Geology of the Groningen Field

Total Page:16

File Type:pdf, Size:1020Kb

Geology of the Groningen Field 2/1/18 SEAL 250 mln years BP Permian Eemshaven Groningen Zechstein Sea Geology of the Gas Field Delfzijl RESERVOIR Loppersum Groningen Field Three 270 mln years BP Early Permian Groningen Geological Desert Success Rien Herber Factors SOURCE Delft, 1st February 2018 300 mln years BP Late Carboniferous Tropical Forest Modified after Kroonenberg, 2008 Groningen Seismic Cross Section The Reservoir 1 km 2 km 3 km 5 km Modified after: De Jager & Visser, 2017 Source: SPB Atlas, 2011 1 2/1/18 Mid Permian – 240 MY Southern Permian Basin Rotliegend Paleogeography 30 N 0º C. Scotese In a landlocked position at some 15 to 20 North, the Netherlands was exposed to a hot and dry climate Source: Geluk, 2007 Source: Scotese, 2003 Rotliegend in Groningen – Depositional Environments Rotliegend – Environments of Deposition aeolian dune field fluvial sheet floods lateral feeder channel (incision) wind sand sheet wadi Source: Grötsch et al, 2012 2 2/1/18 Seismic Facies Development across Groningen Field S N Groningen Gas Field 0 Rotliegend Thickness Map 300m Seismic Expression Rotliegend - Flattened on Base Zechstein 0 300m Westphalian Source: Grötsch et al, 2012 Source (seismic): R.Romein, 2017 Groningen Gasfield Net Hydrocarbon Column Height (thickness x net/gross x porosity x gas saturation) (at subsurface conditions) Rotliegend Sandstone m A. In a downhole core B. Under the microscope Porosity 23.5% Permeability 202 mD 0 5 10 km Source: De Jager & Visser, 2017 Source: Grötsch et al, 2012 3 2/1/18 Rotliegend Fault Patterns in NE Netherlands Net Hydrocarbon Column Height Reservoir Compaction (at subsurface conditions) (measured at surface in 2012) 0 5 10 km Source: Ligtenberg et al, 2012 Groningen Field – Rotliegend Fault Pattern Groningen SW-NE Seismic Cross Section – Focus on Deep Faulting 240.000 260.000 - - 1 km Regional Paleo Stress Orientations -600.000 3 km (Ligtenberg et al) 5 km -580.000 7 km Source: Romein, 2017 Source: Kortekaas & Jaarsma, 2018 4 2/1/18 Groningen Field – EW time-section Base Upper Northsea Dipmap Zechstein Salt Isochore Map WEST EAST 0 1 sec 2 sec 20 km 2 km m Source: Romein, 2014 Source: Romein, 2017 240.000 260.000 - - Groningen Field Location of Zeerijp Rotliegend Fault Tremor Pattern and its Precursors - 6 dec ‘17 600.000 based on Moment Tensor Inversion (KNMI) - 8 jan ‘18 580.000 11 mar ‘17 Focus on Zeerijp Area 7 dec ‘16 Source: B.Dost, 2018 5 2/1/18 The Salt Top Zechstein Salt NE Netherlands Groningen Field Source: Meijles, 2010 240.000 260.000 - - A Groningen Gasfield – NS Transect A A’ Zechstein 0 Isochore Map - 1000 - - - - - 100 500 1000 1500 1700 thickness in meters 2000 in meters in epth d - 3000 Source: R.Romein, 2017 A’ Source: R.Romein, 2017 6 2/1/18 Defocussing in Salt and Scattering in Anhydrite Stringers Wavefront Simulation ray paths – simple velocity model 0 Tertiary 1 km - 1 Chalk 2 Zechstein salt km 2 km - 3 Rotliegend More detailed velocity model 4 3 km - Carboniferous 5 km Source: ExxonMobil, 2015 Modified after Kraaijpoel, 2012 30km