. Bitsadze, K. Manvelyan, E. Askerov, V. Krever, S. Kalem, B. Avcioglu, S. Galstyan and R. Mnatsekanov 9 The Caucasus Hotspot N.
    [Show full text]
  • Caudata: Hynobiidae): Heterochronies and Reductions
    65 (1): 117 – 130 © Senckenberg Gesellschaft für Naturforschung, 2015. 4.5.2015 Development of the bony skeleton in the Taiwan salamander, Hynobius formosanus Maki, 1922 (Caudata: Hynobiidae): Heterochronies and reductions Anna B. Vassilieva 1 *, June-Shiang Lai 2, Shang-Fang Yang 2, Yu-Hao Chang 1 & Nikolay A. Poyarkov, Jr. 1 1 Department of Vertebrate Zoology, Biological Faculty, Lomonosov Moscow State University, Leninskiye Gory, GSP-1, Moscow 119991, Russia — 2 Department of Life Science, National Taiwan Normal University, 88, Sec. 4 Tingchou Rd., Taipei 11677, Taiwan, R.O.C. — *Cor- responding author; vassil.anna(at)gmail.com Accepted 19.ii.2015. Published online at www.senckenberg.de / vertebrate-zoology on 4.v.2015. Abstract The development of the bony skeleton in a partially embryonized lotic-breeding salamander Hynobius formosanus is studied using the ontogenetic series from late embryos to postmetamorphic juveniles and adult specimen. Early stages of skull development in this spe- cies are compared with the early cranial ontogeny in two non-embryonized lentic-breeding species H. lichenatus and H. nigrescens. The obtained results show that skeletal development distinguishes H. formosanus from other hynobiids by a set of important features: 1) the reduction of provisory ossifications (complete absence of palatine and reduced state of coronoid), 2) alteration of a typical sequence of ossification appearance, namely, the delayed formation of vomer and coronoid, and 3) the absence of a separate ossification center of a lacrimal and formation of a single prefrontolacrimal. These unique osteological characters in H. formosanus are admittedly connected with specific traits of its life history, including partial embryonization, endogenous feeding until the end of metamorphosis and relatively short larval period.
    [Show full text]
  • Beaver Facilitation in the Conservation of Boreal Anuran Communities (Anura: Bufonidae, Ranidae)
    vehkaoja_nummi_beaves__Anuran_conservation_HerPetozoA.qxd 28.07.2015 15:07 Seite 1 HerPetozoA 28 (1/2): 75 - 87 75 Wien, 30. Juli 2015 beaver facilitation in the conservation of boreal anuran communities (Anura: bufonidae, ranidae) Die Förderung des bibers und die erhaltung der borealen Anurengemeinschaften (Anura: bufonidae, ranidae) miA veHkAoJA & P etri nummi kurzFASSunG Artensterben und Habitatverlust verlaufen in europa und weltweit rasant. Amphibien und Feuchtlebens - räume sind ganz wesentlich davon betroffen. letztere warden in der borealen zone häufig durch die Dammbau- tätigkeit des bibers ( Castor sp.) bereitgestellt. Die Autoren untersuchten die Anurenfauna in zehn derartigen biber-Gewässern, zehn nicht vom biber bewohnten und acht temporären Wasserkörpern in Finland. Alle drei in der region heimischen Anurenarten (erdkröte, moor- und Grasfrosch) besiedelten die biber-Gewässer, wobei der moorfrosch in nicht vom biber bewohnten und temporären Gewässern des Gebietes nicht gefunden wurde. moorfrösche profitierten offensichtlich vom teichbaua und dem Fällen von bäumen durch den biber und die damit verbundene Schaffung einer vielzahl von seichten Gewässerabschnitten mit breiten emersen vegetationsgürteln. Die ergebnisse zeigen, daß biber qualitative hochwertige Anurenhabitate schaffen und das vorkommen des moorfrosches begünstigen.. es wird angeregt, biber als ingenieure bei der Wiederherstellung von Ökosystemen einzusetzen, um die ziele des Amphibienschutzes zu unterstützen. AbStrACt A rapid loss of species and habitats is occurring globally. Amphibians and wetlands are important compo - nents of this overall decline. Wetlands in the boreal region are frequently constructed by damming activities of an ecosystem engineer, the beaver ( Castor sp.). the authors investigated the anuran fauna in ten such ‘beaver ponds’, ten ‘non-beaver ponds’ and eight temporary ponds in Finland.
