Haloterrigena Turkmenica Type Strain (4K)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Occurrence and Phylogenetic Diversity in Halobacteriales Afef Najjari, Hiba Mejri, Marwa Jabbari, Haitham Sghaier, Ameur Cherif and Hadda-Imene Ouzari
Chapter Halocins, Bacteriocin-Like Antimicrobials Produced by the Archaeal Domain: Occurrence and Phylogenetic Diversity in Halobacteriales Afef Najjari, Hiba Mejri, Marwa Jabbari, Haitham Sghaier, Ameur Cherif and Hadda-Imene Ouzari Abstract Members of extremely halophilic archaea, currently consisting of more than 56 genera and 216 species, are known to produce their specific bacteriocin-like pep- tides and proteins called halocins, synthesized by the ribosomal pathway. Halocins are diverse in size, consisting of proteins as large as 35 kDa and peptide “microhalo- cins” as small as 3.6 kDa. Today, about fifteen halocins have been described and only three genes, halC8, halS8 and halH4, coding C8, S8 and H4 halocins respectively have been identified. In this study, a total of 1858 of complete and nearly complete genome sequences of Halobacteria class members were retrieved from the IMG and Genbank databases and then screened for halocin encoding gene content, based on the BLASTP algorithm. A total of 61 amino acid sequences belonging to three halocins classes (C8, HalH4 and S8) were identified within 15 genera with the abun- dance of C8 class. Phylogenetic analysis based on amino acids sequences showed a clear segregation of the three halocins classes. Halocin S8 was phylogenetically more close to HalH4. No clear segregation on species and genera levels was observed based on halocin C8 analysiscontrary to HalH4 based analysis. Collectively, these results give an overview on halocins diversity within halophilic archaea which can open new research topics that will shed light on halocins as marker for haloarchaeal phylogentic delineation. Keywords: archaea, bioinformatics, diversity, halocins, phylogeny 1. -
Effects of Salinity on the Cellular Physiological Responses of Natrinema Sp
RESEARCH ARTICLE Effects of salinity on the cellular physiological responses of Natrinema sp. J7-2 Yunjun Mei1*, Huan Liu1, Shunxi Zhang1, Ming Yang1, Chun Hu1, Jian Zhang1, Ping Shen2, Xiangdong Chen2* 1 School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China, 2 State Key Laboratory of Virology, College of Life Science, Wuhan University, Wuhan, Hubei, China * [email protected] (YM); [email protected] (XC) a1111111111 Abstract a1111111111 a1111111111 The halophilic archaea (haloarchaea) live in hyersaline environments such as salt lakes, a1111111111 a1111111111 salt ponds and marine salterns. To cope with the salt stress conditions, haloarchaea have developed two fundamentally different strategies: the "salt-in" strategy and the "compatible- solute" strategy. Although investigation of the molecular mechanisms underlying the toler- ance to high salt concentrations has made outstanding achievements, experimental study from the aspect of transcription is rare. In the present study, we monitored cellular physiol- OPEN ACCESS ogy of Natrinema sp. J7-2 cells incubated in different salinity media (15%, 25% and 30% Citation: Mei Y, Liu H, Zhang S, Yang M, Hu C, NaCl) from several aspects, such as cellular morphology, growth, global transcriptome and Zhang J, et al. (2017) Effects of salinity on the cellular physiological responses of Natrinema sp. the content of intracellular free amino acids. The results showed that the cells were polymor- J7-2. PLoS ONE 12(9): e0184974. https://doi.org/ phic and fragile at a low salt concentration (15% NaCl) but had a long, slender rod shape at 10.1371/journal.pone.0184974 high salt concentrations (25% and 30% NaCl). -
Acquisition of 1,000 Eubacterial Genes Physiologically Transformed a Methanogen at the Origin of Haloarchaea
