2. Convection in Stars

Total Page:16

File Type:pdf, Size:1020Kb

2. Convection in Stars 2. Convection in Stars 2.1 The Schwarzschild criterion for the onset of convection Consider a bubble of gas that is accidentally displaced upwards by some disturbance. • If the bubble is heavier than the gas in its new surroundings it will sink; if lighter, it will rise. • In the first case, where the bubble returns to its original position, the gas is said to be convectively stable; in the latter case, when the bubble continues to rise, the environment is convectively unstable . Consider Figure 2.01. Let r describe the outward, radial direction, and let the bubble be displaced outward from point a to point b by the distance δr. At its initial location, the bubble was in local thermodynamic equilibrium with its surroundings. • We assume that the displacement happens sufficiently fast that the bubble does not have a chance to exchange heat with the surrounding gas: that is, it behaves adiabatically . • However, the rate of rise is slow enough to allow the internal pressure of the bubble to adjust to that of the ambient surroundings during the rise. T rising dT a dr ad dT b dr gas ∆T ∆T d dT c dr ad falling r Figure 2.01: Temperature stratification of the atmospheric model discussed in the text So, under what conditions will the bubble continue to rise? • Clearly, it will do so if it is lighter than its surroundings, i.e ., if the internal density remains smaller than the external density. • If it is to remain in pressure equilibrium with the surrounding gas, this requires the temperature of the bubble to be higher than ambient. This follows from the perfect gas law: ρ ℜT P = µ , (R2.01) where P is the pressure of the gas, T its temperature, µ is the mean molecular weight per particle, and ℜ the gas constant. From Figure 2.01, at point b the bubble is ∆T hotter than the surrounding gas; its temperature will be given by: dT T T r bubble = a + δ , dr ad where ( dT / dr )ad is the temperature gradient under adiabatic conditions and Ta is the temperature at the undisplaced location a. The temperature of the surrounding gas at b will be given by: dT T T r gas = a + δ . dr gas The temperature excess of the bubble will therefore correspond to: dT dT ∆T = T − T = δ r ⋅ − bubble gas . (2.02) dr ad dr gas For the bubble to be buoyant and rise, ∆T > 0: this gives us the condition for convective instability, i.e ., dT dT < , (R2.03) dr dr ad where I have now dropped the ‘gas’ subscript in the ‘surrounding’ gradient. If we choose to think about the absolute values of the gradients we then have: dT dT > . (R2.04) dr dr ad Conditions 2.03 and 2.04 tell us that for convection to occur , the ambient temperature gradient must be steeper (i.e ., more negative ) than the adiabatic temperature gradient. With reference to the perfect gas law, our treatment here has assumed that the mean molecular weight, µ, remains constant ( i.e ., changes to µ can arise from alterations to the ionisation state of the gas). From Figure 2.01, we could have also considered a falling or sinking bubble of gas. • It must follow the path c to d if it is to maintain a higher density than its surroundings and continue to fall. • The rising, hotter elements and the falling, cooler elements therefore maintain a net upward transfer of heat flux in a convectively unstable layer. In reality, the rising and falling bubbles do interact a little with their surroundings. In Figure 2.02, we show the resulting temperature stratification for a rising element. The temperature gradient for the bubble is steeper than the adiabatic value because it interacts with the environment and loses some of its energy. T dT dT dr ad dr bubble dT T dr ∆ gas r Figure 2.02: Temperature stratification of a rising convective element, allowing for energy exchange 2.2 Convectively unstable layers in stars Stars can be convectively unstable in their outer layers, and in their cores. The Schwarzschild condition clearly tells us that for convection to take place either: 1. The radiative gradient must become steep enough; or 2. The adiabatic gradient must become shallow enough. We therefore have potentially two processes that can give rise to conditions favourable to the onset of convection. 