    [Show full text]
  • Georgia Environmental Performance Reviews Third Review
    UNECE Georgia Environmental Performance Reviews Third Review UNITED NATIONS ECE/CEP/177 UNITED NATIONS ECONOMIC COMMISSION FOR EUROPE ENVIRONMENTAL PERFORMANCE REVIEWS GEORGIA Third Review UNITED NATIONS New York and Geneva, 2016 Environmental Performance Reviews Series No. 43 NOTE Symbols of United Nations documents are composed of capital letters combined with figures. Mention of such a symbol indicates a reference to a United Nations document. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. In particular, the boundaries shown on the maps do not imply official endorsement or acceptance by the United Nations. The United Nations issued the second Environmental Performance Review of Georgia (Environmental Performance Reviews Series No. 30) in 2010. This volume is issued in English only. ECE/CEP/177 UNITED NATIONS PUBLICATION Sales E.16.II.E.3 ISBN 978-92-1-117101-3 e-ISBN 978-92-1-057683-3 ISSN 1020-4563 iii Foreword It is essential to monitor progress towards environmental sustainability and to evaluate how countries reconcile environmental and economic targets and meet their international environmental commitments. Through regular monitoring and evaluation, countries may more effectively stay ahead of emerging environmental issues, improve their environmental performance and be accountable to their citizens. The ECE Environmental Performance Review Programme provides valuable assistance to member States by regularly assessing their environmental performance so that they can take steps to improve their environmental management, integrate environmental considerations into economic sectors, increase the availability of information to the public and promote information exchange with other countries on policies and experiences.
    [Show full text]
  • Biodiversity Action Plan
    Environmental and Social Impact Assessment – Part 6 Project Number: 47919 April 2014 GEO: Adjaristsqali Hydropower Project Prepared by Mott MacDonald and Adjaristsqali Georgia LLC for the Asian Development Bank The environmental impact assessment is a document of the borrower. The views expressed herein do not necessarily represent those of ADB's Board of Directors, Management, or staff, and may be preliminary in nature. Your attention is directed to the “Terms of Use” section of this website. In preparing any country program or strategy, financing any project, or by making any designation of or reference to a particular territory or geographic area in this document, the Asian Development Bank does not intend to make any judgments as to the legal or other status of any territory or area. Biodiversity Action Plan Adjaristsqali Hydropower Cascade Project December 2013 Adjaristsqali Georgia LLC Biodiversity290039 EVT Action EMS 01Plan A http://pims01/pims/llisapi.dll/open/1516754514 1 November 2012 Adjaristsqali Hydropower Cascade Project December 2013 Adjaristsqali Georgia LLC 1. Abashidze Street 6, 6010 Batumi, Georgia Mott MacDonald, Demeter House, Station Road, Cambridge CB1 2RS, United Kingdom t +44 (0)1223 463500 f +44 (0)1223 461007, www.mottmac.com Biodiversity Action Plan Issue and revision record Revision Date Originator Checker Approver Description A 2/11/2012 Celia Figueira Vanessa Hovland Caroline McParland Draft for client review Mihai Coroi Tristan Folland Róisín Ní Mhathúna B 29/11/2012 Mihai Coroi Vanessa Hovland Final Draft
    [Show full text]
  • The Dorsal Tail Tubercle of Mertensiella Caucasica and M. Luschani (Amphibia: Salamandridae)
    JOURNAL OF MORPHOLOGY 232:93–105 (1997) The Dorsal Tail Tubercle of Mertensiella caucasica and M. luschani (Amphibia: Salamandridae) DAVID M. SEVER,1* MAX SPARREBOOM,2 AND GUENTHER SCHULTSCHIK3 1Department of Biology, Saint Mary’s College, Notre Dame, Indiana 46556 22597 SC Den Haag, The Netherlands 3Sechsschimmelgasse 7/19, A-1090 Wien, Austria ABSTRACT Males of the two species of Mertensiella (M. caucasica and M. luschani) possess a tubercle projecting from the skin of the dorsal tail base, the single morphological character that defines the genus. The dorsal tail tubercle functions during courtship, and its role is similar in both species. The tubercle is inserted into the cloaca of the female during ventral amplexus, shortly before the male deposits a spermatophore. Histological examination, however, revealed that the dorsal tubercles differ structurally between the two species. In M. caucasica, the tubercle consists primarily of elongate mucous glands, with granular glands occurring only at the base. Both mucous and granular glands of the tubercle are larger than those in typical skin. Unlike typical skin, however, mucous glands are larger than granular glands. In M. luschani, mucous glands and granular glands occur throughout the tubercle, and the granular glands are larger than the mucous glands, although both types are larger than those in typical skin. The dorsal tubercles of M. caucasica and M. luschani may not be homologous structures and may have resulted from convergent evolution. J Morphol 232:93–105, 1997. r 1997 Wiley-Liss, Inc. Mertensiella contains two species, M. cau- regarding courtship behaviour and phylog- casica, found in Turkey bordering the south- eny of Mertensiella.