Acquisition of 1,000 eubacterial genes physiologically transformed a methanogen at the origin of Haloarchaea Shijulal Nelson-Sathia, Tal Daganb, Giddy Landana,b, Arnold Janssenc, Mike Steeld, James O. McInerneye, Uwe Deppenmeierf, and William F. Martina,1 aInstitute of Molecular Evolution, bInstitute of Genomic Microbiology, cMathematisches Institut, Heinrich Heine University, 40225 Düsseldorf, Germany; dBiomathematics Research Centre, University of Canterbury, Private Bag 4800, Christchurch, New Zealand; eDepartment of Biology, National University of Ireland, Maynooth, Co. Kildare, Ireland; and fInstitute of Microbiology and Biotechnology, University of Bonn, 53115 Bonn, Germany Edited* by W. Ford Doolittle, Dalhousie University, Halifax, NS, Canada, and approved October 25, 2012 (received for review May 29, 2012) Archaebacterial halophiles (Haloarchaea) are oxygen-respiring involved in the assembly of FeS clusters (19). The sequencing of heterotrophs that derive from methanogens—strictly anaerobic, the first haloarchaeal genome over a decade ago identified some hydrogen-dependent autotrophs. Haloarchaeal genomes are known eubacterial genes that possibly could have been acquired by lat- to have acquired, via lateral gene transfer (LGT), several genes eral gene transfer (11, 20), and whereas substantial data that from eubacteria, but it is yet unknown how many genes the Hal- would illuminate the origin of haloarchaeal physiology have ac- oarchaea acquired in total and, more importantly, whether inde- cumulated since then, those data have -
Investigating the Effects of Simulated Martian Ultraviolet Radiation on Halococcus Dombrowskii and Other Extremely Halophilic Archaebacteria
ASTROBIOLOGY Volume 9, Number 1, 2009 © Mary Ann Liebert, Inc. DOI: 10.1089/ast.2007.0234 Special Paper Investigating the Effects of Simulated Martian Ultraviolet Radiation on Halococcus dombrowskii and Other Extremely Halophilic Archaebacteria Sergiu Fendrihan,1 Attila Bérces,2 Helmut Lammer,3 Maurizio Musso,4 György Rontó,2 Tatjana K. Polacsek,1 Anita Holzinger,1 Christoph Kolb,3,5 and Helga Stan-Lotter1 Abstract The isolation of viable extremely halophilic archaea from 250-million-year-old rock salt suggests the possibil- ity of their long-term survival under desiccation. Since halite has been found on Mars and in meteorites, haloar- chaeal survival of martian surface conditions is being explored. Halococcus dombrowskii H4 DSM 14522T was ex- posed to UV doses over a wavelength range of 200–400 nm to simulate martian UV flux. Cells embedded in a thin layer of laboratory-grown halite were found to accumulate preferentially within fluid inclusions. Survival was assessed by staining with the LIVE/DEAD kit dyes, determining colony-forming units, and using growth tests. Halite-embedded cells showed no loss of viability after exposure to about 21 kJ/m2, and they resumed growth in liquid medium with lag phases of 12 days or more after exposure up to 148 kJ/m2. The estimated Ն 2 D37 (dose of 37 % survival) for Hcc. dombrowskii was 400 kJ/m . However, exposure of cells to UV flux while 2 in liquid culture reduced D37 by 2 orders of magnitude (to about 1 kJ/m ); similar results were obtained with Halobacterium salinarum NRC-1 and Haloarcula japonica. -
The Complete Genome Sequence of Natrinema Sp. J7-2, a Haloarchaeon Capable of Growth on Synthetic Media Without Amino Acid Supplements
The Complete Genome Sequence of Natrinema sp. J7-2, a Haloarchaeon Capable of Growth on Synthetic Media without Amino Acid Supplements Jie Feng1., Bin Liu2., Ziqian Zhang1, Yan Ren2, Yang Li2, Fei Gan1, Yuping Huang1, Xiangdong Chen1, Ping Shen1, Lei Wang2,3, Bing Tang1*, Xiao-Feng Tang1* 1 College of Life Sciences, Wuhan University, Wuhan, Hubei, People’s Republic of China, 2 TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China, 3 The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People’s Republic of China Abstract Natrinema sp. J7-2 is an extreme haloarchaeon capable of growing on synthetic media without amino acid supplements. Here we report the complete genome sequence of Natrinema sp. J7-2 which is composed of a 3,697,626-bp chromosome and a 95,989-bp plasmid pJ7-I. This is the first complete genome sequence of a member of the genus Natrinema.We demonstrate that Natrinema sp. J7-2 can use gluconate, glycerol, or acetate as the sole carbon source and that its genome encodes complete metabolic pathways for assimilating these substrates. The biosynthetic pathways for all 20 amino acids have been reconstructed, and we discuss a possible evolutionary relationship between the haloarchaeal arginine synthetic pathway and the bacterial lysine synthetic pathway. The genome harbors the genes for assimilation of ammonium and nitrite, but not nitrate, and has a denitrification pathway to reduce nitrite to N2O. Comparative genomic analysis suggests that most sequenced haloarchaea employ the TrkAH system, rather than the Kdp system, to actively uptake potassium. -