2.2.1 Convection in Outer Envelopes Figure 2.03 shows the variation of temperature within the outer 30 per cent or so by radius of the Sun. This is the extent of the solar sub-surface convection zone. Just beneath the visible surface of the Sun (or photosphere, at fractional radius 1.0) the temperatures and pressures are just right for hydrogen atoms to ionise. At progressively greater depths, helium ionises, first once then twice. Figure 2.03: Temperature variation in a model convection zone (data from Stix, 1989) Since energy is used up in ionising these species, the opacity of the layers rises. The solar luminosity must be maintained, i.e., the layers must readjust to compensate for the increased opacity. The radiative heat flux can be shown to depend upon the temperature gradient, i.e. dT ℑ ∝ R dr . (R2.05) The absolute value of the temperature gradient therefore increases sufficiently over the range of fractional radii from 0.71 to 1.00 to give the required flux and the Schwarzschild condition to be met. The outer third by radius of the Sun is therefore convectively unstable . The adiabatic gradient is also affected in the outer layers. To help see this, we re-express the Schwarzschild condition in terms of double logarithmic gradients . First, the condition can be given in terms of gradients made with respect to pressure: dT dT > . dP dP ad If we introduce the logarithmic gradient: d log T ∇ = d log P , (R2.06) we can then recast the condition for the onset of convection as: ∇ > ∇ ad . (R2.07) It can be shown that the adiabatic gradient is related to the adiabatic exponent, γ, by: γ −1 ∇ = ad γ . (2.08) This exponent helps to describe the motion of a bubble that moves adiabatically (i.e., so that it does not exchange heat with its surroundings). The bubble will always obey the relation: −γ Pρ = constant (R2.09) The exponent is the ratio of the specific heat capacities at constant pressure and constant volume respectively, i.e. γ = cP / cV . (R2.10) • The heat capacity at constant volume, cV, is the amount of heat energy needed to heat one mol of gas by one degree Kelvin at constant volume. • The heat capacity at constant pressure, cP, corresponds to the amount of energy that must be transferred to one mol of the gas at constant pressure in order to raise its temperature by one degree Kelvin. − When heated at constant pressure the gas will expand (cf. Equation 2.01). It must therefore ‘do work’ against the pressure of the ambient surroundings, and this requires the input of more heat energy − As a result, cP > cV. Under conditions where ionisation is taking place, a large part of the energy available will go into bringing about the change of state; there is less available to simply heat the gas. So we require a greater amount of total energy to increase the temperature of the gas by a specified amount: the specific heats increase. Since it can also be shown that: cP = cV + ℜ , (2.11) where ℜ is the gas constant, the adiabatic exponent will approach unity, and ∇ad becomes very small. 2.2.2 Convection in Cores Convection can also start in the cores of stars. • As M increases, so does T and the CNO nuclear reaction cycle starts to dominate energy production. • Because of the high temperature dependence of the cycle, the energy generation gets highly concentrated in the central part of the core. • This increases d T / dr , and eventually convective instability sets in. • This happens for stars with masses greater than M about 1.1 . 2.2.3 Trends in Convection Zone Properties First, in stars hotter than Teff =9000K, we have core zones but no discernible surface zones. For the surface zones: hydrogen ionizes at temperatures around Teff =6000K, while helium starts to ionize at temperatures of 20,000K and above. Provided stars have temperatures lower than about Teff =7500K, we will have thin surface convection zones. These zones get thicker as temperatures decrease. In very cool, the zones may extend down into the cores. We saw in Section 1.5.6 that in the atmospheres of stars, temperature ca n be described as a function of optical depth, i.e ., 1/ 4 3τ 1 T(τ ) ≈ T + eff 4 2 (1.32) This means that: 4 4 T (τ ) ∝ τ T eff . So: • For a star with a lower Teff , the temperature will increase more slowly as one moves deeper into the atmosphere. So to reach a given optical depth (and temperature) one must go deeper where densities and pressures are higher (for higher pressures, one needs higher temperatures to get the same ionization). • The sub-surface ionisation zones are deeper: since these are what give the conditions for the onset of convection, the convection zones get deeper. In contrast, for higher Teff : • A given optical depth is encountered higher in the atmosphere, where pressures are lower. So ionisation starts relatively higher in the atmosphere and the zones are thinner and the convection less efficient (lower density). • When Teff reaches ≈ 7500 K the zones become so thin that the stratification is indistinguishable from radiative: the sub-surface zones begin to disappear.