N Impact of 3D Scattering The Shallow Soil Difference (b-a) 30km N 30km (a) Flat Layer Model 30km N 30km Source: ExxonMobil, 2015 (b) Groningen 3D Earth Model 7 2/1/18 Site Response depending on Soil Composition Huizinge Tremor, 16th August 2012 Recorded Acceleration at station Middelstum-1 Vsh 100 – 200 m/s ) 2 Horizontal - X 50-100m Horizontal - Y Vertical Vsh 2000 – 3000 m/s dispersion & damping Acceleration (cm/sec ≈ 3000m Source, KNMI 2012 Shallow Soil Groningen – W-E Cross section Huizinge Tremor – Intensity 16 August 2012 Winsum Woldendorp 0 Eemshaven Delfzijl 10 km 50m Groningen Source: Meijles, RUG, 2015 Source: KNMI 2013 8 2/1/18 Soil Composition Groningen (top 2m – deposited from 800 AD until today) ‘Upsweep Effect’ of Shallow Soil Eemshaven Eemshaven high Amplification 2-3 Hz low Delfzijl Delfzijl Groningen Groningen Source: Alterra 2006 Source: Tijn Berends (MSc, RUG), 2014 Source: Alterra, 2006 Anthropocene – Dwelling Mounds ‘Upsweep Effect’ of Shallow Soil Paleogeography 1500 BC high Amplification 2-3 Hz low Density? Velocity? Tidal flats & channels peat Source: Tijn Berends, MSc RUG, 2014 Fluvial deposits & salt marshes 9 2/1/18 Groningen Seismic Cross Section Locations of Dwelling Mounds in Groningen and Friesland (from 600 AD onward) 1 km 2 km 3 km 5 km Source: Landschapsbeheer Friesland & Groningen Modified after: De Jager & Visser, 2017 Special Thanks to: Jan de Jager Clemens Visser Remco Romein 10.
Recommended publications
  • Noord-West 380 Kv Eemshaven Oudeschip-Vierverlaten (EOS-VVL)
    Noord-West 380 kV Eemshaven Oudeschip-Vierverlaten (EOS-VVL) Milieueffectrapport 23 mei 2017 Noord-West 380 kV Eemshaven Oudeschip-Vierverlaten (EOS-VVL) Hoofdrapport deel B Kenmerk R003-4634227HJW-agv-V04-NL Verantwoording Titel Noord-West 380 kV Eemshaven Oudeschip-Vierverlaten (EOS-VVL) Opdrachtgever TenneT TSO Projectleider Marlies Verspui Auteur(s) Hugo Weimer, Marlies Verspui en Rob Evelein Projectnummer 4634227 Aantal pagina's 182 (exclusief bijlagen) Datum 23 mei 2017 Handtekening Ontbreekt in verband met digitale versie. Dit rapport is aantoonbaar vrijgegeven. Colofon Tauw bv BU Water & Ruimtelijke Kwaliteit Australiëlaan 5 Postbus 3015 3502 GA Utrecht Telefoon +31 30 28 24 82 4 Fax +31 30 28 89 48 4 Dit document is eigendom van de opdrachtgever en mag door hem worden gebruikt voor het doel waarvoor het is vervaardigd met inachtneming van de rechten die voortvloeien uit de wetgeving op het gebied van het intellectuele eigendom. De auteursrechten van dit document blijven berusten bij Tauw. Kwaliteit en verbetering van product en proces hebben bij Tauw hoge prioriteit. Tauw hanteert daartoe een managementsysteem dat is gecertificeerd dan wel geaccrediteerd volgens: - NEN-EN-ISO 9001 MER NW380 kV EOS-VVL 5\182 Kenmerk R003-4634227HJW-agv-V04-NL 6\182 MER NW380 kV EOS-VVL Kenmerk R003-4634227HJW-agv-V04-NL Inhoud Verantwoording en colofon .......................................................................................................... 5 Deel B Nadere beschrijving van de milieueffecten .................................................................