Emended Descriptions of Genera of the Family Halobacteriaceae
International Journal of Systematic and Evolutionary Microbiology (2009), 59, 637–642 DOI 10.1099/ijs.0.008904-0 Taxonomic Emended descriptions of genera of the family Note Halobacteriaceae Aharon Oren,1 David R. Arahal2 and Antonio Ventosa3 Correspondence 1Institute of Life Sciences, and the Moshe Shilo Minerva Center for Marine Biogeochemistry, Aharon Oren The Hebrew University of Jerusalem, Jerusalem 91904, Israel [email protected] 2Departamento de Microbiologı´a y Ecologı´a and Coleccio´n Espan˜ola de Cultivos Tipo (CECT), Universidad de Valencia, 46100 Burjassot, Valencia, Spain 3Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain The family Halobacteriaceae currently contains 96 species whose names have been validly published, classified in 27 genera (as of September 2008). In recent years, many novel species have been added to the established genera but, in many cases, one or more properties of the novel species do not agree with the published descriptions of the genera. Authors have often failed to provide emended genus descriptions when necessary. Following discussions of the International Committee on Systematics of Prokaryotes Subcommittee on the Taxonomy of Halobacteriaceae, we here propose emended descriptions of the genera Halobacterium, Haloarcula, Halococcus, Haloferax, Halorubrum, Haloterrigena, Natrialba, Halobiforma and Natronorubrum. The family Halobacteriaceae was established by Gibbons rRNA gene sequence-based phylogenetic trees rather than (1974) to accommodate the genera Halobacterium and on true polyphasic taxonomy such as recommended for the Halococcus. At the time of writing (September 2008), the family (Oren et al., 1997). As a result, there are often few, if family contained 96 species whose names have been validly any, phenotypic properties that enable the discrimination published, classified in 27 genera. -
The Role of Stress Proteins in Haloarchaea and Their Adaptive Response to Environmental Shifts
biomolecules Review The Role of Stress Proteins in Haloarchaea and Their Adaptive Response to Environmental Shifts Laura Matarredona ,Mónica Camacho, Basilio Zafrilla , María-José Bonete and Julia Esclapez * Agrochemistry and Biochemistry Department, Biochemistry and Molecular Biology Area, Faculty of Science, University of Alicante, Ap 99, 03080 Alicante, Spain; [email protected] (L.M.); [email protected] (M.C.); [email protected] (B.Z.); [email protected] (M.-J.B.) * Correspondence: [email protected]; Tel.: +34-965-903-880 Received: 31 July 2020; Accepted: 24 September 2020; Published: 29 September 2020 Abstract: Over the years, in order to survive in their natural environment, microbial communities have acquired adaptations to nonoptimal growth conditions. These shifts are usually related to stress conditions such as low/high solar radiation, extreme temperatures, oxidative stress, pH variations, changes in salinity, or a high concentration of heavy metals. In addition, climate change is resulting in these stress conditions becoming more significant due to the frequency and intensity of extreme weather events. The most relevant damaging effect of these stressors is protein denaturation. To cope with this effect, organisms have developed different mechanisms, wherein the stress genes play an important role in deciding which of them survive. Each organism has different responses that involve the activation of many genes and molecules as well as downregulation of other genes and pathways. Focused on salinity stress, the archaeal domain encompasses the most significant extremophiles living in high-salinity environments. To have the capacity to withstand this high salinity without losing protein structure and function, the microorganisms have distinct adaptations. -
Natrinema Versiforme Sp. Nov., an Extremely Halophilic Archaeon from Aibi Salt Lake, Xinjiang, China