Recommended publications
  • The California Low-Level Coastal Jet and Nearshore Stratocumulus
    Calhoun: The NPS Institutional Archive Faculty and Researcher Publications Faculty and Researcher Publications 2001 The California Low-Level Coastal Jet and Nearshore Stratocumulus Kalogiros, John http://hdl.handle.net/10945/34433 1.1 THE CALIFORNIA LOW-LEVEL COASTAL JET AND NEARSHORE STRATOCUMULUS John Kalogiros and Qing Wang* Naval Postgraduate School, Monterey, California 1. INTRODUCTION* and the warm air above land (thermal wind) and the frictional effect within the atmospheric This observational study focus on the boundary layer (Zemba and Friehe 1987, Burk and interaction between the coastal wind field and the Thompson 1996). The horizontal temperature evolution of the coastal stratocumulus clouds. The gradient follows the orientation of the coastline data were collected during an experiment in the (317° on the average in central California). Thus, summer of 1999 near the California coast with the the thermal wind has a northern and an eastern Twin Otter research aircraft operated by the component and local maximum of both Center for Interdisciplinary Remote Piloted Aircraft components of the wind is expected close to the Study (CIRPAS) at the Naval Postgraduate School top of the boundary layer. Topographical features (NPS). The wind components were measured with may intensify this wind jet at significant convex a DGPS/radome system, which provides a very bends of the coastline like Cape Mendocino, Pt accurate (0.1 ms-1) estimate of the wind (Kalogiros Arena and Pt Sur. At such changes of the and Wang 2001). The instrumentation of the coastline geometry combined with mountain aircraft included fast sensors for the measurement barriers (channeling effect) the northerly flow can of air temperature, humidity, shortwave and become supercritical.
    [Show full text]
  • Structure and Energy Transport of the Solar Convection Zone A
    Structure and Energy Transport of the Solar Convection Zone A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI'I IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN ASTRONOMY December 2004 By James D. Armstrong Dissertation Committee: Jeffery R. Kuhn, Chairperson Joshua E. Barnes Rolf-Peter Kudritzki Jing Li Haosheng Lin Michelle Teng © Copyright December 2004 by James Armstrong All Rights Reserved iii Acknowledgements The Ph.D. process is not a path that is taken alone. I greatly appreciate the support of my committee. In particular, Jeff Kuhn has been a friend as well as a mentor during this time. The author would also like to thank Frank Moss of the University of Missouri St. Louis. His advice has been quite helpful in making difficult decisions. Mark Rast, Haosheng Lin, and others at the HAO have assisted in obtaining data for this work. Jesper Schou provided the helioseismic rotation data. Jorgen Christiensen-Salsgaard provided the solar model. This work has been supported by NASA and the SOHOjMDI project (grant number NAG5-3077). Finally, the author would like to thank Makani for many interesting discussions. iv Abstract The solar irradiance cycle has been observed for over 30 years. This cycle has been shown to correlate with the solar magnetic cycle. Understanding the solar irradiance cycle can have broad impact on our society. The measured change in solar irradiance over the solar cycle, on order of0.1%is small, but a decrease of this size, ifmaintained over several solar cycles, would be sufficient to cause a global ice age on the earth.