    [Show full text]
  • EEMSHAVEN: MAIN HUB in OFFSHORE WIND INDUSTRY EEMSHAVEN MEETS GOALS | PLANNING MARITIME REQUIREMENTS up to 2030 OFFSHORE WIND INDUSTRY • Draught: 7.5 - 14 M
    EEMSHAVEN: MAIN HUB IN OFFSHORE WIND INDUSTRY EEMSHAVEN MEETS GOALS | PLANNING MARITIME REQUIREMENTS UP TO 2030 OFFSHORE WIND INDUSTRY • Draught: 7.5 - 14 m. • Quay length: 5,085 m. (private and public quays) GOALS 2020: • Jetty length: 1,130 m Netherlands (west coast): ± 4.5 GW • Width of fairway and basin(s): 110 - 350 m. Germany (German Bight North Sea): ± 6.5 GW • Wide port entrance: suitable to transport assembled United Kingdom ± 10 GW three-bladed rotors • No infrastructural restrictions sail in/out of big material (power lines, bridges, locks, etc.) • Near quay jacking GOALS 2030: • Heavy load quays; 30 tons/m2 | 20 tons/m2 | 10 tons/m2 Netherlands (west & northern coast): ± 11.5 GW • Limited tidal range (2.5 m.) Germany (German Bight North Sea): ± 20 GW • Approx. 90 hectares offshore sites available United Kingdom: ± 30 GW FOLLOW THE ENERGY Around a third of all the energy that is produced in the Netherlands comes from Eemshaven. With an installed capacity of 8,000 MW Eemshaven is known as an energy port. Major energy producers have invested billions of Euros in new power stations; an oil terminal was built; Google is expanding its immense data centre; and Eemshaven houses the largest onshore wind park in the Netherlands. The port also plays a prominent role in the development of wind parks at sea during their construction and the subsequent maintenance of the wind turbines. Eemshaven lives and breathes offshore wind and has become one of the leading ports in the offshore wind industry around the North Sea. The arrival of the heliport makes Eemshaven’s position in the offshore wind sector even stronger and also the completion of the COBRAcable.
    [Show full text]
  • A Late Permian Ichthyofauna from the Zechstein Basin, Lithuania-Latvia Region
    bioRxiv preprint doi: https://doi.org/10.1101/554998; this version posted February 20, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 A late Permian ichthyofauna from the Zechstein Basin, Lithuania-Latvia Region 2 3 Darja Dankina-Beyer1*, Andrej Spiridonov1,4, Ģirts Stinkulis2, Esther Manzanares3, 4 Sigitas Radzevičius1 5 6 1 Department of Geology and Mineralogy, Vilnius University, Vilnius, Lithuania 7 2 Chairman of Bedrock Geology, Faculty of Geography and Earth Sciences, University 8 of Latvia, Riga, Latvia 9 3 Department of Botany and Geology, University of Valencia, Valencia, Spain 10 4 Laboratory of Bedrock Geology, Nature Research Centre, Vilnius, Lithuania 11 12 *[email protected] (DD-B) 13 14 Abstract 15 The late Permian is a transformative time, which ended in one of the most 16 significant extinction events in Earth’s history. Fish assemblages are a major 17 component of marine foods webs. The macroevolution and biogeographic patterns of 18 late Permian fish are currently insufficiently known. In this contribution, the late Permian 19 fish fauna from Kūmas quarry (southern Latvia) is described for the first time. As a 20 result, the studied late Permian Latvian assemblage consisted of isolated 21 chondrichthyan teeth of Helodus sp., ?Acrodus sp., ?Omanoselache sp. and 22 euselachian type dermal denticles as well as many osteichthyan scales of the 23 Haplolepidae and Elonichthydae; numerous teeth of Palaeoniscus, rare teeth findings of 1 bioRxiv preprint doi: https://doi.org/10.1101/554998; this version posted February 20, 2019.