    [Show full text]
  • Reproductive Biology and Phylogeny of Urodela
    CHAPTER 13 Life Histories Richard C. Bruce 13.1 INTRODUCTION The life history of an animal is the sequence of morphogenetic stages from fertilization of the egg to senescence and death, which incorporates the probabilistic distributions of demographic parameters of an individual’s population as components of the life-history phenotype. At the population (or species) level, and in the context of ectothermic vertebrates, Dunham et al. (1989) have defined a life history in terms of a heritable set of rules that govern three categories of allocations: (1) allocation of time among such activities as feeding, mating, defense, and migration; (2) allocation of assimilated resources among growth, storage, maintenance, and reproduction; and (3) the mode of “packaging” of the reproductive allocation. An application of such an allocation-based definition in the study of salamander life histories was provided by Bernardo (1994). Implicit in the definition is the condition that life-history traits have a heritable basis; average plasticity in any trait reflects the average reaction norm, or the range in phenotypes expressed by a given genotype, averaged for all genotypes, over the range of environments experienced by all members of the population (Via 1993). Salamanders show greater diversity in life histories than any other vertebrate taxon of equivalent rank, which is all the more remarkable given the relatively small number (about 500) of known extant species. Beginning, somewhat arbitrarily, with the landmark studies of the plethodontids Desmognathus fuscus and Eurycea bislineata by Inez W. Wilder (1913, 1924) [who earlier published papers on salamanders under the name I. L. Whipple], this diversity has generated considerable interest by ecologists and herpetologists during the past 90 years.
    [Show full text]
  • A Skeletochronological Study of Age, Growth and Longevity in a Population of the Caucasian Salamander, Mertensiella Caucasica
    North-Western Journal of Zoology Vol. 5, No. 1, 2009, pp.74-84 P-ISSN: 1584-9074, E-ISSN: 1843-5629 Article No.: 051109 A skeletochronological study of age, growth and longevity in a population of the Caucasian Salamander, Mertensiella caucasica (Waga 1876) (Caudata: Salamandridae) from Turkey Nazan ÜZÜM Adnan Menderes University, Faculty of Arts and Sciences, Department of Biology, 09010 Aydın, Turkey, E-mail: [email protected] Abstract. Age structure, size, and growth patterns of the local population of the Caucasian Salamander, Mertensiella caucasica (Waga 1876) were determined by using skeletochronology. Lines of arrested growth (LAGs) recorded in phalanges were used to estimate the age of juveniles and adults. Results show that juveniles were from 1 to 3 years old. The average age was significantly higher in males (7.3 ± 1.28 yrs) than in females (6.0 ± 1.15 yrs). The maximum observed longevity was 10 years in males and 9 years in females. Age at maturity in this population was 4-5 years in both sexes. The average SVL (snout-vent length) did not differ between sexes (males: 67.5 mm and females: 63.8 mm). The average weight of males was 4.7 g, and significantly higher than the weight of females (3.7 g). The growth curves for M. caucasica population were well described with a von Bertalanffy growth model. K (0.348±0.026 for males and 0.129±0.009 for females) and SVLmax (72.03±1.02 mm for males and 102.00±3.80 mm for females) were significantly differed between males and females in this population.
    [Show full text]
  • Status and Protection of Globally Threatened Species in the Caucasus
    STATUS AND PROTECTION OF GLOBALLY THREATENED SPECIES IN THE CAUCASUS CEPF Biodiversity Investments in the Caucasus Hotspot 2004-2009 Edited by Nugzar Zazanashvili and David Mallon Tbilisi 2009 The contents of this book do not necessarily re ect the views or policies of CEPF, WWF, or their sponsoring organizations. Neither the CEPF, WWF nor any other entities thereof, assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, product or process disclosed in this book. Citation: Zazanashvili, N. and Mallon, D. (Editors) 2009. Status and Protection of Globally Threatened Species in the Caucasus. Tbilisi: CEPF, WWF. Contour Ltd., 232 pp. ISBN 978-9941-0-2203-6 Design and printing Contour Ltd. 8, Kargareteli st., 0164 Tbilisi, Georgia December 2009 The Critical Ecosystem Partnership Fund (CEPF) is a joint initiative of l’Agence Française de Développement, Conservation International, the Global Environment Facility, the Government of Japan, the MacArthur Foundation and the World Bank. This book shows the effort of the Caucasus NGOs, experts, scienti c institutions and governmental agencies for conserving globally threatened species in the Caucasus: CEPF investments in the region made it possible for the rst time to carry out simultaneous assessments of species’ populations at national and regional scales, setting up strategies and developing action plans for their survival, as well as implementation of some urgent conservation measures. Contents Foreword 7 Acknowledgments 8 Introduction CEPF Investment in the Caucasus Hotspot A. W. Tordoff, N. Zazanashvili, M. Bitsadze, K. Manvelyan, E. Askerov, V. Krever, S. Kalem, B. Avcioglu, S. Galstyan and R. Mnatsekanov 9 The Caucasus Hotspot N.