    [Show full text]
  • Using the Weak Temperature Gradient Approximation to Understand Self-Aggregation 1
    Multiple Equilibria in a Cloud Resolving Model: Using the Weak Temperature Gradient Approximation to Understand Self-Aggregation 1 Sharon Sessions, Satomi Sugaya, David Raymond, Adam Sobel New Mexico Tech SWAP 2011 nmtlogo 1This work is supported by the National Science Foundation Sessions (NMT) Multiple Equilibria in a CRM May2011 1/21 Self-Aggregation Bretherton et al (2005) precipitation 1 WVP = g rt dp R nmtlogo Day 1 Day 50 Sessions (NMT) Multiple Equilibria in a CRM May2011 2/21 Possible insight from limited domain WTG simulations Bretherton et al (2005) Day 1 Day 50 nmtlogo Sessions (NMT) Multiple Equilibria in a CRM May2011 3/21 Weak Temperature Gradients in the Tropics Charney 1963 scaling analysis Extratropics (small Rossby number) F δθ ∼ r θ Ro Tropics (Rossby number not small) δθ ∼ Fr θ 2 −3 Froude number: Fr = U /gH ∼ 10 , measure of stratification −5 Rossby number: Ro = U/fL ∼ 10 /f , characterizes rotation nmtlogo Sessions (NMT) Multiple Equilibria in a CRM May2011 4/21 Weak Temperature Gradients in the Tropics Charney 1963 scaling analysis Extratropics (small Rossby number) F δθ ∼ r θ Ro Tropics (Rossby number not small) δθ ∼ Fr θ 2 −3 Froude number: Fr = U /gH ∼ 10 , measure of stratification −5 Rossby number: Ro = U/fL ∼ 10 /f , characterizes rotation In the tropics, gravity waves rapidly redistribute buoyancy anomalies nmtlogo Sessions (NMT) Multiple Equilibria in a CRM May2011 4/21 Weak Temperature Gradient (WTG) Approximation Sobel & Bretherton 2000 Single column model (SCM) representing one grid cell in a global circulation
    [Show full text]
  • NWS Unified Surface Analysis Manual
    Unified Surface Analysis Manual Weather Prediction Center Ocean Prediction Center National Hurricane Center Honolulu Forecast Office November 21, 2013 Table of Contents Chapter 1: Surface Analysis – Its History at the Analysis Centers…………….3 Chapter 2: Datasets available for creation of the Unified Analysis………...…..5 Chapter 3: The Unified Surface Analysis and related features.……….……….19 Chapter 4: Creation/Merging of the Unified Surface Analysis………….……..24 Chapter 5: Bibliography………………………………………………….…….30 Appendix A: Unified Graphics Legend showing Ocean Center symbols.….…33 2 Chapter 1: Surface Analysis – Its History at the Analysis Centers 1. INTRODUCTION Since 1942, surface analyses produced by several different offices within the U.S. Weather Bureau (USWB) and the National Oceanic and Atmospheric Administration’s (NOAA’s) National Weather Service (NWS) were generally based on the Norwegian Cyclone Model (Bjerknes 1919) over land, and in recent decades, the Shapiro-Keyser Model over the mid-latitudes of the ocean. The graphic below shows a typical evolution according to both models of cyclone development. Conceptual models of cyclone evolution showing lower-tropospheric (e.g., 850-hPa) geopotential height and fronts (top), and lower-tropospheric potential temperature (bottom). (a) Norwegian cyclone model: (I) incipient frontal cyclone, (II) and (III) narrowing warm sector, (IV) occlusion; (b) Shapiro–Keyser cyclone model: (I) incipient frontal cyclone, (II) frontal fracture, (III) frontal T-bone and bent-back front, (IV) frontal T-bone and warm seclusion. Panel (b) is adapted from Shapiro and Keyser (1990) , their FIG. 10.27 ) to enhance the zonal elongation of the cyclone and fronts and to reflect the continued existence of the frontal T-bone in stage IV.