    [Show full text]
  • An Introduction to the Triassic: Current Insights Into the Regional Setting and Energy Resource Potential of NW Europe
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/322739556 An introduction to the Triassic: Current insights into the regional setting and energy resource potential of NW Europe Article in Geological Society London Special Publications · January 2018 DOI: 10.1144/SP469.1 CITATIONS READS 3 92 3 authors, including: Tom Mckie Ben Kilhams Shell U.K. Limited Shell Global 37 PUBLICATIONS 431 CITATIONS 11 PUBLICATIONS 61 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Reconstructing the Norwegian volcanic margin View project Paleocene of the Central North Sea: regional mapping from dense hydrocarbon industry datasets. View project All content following this page was uploaded by Ben Kilhams on 22 November 2019. The user has requested enhancement of the downloaded file. Downloaded from http://sp.lyellcollection.org/ by guest on January 26, 2018 An introduction to the Triassic: current insights into the regional setting and energy resource potential of NW Europe MARK GELUK1*, TOM MCKIE2 & BEN KILHAMS3 1Gerbrandylaan 18, 2314 EZ Leiden, The Netherlands 2Shell UK Exploration & Production, 1 Altens Farm Road, Nigg, Aberdeen AB12 3FY, UK 3Nederlandse Aardolie Maatschappij (NAM), PO Box 28000, 9400 HH Assen, The Netherlands *Correspondence: [email protected] Abstract: A review of recent Triassic research across the Southern Permian Basin area demon- strates the role that high-resolution stratigraphic correlation has in identifying the main controls on sedimentary facies and, subsequently, the distribution of hydrocarbon reservoirs. The depositio- nal and structural evolution of these sedimentary successions was the product of polyphase rifting controlled by antecedent structuration and halokinesis, fluctuating climate, and repeated marine flooding, leading to a wide range of reservoir types in a variety of structural configurations.
    [Show full text]
  • Loppersum Zuidlaren Delfzijl Het Zandt Lageland Hooghalen Froombosch Sint Annen Meedhuizen Harkstede Nieuw Annerveen Appingedam
    3.5 Huizinge Bergen Westeremden Roswinkel Roswinkel Bergen Roswinkel Bergen Loppersum Garrelsweer Zandeweer 3.0 Noordzee Hellum Bergen Garrelsweer Stedum Zeerijp Garrelsweer Het Zandt Roswinkel Zandeweer Assen Roswinkel Geelbroek De Hoeve Zeerijp Garmerwolde Scharmer Kwadijk Assen Roswinkel Onderdendam Toornwerd Roswinkel Roswinkel Roswinkel Schoorl Westeremden Westeremden Noordzee ZandeweerZeerijp Wirdum 2.5 Eleveld Geelbroek Assen Roswinkel Zeerijp Eleveld Harkstede Noordzee AppingedamHuizinge Noordzee Noordzee Froombosch Slochteren Hooghalen LoppersumSteendam Smilde Westeremden Ekehaar Holwierde Waddenzee (nabij Usquert) Uithuizen Noordzee UithuizenLeermens Noordzee (nabij Castricum) Noordzee Middelstum Roswinkel Wirdum Roswinkel Uithuizen Garrelsweer Froombosch Westerwijtwerd Leermens Overschild Wirdum Annen Froombosch Zuidlaren Anloo Jisp Ravenswoud Middelstum Westeremden Westeremden Garsthuizen Zeerijp Geelbroek Ten Post Godlinze Schildwolde Appingedam Appingedam Anna Paulowna Emmen Meedhuizen Emmen Slochteren Wachtum Nieuw Annerveen Stedum Middelstum Sappemeer Overschild Garsthuizen Garsthuizen Zeerijp NoordzeeMiddelstum Wirdum 2.0 Roden Roswinkel Het Zandt Roswinkel Zandeweer Roswinkel Zeerijp Froombosch Noordzee Lageland Rottum Slochteren Zuidwolde Schildwolde Zeerijp Eppenhuizen Garsthuizen Annen Huizinge Middelstum Roswinkel Zandeweer Zeerijp Ekehaar Oosterwijtwerd Westeremden Loppersum Emmen Froombosch Sappemeer Zeerijp Sappemeer WaddenzeeGarrelsweerWirdum (nabij Eemshaven) Noordzee (nabij Castricum) Appingedam Assen Appingedam
    [Show full text]
  • Developing a Geological Framework
    21/2/12 GeolFrameworkPaper_postreview_v2acceptchanges_editorcomments New insights from 3D geological models at analogue CO2 storage sites in Lincolnshire and eastern Scotland, UK. Alison Monaghan1*, Jonathan Ford2, Antoni Milodowski2, David McInroy1, Timothy Pharaoh2, Jeremy Rushton2, Mike Browne1, Anthony Cooper2, Andrew Hulbert2 and Bruce Napier2 1 British Geological Survey, Murchison House, West Mains Road, Edinburgh, EH9 3LA, UK. 2 British Geological Survey, Kingsley Dunham Centre, Keyworth, Nottingham, NG12 5GG, UK. * Corresponding author (email [email protected] (Approx.15,600 words in total, 25 figures) SUMMARY: Subsurface 3D geological models of aquifer and seal rock systems from two contrasting analogue sites have been created as the first step