International Journal of Systematic and Evolutionary Microbiology (2000), 50, 1297–1303 Printed in Great Britain Natrinema versiforme sp. nov., an extremely halophilic archaeon from Aibi salt lake, Xinjiang, China Huawei Xin,1,2 Takashi Itoh,2 Peijin Zhou,1 Ken-ichiro Suzuki,2 Masahiro Kamekura3 and Takashi Nakase2 Author for correspondence: Takashi Itoh. Tel: j81 48 467 9560. Fax: j81 48 462 4617. e-mail: ito!jcm.riken.go.jp 1 The Institute of A novel extremely halophilic archaeon, strain XF10T, was isolated from a salt Microbiology, Chinese lake in China. This organism was neutrophilic, non-motile and pleomorphic, Academy of Sciences (CAS), Beijing 100080, PR China and was rod, coccus or irregularly shaped. It required at least 15 M NaCl for growth and grew in a wide range of MgCl concentrations (0005–05 M). Lipid 2 Japan Collection of 2 Microorganisms, RIKEN extract of whole cells contained two glycolipids with the same (The Institute of Physical chromatographic properties as two unidentified glycolipids found in the two and Chemical Research), described Natrinema species, Natrinema pellirubrum and Natrinema pallidum. Wako-shi, Saitama 351-0198, Japan Phylogenetic analysis based on 16S rDNA sequence comparison revealed that strain XF10T clustered with the two described Natrinema species and several 3 Noda Institute for Scientific Research, other strains (strains T5.7, GSL-11 and Haloterrigena turkmenica JCM 9743) 399 Noda, Noda-shi, with more than 981% sequence similarities, suggesting that strain XF10T Chiba 278-0037, belongs to the genus Natrinema. Comparative analysis of phenotypic Japan properties and DNA–DNA hybridization between strain XF10T and the Natrinema species supported the conclusion that strain XF10T is a novel species within the genus Natrinema. -
View Preprint
Archebacterial Lysyl Oxidase 1 Expression and Properties of Lysyl Oxidase from Archeal Halophile 2 Haloterrigena turkmenica* 3 4 Nikolay B. Pestov1, Daniel V. Kalinovsky1, Tatyana D. Larionova1, Alia Z. Zakirova1, 5 Nikolay N. Modyanov2, Irina A. Okkelman1, Tatyana V. Korneenko1 6 7 1Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia 8 2 University of Toledo College of Medicine, Toledo, Ohio 9 * Running title: Archebacterial Lysyl Oxidase 10 To whom correspondence should be addressed: Shemyakin and Ovchinnikov Institute of 11 Bioorganic Chemistry, Miklukho-Maklaya 16/10, Moscow, 117997, Russia, Tel: +7(495) 330- 12 6556; Fax: +7(495) 330-6556; E-mail: [email protected] 13 Keywords: amine oxidase, horizontal gene transfer, protein cross-linking 14 ABSTRACT 15 Background: Lysyl oxidases (LOX) were studied mostly in mammals, whereas properties of 16 recently found homologs in prokaryotic genomes remain enigmatic. Methods: LOX gene from 17 Haloterrigena turkmenica has been cloned by PCR in a E. coli expression vector. Protein 18 purification has been done using metal affinity chromatography under denaturing conditions 19 followed by refolding. Catalytic activity has been fluorometrically a release of hydrogen 20 peroxide coupled with the oxidation of 10-acetyl-3,7-dihydroxyphenoxazine in the presence of 21 horseradish peroxidase. Rabbit polyclonal antibodies were obtained and used in western blotting. 22 Results: H. turkmenica LOX (HTU-LOX) may be successfully expressed in E. coli with a high 23 yield. However, full-length protein gives no catalytic activity. On the other hand, a deletion of 24 putative signal peptide allows the protein to be refolded into an active enzyme. -
Bacteria and Archaea - Aharon Oren
PHYLOGENETIC TREE OF LIFE - Bacteria And Archaea - Aharon Oren BACTERIA AND ARCHAEA Aharon Oren The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel. Keywords: Archaea, Bacteria, Bacteriological Code, Bergey‟s Manual, Nomenclature, Phylogenetic tree, Polyphasic taxonomy, Prokaryotes, 16S rRNA, Taxonomy, Species concept, Systematics Contents 1. Prokaryotes: The unseen majority 2. The species concept for the Prokaryotes 3. Bacteria and Archaea, the two domains of the prokaryotic world 4. The differences between Bacteria and Archaea 5. The Prokaryotes – a taxonomic overview 5.1. General considerations 5.2. The phyla of Bacteria 5.3. The phyla of Archaea 6. Prokaryotes: The uncultured majority Glossary Bibliography Biographical sketch Summary With an estimated number of 4-6x1030 cells, the prokaryotes are the most numerous organisms on earth. They inhabited our planet long before the eukaryotes evolved, and metabolically they are the most diverse group. Compared to the number of eukaryotic taxa the number of prokaryote genera and species described is surprisingly small. A little over 9,000 different species of prokaryotes