    [Show full text]
  • Thermal Conductivity of Materials
    • DECEMBER 2019 Thermal Conductivity of Materials Thermal Conductivity in Heat Transfer – Lesson 2 What Is Thermal Conductivity? Based on our life experiences, we know that some materials (like metals) conduct heat at a much faster rate than other materials (like glass). Why is this? As engineers, how do we quantify this? • Thermal conductivity of a material is a measure of its intrinsic ability to conduct heat. Metals conduct heat much faster to our hands, Plastic is a bad conductor of heat, so we can touch an which is why we use oven mitts when taking a pie iron without burning our hands. out of the oven. 2 What Is Thermal Conductivity? Hot Cold • Let’s recall Fourier’s law from the previous lesson: 푞 = −푘∇푇 Heat flow direction where 푞 is the heat flux, ∇푇 is the temperature gradient and 푘 is the thermal conductivity. • If we have a unit temperature gradient across the material, i.e.,∇푇 = 1, then 푘 = −푞. The negative sign indicates that heat flows in the direction of the negative gradient of temperature, i.e., from higher temperature to lower temperature. Thus, thermal conductivity of a material can be defined as the heat flux transmitted through a material due to a unit temperature gradient under steady-state conditions. It is a material property (independent of the geometry of the object in which conduction is occurring). 3 Measuring Thermal Conductivity • In the International System of Units (SI system), thermal conductivity is measured in watts per -1 -1 meter-Kelvin (W m K ). Unit 푞 W ∙ m−1 푞 = −푘∇푇 푘 = − (W ∙ m−1 ∙ K−1) ∇푇 K • In imperial units, thermal conductivity is measured in British thermal unit per hour-feet-degree- Fahrenheit (BTU h-1ft-1 oF-1).
    [Show full text]
  • Atmospheric Stability Atmospheric Lapse Rate
    ATMOSPHERIC STABILITY ATMOSPHERIC LAPSE RATE The atmospheric lapse rate ( ) refers to the change of an atmospheric variable with a change of altitude, the variable being temperature unless specified otherwise (such as pressure, density or humidity). While usually applied to Earth's atmosphere, the concept of lapse rate can be extended to atmospheres (if any) that exist on other planets. Lapse rates are usually expressed as the amount of temperature change associated with a specified amount of altitude change, such as 9.8 °Kelvin (K) per kilometer, 0.0098 °K per meter or the equivalent 5.4 °F per 1000 feet. If the atmospheric air cools with increasing altitude, the lapse rate may be expressed as a negative number. If the air heats with increasing altitude, the lapse rate may be expressed as a positive number. Understanding of lapse rates is important in micro-scale air pollution dispersion analysis, as well as urban noise pollution modeling, forest fire-fighting and certain aviation applications. The lapse rate is most often denoted by the Greek capital letter Gamma ( or Γ ) but not always. For example, the U.S. Standard Atmosphere uses L to denote lapse rates. A few others use the Greek lower case letter gamma ( ). Types of lapse rates There are three types of lapse rates that are used to express the rate of temperature change with a change in altitude, namely the dry adiabatic lapse rate, the wet adiabatic lapse rate and the environmental lapse rate. Dry adiabatic lapse rate Since the atmospheric pressure decreases with altitude, the volume of an air parcel expands as it rises.
    [Show full text]
  • Thermal Equilibrium of the Atmosphere with a Convective Adjustment
    jULY 1964 SYUKURO MANABE AND ROBERT F. STRICKLER 361 Thermal Equilibrium of the Atmosphere with a Convective Adjustment SYUKURO MANABE AND ROBERT F. STRICKLER General Circulation Research Laboratory, U.S. Weather Bureau, Washington, D. C. (Manuscript received 19 December 1963, in revised form 13 April 1964) ABSTRACT The states of thermal equilibrium (incorporating an adjustment of super-adiabatic stratification) as well as that of pure radiative equilibrium of the atmosphere are computed as the asymptotic steady state ap­ proached in an initial value problem. Recent measurements of absorptivities obtained for a wide range of pressure are used, and the scheme of computation is sufficiently general to include the effect of several layers of clouds. The atmosphere in thermal equilibrium has an isothermal lower stratosphere and an inversion in the upper stratosphere which are features observed in middle latitudes. The role of various gaseous absorbers (i.e., water vapor, carbon dioxide, and ozone), as well as the role of the clouds, is investigated by computing thermal equilibrium with and without one or two of these elements. The existence of ozone has very little effect on the equilibrium temperature of the earth's surface but a very important effect on the temperature throughout the stratosphere; the absorption of solar radiation by ozone in the upper and middle strato­ sphere, in addition to maintaining the warm temperature in that region, appears also to be necessary for the maintenance of the isothermal layer or slight inversion just above the tropopause. The thermal equilib­ rium state in the absence of solar insolation is computed by setting the temperature of the earth's surface at the observed polar value.