in an investigation into methodologies for geological storage of carbon dioxide in saline aquifers. Development of the models illustrates the utility of an integrated approach using digital techniques and expert geological knowledge to further geological understanding. The models visualize a faulted, gently dipping Permo-Triassic succession in Lincolnshire and a complex faulted and folded Devono-Carboniferous succession in eastern Scotland. The Permo-Triassic is present in the Lincolnshire model to depths of -2 km OD, and includes the aquifers of the Sherwood Sandstone and Rotliegendes groups. Model-derived thickness maps test and refine Permian palaeogeography, such as the location of a carbonate reef and its associated seaward slope, and the identification of aeolian dunes. Analysis of borehole core samples established average 2D porosity values for the Rotliegendes (16%) and Sherwood Sandstone (20%) groups, and the Zechstein (5%) and Mercia Mudstone (<10%) groups, which are favourable for aquifer and seal units respectively. Core sample analysis has revealed a complex but well understood diagenetic history.
    [Show full text]
  • Quick Scan Naar Mogelijke 380 Kv-Verkabeling in Het Project Noord-West 380 Kv Eemshaven Oudeschip - Vierverlaten (EOS-VVL)
    NOTITIE Quick scan naar mogelijke 380 kV-verkabeling in het project Noord-West 380 kV Eemshaven Oudeschip - Vierverlaten (EOS-VVL) Opsteller: Projectteam Noord-West 380 kV Eemshaven Oudeschip - Vierverlaten Datum: 18 november 2015 Doc.nr.: 000.144.21 0366090 Versie: 2.2 TenneT TSO B.V. DATUM 18 november 2015 REFERENTIE 000.144.21 0366090 PAGINA 2 van 44 Inhoud MANAGEMENTSAMENVATTING .................................................................................................................... 3 1. INLEIDING ..................................................................................................................................................... 5 1.1 Aanleiding ........................................................................................................................................... 5 1.2 Project Noord-West 380 kV EOS-VVL ................................................................................................ 6 1.3 Doel document .................................................................................................................................... 8 1.4 Leeswijzer ........................................................................................................................................... 8 2. ANALYSE VAN (NET)TECHNISCHE CONSEQUENTIES .......................................................................... 9 2.1 Inleiding ............................................................................................................................................... 9 2.2
    [Show full text]
  • Geringde Vogels in Groningen (Aflevering 23)
    Geringde vogels in Groningen (aflevering 23) Klaas van Dijk De laatste aflevering van deze rubriek met waarnemingen van geringde vogels in de provincie Groningen ver- scheen in 2011 (Gors 39: 38-44). In plaats van een reguliere aflevering stond in de vorige Gors een artikel over waarnemingen van Kokmeeuwen met een Spaanse ring (Gors 41: 48-53). Daarom nu een extra lange aflevering met dit maal extra aandacht voor geringde vogels uit het kustgebied en voor Blauwborst. Naamgeving en volgor- de is hoofdzakelijk conform Euring. Bij geringde vogels wordt gewerkt met kalenderjaren. Het eerste kalenderjaar (kj.) van een vogel begint op de geboortedatum en loopt tot en met 31 december. Het tweede kalenderjaar van een vogel begint op 1 januari van het jaar erop en loopt door tot en met 31 december van datzelfde jaar. De notatie bij vogels met meerdere kleurringen is als volgt: eerst links en daarna rechts en gescheiden door //; eerst boven en daarna onder en gescheiden door /. Aalscholver Phalacrocorax carbo van Finland. De vogel had een vleugellengte van 103 [Matsalu S 8162] Geringd op 29 juni 1999 als nestjong op mm. Op 20 februari 2012 vers dood aangespoeld langs het eiland Sipelgarahu (58°45’N, 23°19’O) in Estland. de zeedijk bij de Emmapolder (Dick Veenendaal). Op 25 januari 2010 fotografeerde Henk van Huffelen Afstand 1273 km, richting WZW. De vinddatum tijdens een vorstperiode een Aalscholver met een verschilt slechts één dag met de vinddatum van de aluminium lipring in de stad Groningen. De inscriptie Noorse Aalscholver. kon alleen deels worden ontcijferd. Op 14 februari 2010 ontdekte ik deze vogel in de stad.