have been named, and classified in nearly 2,000 genera. The naming of prokaryotes is regulated by the International Code of Nomenclature of Prokaryotes. Internationally approved rules for naming species exist, but there is no universally accepted species concept for the prokaryotes. For the description of new representatives a polyphasic approach is used, which includes determination of numerous phenotypic and genotypic properties. If necessary, the genomes of related strains are compared by DNA-DNA hybridization or full or partial genome sequence comparison. Since the 1970s comparative sequence analysis of small- subunit ribosomal RNA has revolutionized our views of prokaryote taxonomy. -
Determination of Hydrolytic Enzyme Capabilities of Halophilic Archaea Isolated from Hides and Skins and Their Phenotypic and Phylogenetic Identification by S
33 DETERMinATION OF HYDROLYTic ENZYME CAPABILITIES OF HALOPHILIC ARCHAEA ISOLATED FROM HIDES AND SKins AND THEIR PHENOTYpic AND PHYLOGENETic IDENTIFicATION by S. T. B LG School of Health, Canakkale Onsekiz Mart University, Terzioglu Campus Canakkale, Turkey, 17100. and B. MER ÇL YaPiCi Biology Department, Faculty of Arts and Science, Canakkale ONSEKIZ MART UNIVERSITY, TERZIOGLU CAMPUS, Canakkale, Turkey, 17100. and İsmail Karaboz Basic and Industrial Microbiology Section, Biology Department, Faculty of Science, Ege University, Bornova, İzmi r, Turkey, 35100. ABSTRACT INTRODUCTION This research aims to isolate extremely halophilic archaea The main constituent of the raw hide is protein, mainly from salted hides, to determine the capacities of their collagen (33% w/w), and remainder is moisture and fat. During hydrolytic enzymes, and to identify them by using phenotypic storage of raw hide, collagen’s excessive proteolysis by and molecular methods. Domestic and imported salted hide lysosomal autolysis or proteolytic bacterial enzymes can lead and skin samples obtained from eight different sources were to the disintegration of the structure of collagen fibers.1 used as the research material. 186 extremely halophilic Biodeterioration is among the major causes of impairment of microorganisms were isolated from salted raw hides and aesthetic, functional and other properties of leather and other skins. Some biochemical, antibiotic sensitivity, pH, NaCl, biopolymers or organic materials and the products made from temperature tolerance and quantitative and qualitative them. Due to the fact that prevention of biological degradation hydrolytic enzyme tests were performed on these isolates. In is very important in conservation and processing of leather, our study, taking into account the phenotypic findings of the great effort is being made for decontamination of these research, 34 of 186 isolates were selected. -
Production of Poly (3-Hydroxybutyrate) by Haloarcula
Hindawi Archaea Volume 2021, Article ID 8888712, 10 pages https://doi.org/10.1155/2021/8888712 Research Article Production of Poly(3-Hydroxybutyrate) by Haloarcula, Halorubrum, and Natrinema Haloarchaeal Genera Using Starch as a Carbon Source Fatma Karray ,1 Manel Ben Abdallah ,1 Nidhal Baccar,1 Hatem Zaghden ,1 and Sami Sayadi 2 1Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018 Sfax, Tunisia 2Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar Correspondence should be addressed to Fatma Karray; [email protected] and Sami Sayadi; [email protected] Received 26 June 2020; Revised 15 January 2021; Accepted 19 January 2021; Published 27 January 2021 Academic Editor: Stefan Spring Copyright © 2021 Fatma Karray et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Microbial production of bioplastics, derived from poly(3-hydroxybutyrate) (PHB), have provided a promising alternative towards plastic pollution. Compared to other extremophiles, halophilic archaea are considered as cell factories for PHB production by using renewable, inexpensive carbon sources, thus decreasing the fermentation cost. This study is aimed at screening 33 halophilic archaea isolated from three enrichment cultures from Tunisian hypersaline lake, Chott El Jerid, using starch as the sole carbon source by Nile Red/Sudan Black staining and further confirmed by PCR amplification of phaC and phaE polymerase genes. 14 isolates have been recognized as positive candidates for PHA production and detected during both seasons.