    [Show full text]
  • The Sun and the Solar Corona
    SPACE PHYSICS ADVANCED STUDY OPTION HANDOUT The sun and the solar corona Introduction The Sun of our solar system is a typical star of intermediate size and luminosity. Its radius is about 696000 km, and it rotates with a period that increases with latitude from 25 days at the equator to 36 days at poles. For practical reasons, the period is often taken to be 27 days. Its mass is about 2 x 1030 kg, consisting mainly of hydrogen (90%) and helium (10%). The Sun emits radio waves, X-rays, and energetic particles in addition to visible light. The total energy output, solar constant, is about 3.8 x 1033 ergs/sec. For further details (and more accurate figures), see the table below. THE SOLAR INTERIOR VISIBLE SURFACE OF SUN: PHOTOSPHERE CORE: THERMONUCLEAR ENGINE RADIATIVE ZONE CONVECTIVE ZONE SCHEMATIC CONVECTION CELLS Figure 1: Schematic representation of the regions in the interior of the Sun. Physical characteristics Photospheric composition Property Value Element % mass % number Diameter 1,392,530 km Hydrogen 73.46 92.1 Radius 696,265 km Helium 24.85 7.8 Volume 1.41 x 1018 m3 Oxygen 0.77 Mass 1.9891 x 1030 kg Carbon 0.29 Solar radiation (entire Sun) 3.83 x 1023 kW Iron 0.16 Solar radiation per unit area 6.29 x 104 kW m-2 Neon 0.12 0.1 on the photosphere Solar radiation at the top of 1,368 W m-2 Nitrogen 0.09 the Earth's atmosphere Mean distance from Earth 149.60 x 106 km Silicon 0.07 Mean distance from Earth (in 214.86 Magnesium 0.05 units of solar radii) In the interior of the Sun, at the centre, nuclear reactions provide the Sun's energy.
    [Show full text]
  • ATM 316 - the “Thermal Wind” Fall, 2016 – Fovell
    ATM 316 - The \thermal wind" Fall, 2016 { Fovell Recap and isobaric coordinates We have seen that for the synoptic time and space scales, the three leading terms in the horizontal equations of motion are du 1 @p − fv = − (1) dt ρ @x dv 1 @p + fu = − ; (2) dt ρ @y where f = 2Ω sin φ. The two largest terms are the Coriolis and pressure gradient forces (PGF) which combined represent geostrophic balance. We can define geostrophic winds ug and vg that exactly satisfy geostrophic balance, as 1 @p −fv ≡ − (3) g ρ @x 1 @p fu ≡ − ; (4) g ρ @y and thus we can also write du = f(v − v ) (5) dt g dv = −f(u − u ): (6) dt g In other words, on the synoptic scale, accelerations result from departures from geostrophic balance. z R p z Q δ δx p+δp x Figure 1: Isobaric coordinates. It is convenient to shift into an isobaric coordinate system, replacing height z by pressure p. Remember that pressure gradients on constant height surfaces are height gradients on constant pressure surfaces (such as the 500 mb chart). In Fig. 1, the points Q and R reside on the same isobar p. Ignoring the y direction for simplicity, then p = p(x; z) and the chain rule says @p @p δp = δx + δz: @x @z 1 Here, since the points reside on the same isobar, δp = 0. Therefore, we can rearrange the remainder to find δz @p = − @x : δx @p @z Using the hydrostatic equation on the denominator of the RHS, and cleaning up the notation, we find 1 @p @z − = −g : (7) ρ @x @x In other words, we have related the PGF (per unit mass) on constant height surfaces to a \height gradient force" (again per unit mass) on constant pressure surfaces.