    [Show full text]
  • Overzicht Provinciale Wegen En Werktijden
    Overzicht provinciale wegen en werktijden Wegnummer:Rayon Groningen: Werktijden: N 355 Visvliet - Groningen 09.00 tot 15.00 uur N 361 Groningen / Lauwersoog 09.00 tot 15.00 uur N 370 Westelijk ringweg 09.00 tot 15.00 uur N 370 Noordelijke ringweg 09.00 tot 15.00 uur N 46 Oostelijke ringweg 09.00 tot 15.00 uur N 372 Hoogkerk - Peizermade 09.00 tot 15.00 uur N 372 A7 - Leek -Nietap 09.00 tot 15.00 uur N 388 Boerakker - Grijpskerk - Menneweer 09.00 tot 15.00 uur N 978 Zuidhorn - Pasop - Leek 09.00 tot 15.00 uur N 979 Leek - Zevenhuizen - Een West normaal N 980 Zuidhorn - Grootegast - Marum normaal N 982 Rond zweinshok - Oldehove normaal N 983 Aduard - Wehe den Hoorn normaal N 984 Mensingeweer - Eenrum normaal Wegnummer:Rayon Overschild: Werktijden: N360 Groningen - Ruischerbrug 09.00 tot 15.00 uur N360 Ruischerbrug - Appingedam - Delfzijl 09.00 tot 15.00 uur N362 Appingedam - Weiwerd - Scheemda 09.00 tot 15.00 uur N363 Winsum (N.361) - Uithuizen - Spijk (N.33) 09.00 tot 15.00 uur N387 Hoogezand - Siddeburen (N.33) 09.00 tot 15.00 uur N865 Ten Post (N.360) - Schildwolde (N.387) normaal N987 Siddeburen (N387) - Wagenborgen normaal N990 Rondweg Farmsumersluis 09.00 tot 15.00 uur N991 Delfzijl - Weiwerd (N362) 09.00 tot 15.00 uur N992 Delfzijl (N.362) - Woldendorp normaal N993 Bedum - Ten Boer (N360) 09.00 tot 15.00 uur N994 Zuidwolde (N.46) - Bedum 09.00 tot 15.00 uur N995 Bedum - Onderdendam (N.996) 09.00 tot 15.00 uur N996 Winsum (N.361) - Onderdendam normaal N996 Onderdendam - Garrelsweer (N.360) 09.00 tot 15.00 uur N997 Delfzijl (N.360 -
    [Show full text]
  • Subsidence Inferred from a Time Lapse Reservoir Study in a Niger Delta Field, Nigeria
    Current Research in Geosciences Original Research Paper Subsidence Inferred from a Time Lapse Reservoir Study in a Niger Delta Field, Nigeria Chukwuemeka Ngozi Ehirim and Tamunonengiyeofori Dagogo Geophysics Research Group, Department of Physics, University of Port Harcourt, P.O. Box 122, Choba, Port Harcourt, Nigeria Article history Abstract: Production -induced subsidence due to compressibility and fluid Received: 19-08-2016 property changes in a Niger delta field has been investigated using well log Revised: 19-10-2016 and 4D seismic data sets. The objective of the study is to evaluate changes Accepted: 24-10-2016 in time lapse seismic attributes due to hydrocarbon production and infer to probable ground subsidence. Petrophysical modeling and analysis of well Corresponding Author: data revealed that Density (ρ), Lambda rho (λρ) and Acoustic impedance Chukwuemeka Ngozi Ehirim (Ip) are highly responsive to changes in reservoir properties. These Geophysics Research Group, properties and water saturation attribute were subsequently, extracted from Department of Physics, University of Port Harcourt, time-lapse seismic volumes in the immediate vicinity of well locations. P.O. Box 122, Choba, Port Result show that monitor horizon slices exhibit appreciable increases in ρ, Harcourt, Nigeria λρ, Ip and water saturation values compared to the base data, especially Email: [email protected] around the well locations. These increases in relative values of rock/attribute properties between the time-lapse surveys for a constant overburden stress are obvious indications of pore pressure and fluid depletion in the reservoir. Depletion in these properties increases the effective stress (pressure) and the grain-to-grain contact of the reservoir matrix, with a corresponding decrease in compressibility.