    [Show full text]
  • Directory of Azov-Black Sea Coastal Wetlands
    Directory of Azov-Black Sea Coastal Wetlands Kyiv–2003 Directory of Azov-Black Sea Coastal Wetlands: Revised and updated. — Kyiv: Wetlands International, 2003. — 235 pp., 81 maps. — ISBN 90 5882 9618 Published by the Black Sea Program of Wetlands International PO Box 82, Kiev-32, 01032, Ukraine E-mail: [email protected] Editor: Gennadiy Marushevsky Editing of English text: Rosie Ounsted Lay-out: Victor Melnychuk Photos on cover: Valeriy Siokhin, Vasiliy Kostyushin The presentation of material in this report and the geographical designations employed do not imply the expres- sion of any opinion whatsoever on the part of Wetlands International concerning the legal status of any coun- try, area or territory, or concerning the delimitation of its boundaries or frontiers. The publication is supported by Wetlands International through a grant from the Ministry of Agriculture, Nature Management and Fisheries of the Netherlands and the Ministry of Foreign Affairs of the Netherlands (MATRA Fund/Programme International Nature Management) ISBN 90 5882 9618 Copyright © 2003 Wetlands International, Kyiv, Ukraine All rights reserved CONTENTS CONTENTS3 6 7 13 14 15 16 22 22 24 26 28 30 32 35 37 40 43 45 46 54 54 56 58 58 59 61 62 64 64 66 67 68 70 71 76 80 80 82 84 85 86 86 86 89 90 90 91 91 93 Contents 3 94 99 99 100 101 103 104 106 107 109 111 113 114 119 119 126 130 132 135 139 142 148 149 152 153 155 157 157 158 160 162 164 164 165 170 170 172 173 175 177 179 180 182 184 186 188 191 193 196 198 199 201 202 4 Directory of Azov-Black Sea Coastal Wetlands 203 204 207 208 209 210 212 214 214 216 218 219 220 221 222 223 224 225 226 227 230 232 233 Contents 5 EDITORIAL AND ACKNOWLEDGEMENTS This Directory is based on the national reports prepared for the Wetlands International project ‘The Importance of Black Sea Coastal Wetlands in Particular for Migratory Waterbirds’, sponsored by the Netherlands Ministry of Agriculture, Nature Management and Fisheries.
    [Show full text]
  • Nneeewwwsssllleeetttttteeerr
    NNeewwsslleetttteerr Hot in this issue: Caucasian salamander July-September 2008 Quarterly newsletter for WWF Caucasus and CEPF mutual effort for biodiversity conservation in the Caucasus In this issue: · Transboundary Study of the Western Lesser Caucasus Endemic species · Sustainable forestry and introduction of alternative energy sources · Update to the red lists of Armenia and IUCN · Escaping in the mountains: Armenian mouflon and Bezoar goat · Conservation of the Mediterranean Tortoise View to Vashlovani National Park - Georgia. Photo © Amiran Kodiashvili. WWF Caucasus PO 1 11 Aleksidze St. Tbilisi 0193 Georgia Tel.: +995 32 330155/54 Fax: +995 32 330190 www.panda.org/caucasus/cepf/ Transboundary Conservation-Oriented Study of the Western Lesser Caucasus Endemic Species - Caucasian salamander in the focus Caucasian Endemics Research Center is conducting a study of endemic species in the Western Lesser Caucasus. One of these species - the Caucasian salamander (Mertensiella caucasica) is a flagship amphibian species of the Caucasus Ecoregion and is included in the IUCN Red List (2008) under the category VU (vulnerable), as a declining species with small and fragmented range. The Project scope is compilation and completion of background information necessary for the implementation of a conservation strategy and action plan for the Caucasian Caucasian salamander found at Goderdzi salamander, as well as promoting the necessity of this species’ pass - Georgia. Photo by D. Tarkhvishvili. conservation in the governmental institutions and in wide public, and creating an effective system of monitoring throughout the distribution range. One urgent need for developing an effective conservation strategy for this species is a satisfactory knowledge of its range, including the area of occupancy, degree or fragmentation, spatial position of the population sources, and the number of spatially isolated geographic populations from Borjomi to Trabzon area.
    [Show full text]