    [Show full text]
  • Thickness and Thermal Wind
    ESCI 241 – Meteorology Lesson 12 – Geopotential, Thickness, and Thermal Wind Dr. DeCaria GEOPOTENTIAL l The acceleration due to gravity is not constant. It varies from place to place, with the largest variation due to latitude. o What we call gravity is actually the combination of the gravitational acceleration and the centrifugal acceleration due to the rotation of the Earth. o Gravity at the North Pole is approximately 9.83 m/s2, while at the Equator it is about 9.78 m/s2. l Though small, the variation in gravity must be accounted for. We do this via the concept of geopotential. l A surface of constant geopotential represents a surface along which all objects of the same mass have the same potential energy (the potential energy is just mF). l If gravity were constant, a geopotential surface would also have the same altitude everywhere. Since gravity is not constant, a geopotential surface will have varying altitude. l Geopotential is defined as z F º ò gdz, (1) 0 or in differential form as dF = gdz. (2) l Geopotential height is defined as F 1 z Z º = ò gdz (3) g0 g0 0 2 where g0 is a constant called standard gravity, and has a value of 9.80665 m/s . l If the change in gravity with height is ignored, geopotential height and geometric height are related via g Z = z. (4) g 0 o If the local gravity is stronger than standard gravity, then Z > z. o If the local gravity is weaker than standard gravity, then Z < z.
    [Show full text]
  • Temperature Gradient
    Temperature Gradient Derivation of dT=dr In Modern Physics it is shown that the pressure of a photon gas in thermodynamic equilib- rium (the radiation pressure PR) is given by the equation 1 P = aT 4; (1) R 3 with a the radiation constant, which is related to the Stefan-Boltzman constant, σ, and the speed of light in vacuum, c, via the equation 4σ a = = 7:565731 × 10−16 J m−3 K−4: (2) c Hence, the radiation pressure gradient is dP 4 dT R = aT 3 : (3) dr 3 dr Referring to our our discussion of opacity, we can write dF = −hκiρF; (4) dr where F = F (r) is the net outward flux (integrated over all wavelengths) of photons at a distance r from the center of the star, and hκi some properly taken average value of the opacity. The flux F is related to the luminosity through the equation L(r) F (r) = : (5) 4πr2 Considering that pressure is force per unit area, and force is a rate of change of linear momentum, and photons carry linear momentum equal to their energy divided by c, PR and F obey the equation 1 P = F (r): (6) R c Differentiation with respect to r gives dP 1 dF R = : (7) dr c dr Combining equations (3), (4), (5) and (7) then gives 1 L(r) 4 dT − hκiρ = aT 3 ; (8) c 4πr2 3 dr { 2 { which finally leads to dT 3hκiρ 1 1 = − L(r): (9) dr 16πac T 3 r2 Equation (9) gives the local (i.e.
    [Show full text]
  • 198Lapj. . .243. .945G the Astrophysical Journal, 243:945-953
    .945G .243. The Astrophysical Journal, 243:945-953, 1981 February 1 . © 1981. The American Astronomical Society. All rights reserved. Printed in U.S.A. 198lApJ. CONVECTION AND MAGNETIC FIELDS IN STARS D. J. Galloway High Altitude Observatory, National Center for Atmospheric Research1 AND N. O. Weiss Sacramento Peak Observatory2 Received 1980 March 10; accepted 1980 August 18 ABSTRACT Recent observations have demonstrated the unity of the study of stellar and solar magnetic fields. Results from numerical experiments on magnetoconvection are presented and used to discuss the concentration of magnetic flux into isolated ropes in the turbulent convective zones of the Sun or other late-type stars. Arguments are given for siting the solar dynamo at the base of the convective zone. Magnetic buoyancy leads to the emergence of magnetic flux in active regions, but weaker flux ropes are shredded and dispersed throughout the convective zone. The observed maximum field strengths in late-type stars should be comparable with the field (87rp)1/2 that balances the photospheric pressure. Subject headings: convection — hydrodynamics — stars: magnetic — Sun : magnetic fields I. INTRODUCTION In § II we summarize the results obtained for simplified The Sun is unique in having a magnetic field that can be models of hydromagnetic convection. The structure of mapped in detail, but magnetic activity seems to be a turbulent magnetic fields is then described in § III. standard feature of stars with deep convective envelopes. Theory and observation are brought together in § IV, Fields of 2000 gauss or more have been found in two where we discuss the formation of isolated flux tubes in late-type main sequence stars (Robinson, Worden, and the interior of the Sun.
    [Show full text]