    [Show full text]
  • PDF of an Unedited Manuscript That Has Been Accepted for Publication
    Downloaded from http://sp.lyellcollection.org/ by guest on October 6, 2021 Accepted Manuscript Geological Society, London, Special Publications New insights on subsurface energy resources in the Southern North Sea Basin area J. C. Doornenbal, H. Kombrink, R. Bouroullec, R. A. F. Dalman, G. De Bruin, C. R. Geel, A. J. P. Houben, B. Jaarsma, J. Juez-Larré, M. Kortekaas, H. F. Mijnlieff, S. Nelskamp, T. C. Pharaoh, J. H. Ten Veen, M. Ter Borgh, K. Van Ojik, R. M. C. H. Verreussel, J. M. Verweij & G.-J. Vis DOI: https://doi.org/10.1144/SP494-2018-178 Received 5 November 2018 Revised 22 March 2019 Accepted 23 March 2019 © 2019 The Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0/). Published by The Geological Society of London. Publishing disclaimer: www.geolsoc.org.uk/pub_ethics To cite this article, please follow the guidance at https://www.geolsoc.org.uk/onlinefirst#how-to-cite Manuscript version: Accepted Manuscript This is a PDF of an unedited manuscript that has been accepted for publication. The manuscript will undergo copyediting, typesetting and correction before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the book series pertain. Although reasonable efforts have been made to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version.
    [Show full text]
  • Hydrocarbon Plays from West Poland: Zechstein Limestone and Main Dolomite
    Hydrocarbon Plays from West Poland: Zechstein Limestone and Main Dolomite Paweł Zdanowski & Tomasz Solarski PGNiG SA (Polish Oli & Gas Company), Exploration and Production Branch Underexplored Plays - Part III 31-X-2018 & 01-XI-2018 Stavanger Hydrocarbon Plays from West Poland: Zechstein Limestone (Ca1) and Main Dolomite (Ca2) Presentation outline: Palaeogeography of Zechstein • Southern Permian Basin and Northern Permian Basin • Correlation of carbonate units between SBP and NPB Zechstein Limestone (Brońsko Gas Field) • Hydrocarbon Play. • Pattern Recognition from Seismic. Main Dolomite (BMB and LMG oil & gas fields) • Hydrocarbon Play. • Pattern Recognition from Seismic. • Analysis of Seismic Attributes. • Seismic Modeling. Late Permian Paleogeography from Blakely (2014) Tucker, 2016 After Scotese, 2002 European Southern Permian Basin Zechstein Sea Connected to Pantalassa Ocean 2000km to N/NE. Possible connection to Paleo-Tethys through the Polish Sub-Basin to the SE ?? Palaeo-latitude: 10-20°. Climate extremely arid. After Scotese, 2012 Sketch map of Permian sedimentary basin in north-west Europe Dziękuję za uwagę Stavanger Warsaw Millennium Atlas: Petroleum Geology of the Central and Northern North Sea, 2003 Polish Zechstein Basin ….stratigraphy Leine Na2 A2 Stassfurt Ca2 A1g Na1 A1d Werra Ca1 Wagner & Peryt. 1997 Słowakiewicz & Mikołajewski, 2009 Tucker, 2016 Comparison of the Zechstein development of the NPB with the classic SPB Evans et al. 2003 Madeleine et al. 2018 Zechstein Limestone – Ca1 (≈ Argyll Carbonate Member) Zechstein basin, showing the position of the Brandenburg-Wolsztyn-Pogorzela palaeo-High Basin facies of the Zechstein Limestone in Poland, showing the occurrence of isolated reefs related to the Brandenburg-Wolsztyn-Pogorzela palaeo-High. isolated reefs (rimmed platform) Peryt et al.
    [Show full text]