Bifurcation Structure of Two Coupled FHN Neurons with Delay

Total Page:16

File Type:pdf, Size:1020Kb

Bifurcation Structure of Two Coupled FHN Neurons with Delay Bifurcation structure of two coupled FHN neurons with delay Niloofar Farajzadeh Tehrania,∗, MohammadReza Razvana aDepartment of Mathematical Sciences, Sharif University of Technology, Tehran, Iran. Abstract This paper presents an investigation of the dynamics of two coupled non-identical FitzHugh-Nagumo neurons with delayed synaptic connection. We consider coupling strength and time delay as bifurcation parameters, and try to classify all possible dynamics which is fairly rich. The neural system exhibits a unique rest point or three ones for the different values of coupling strength by employing the pitchfork bifurcation of non-trivial rest point. The asymptotic stability and possible Hopf bifurcations of the trivial rest point are studied by analyzing the corresponding characteristic equation. Homoclinic, fold, and pitchfork bifurcations of limit cycles are found. The delay-dependent stability regions are illustrated in the parameter plane, through which the double-Hopf bifurcation points can be obtained from the intersection points of two branches of Hopf bifurcation. The dynamical behavior of the system may exhibit one, two, or three different periodic solutions due to pitchfork cycle and torus bifurcations (Neimark-Sacker bifurcation in the Poincare map of a limit cycle), of which detection was impossible without exact and systematic dynamical study. In addition, Hopf, double-Hopf, and torus bifurcations of the non trivial rest points are found. Bifurcation diagrams are obtained numerically or analytically from the mathematical model and the parameter regions of different behaviors are clarified. Keywords: FitzHugh-Nagumo neural model, Delay differential equation, Double-Hopf bifurcation, Hopf-Pitchfork bifurcation, Torus bifurcation, Fold of limit cycles 2010 MSC: 34K18, 92C20 1. Introduction in networks in which every neuron connects to all other nearby neurons. Zhou et al [3] modeled a neural net- Neurons and their interactions are generally assumed work as a small sub-network of excitable elements to to be the determinant of the brain performance. The study synchronization dynamics and the hierarchically simplest model to display features of neural interac- clustered organization of excitable neurons in a network tions consists of two coupled neurons or neural systems. of networks. Starting from such simple and reduced networks, larger The FitzHugh-Nagumo (FHN) model with cubic non- networks can be built and their features may be stud- linearity which was derived as a simplified model of the ied. In order to study complicated interaction between famous Hodgkin-Huxley (HH) model [4] by FitzHugh neurons in large neural networks, the neurons are of- [5] and Nagumo et al. [6], is a classic oscillator ex- ten put up into highly connected sub-networks or syn- hibiting variety of nonlinear phenomena in planar au- chronized sub-ensembles. Such neural populations are tonomous systems. The FHN-like systems are of fun- arXiv:1504.07658v2 [math.DS] 6 Oct 2015 usually spatially localized [1]. In this way, the model damental importance for describing the qualitative na- of two mutually coupled neurons may also apply as a ture of nerve impulse propagation and neural activity. framework of two coupled neural sub-ensembles. In fact, this model seems reach enough, and can cap- Destexhe et al. [2], by investigating two interconnected ture neural excitability of original HH equation [7]. In thalamic spindle oscillatory neurons, showed that how this way, Guckenheimer and Kuehn [8] investigated ho- more complex dynamics emanates in ring networks with moclinic orbits of the FitzHughNagumo equation from nearest neighbors and fully reciprocal connectivity, or the view-point of fast-slow dynamical systems. Hoff et al. [9] investigated unidirectional and bidirectional electrical couplings of two identical FHN neurons, in- ∗Corresponding author: Tel.:+982166165626. volving the effects of the four parameters on bifurca- E-mail address: [email protected] Preprint submitted to Mathematical Biosciences September 4, 2018 tions and synchronization. In modeling studies of trans- behavior. Some examples of delayed systems are cou- membrane potential oscillations, Bachelet et al. [10] ex- pled lasers [26], high-speed milling, population dynam- plained that bursting oscillations appear quite naturally ics, epidemiology [27], and gene expression, for two coupled FHN equations. Their coupling model Krupa and Touboul [28] investigated a self-coupled de- is quite different from other investigations. Different fir- layed FHN system to understand the effect of introduc- ing patterns such as chaotic firing is found in a pair of ing delays in a system whose dynamics, in the absence identical FHN elements with phase-repulsive coupling of delays, is characterized by a canard explosion and re- [11]. laxation oscillations. They have shown that delays sig- In addition to study of coupled neurons, the dynamics nificantly enrich the dynamics, leading to mixed-mode of a network of FHN neurons is also studied by re- oscillations, bursting, canard and chaos. searchers. Oscillatory chaotic behaviors and the mech- The research for coupled FHN systems with delay has anism of dynamic change from chaotically spiking to attracted many authors’ attention. Dahlem et al. [29] firing death is induced in [12], by considering the cou- studied an electrically delay-coupled neural system. pling of FHN oscillators in a network. Cattani [13] They showed that, for sufficiently large delay and cou- proposed a network model of instantaneous propagation pling strength bi-stability of a fixed point and limit cy- of signals between neurons in which the neurons need cle oscillations occur, even though the single excitable not be physically close to each other. The dynamics of elements display only a stable fixed point. Buric and the action potential and the recovery variable within a Todorovic [30], and also Jia et al. [31] investigated neural network is described by proposed network. The Hopf bifurcation of coupled FHN neurons with delayed oscillation patterns in a symmetric network of modi- coupling, they concluded that the time delay can in- fied FHN neurons is discussed by Murza [14]. The au- duce Hopf bifurcation. Buric et al. [32], observed dif- thor described the building block structure of a three- ferent synchronization states in a coupled FHN system dimensional lattice shaped as a torus, and identified the with delay and by variation of the coupling strength and symmetry group acting on the electrically coupled dif- time delay. Also they showed that the stability and the ferential systems located at the nodes of the lattice. patterns of exactly synchronous oscillations depend on It is known that signal transmission in coupled neurons the type of excitability and type of coupling. In [33] is not instantaneous in general [15]. Hence a time de- by employing the center manifold theory and normal lay can occur in the coupling between neurons or in a form method, the Fold-Hopf bifurcation in a coupled self-feedback loop. For example, synaptic communi- identical FHN neural system with delay is investigated. cation between neurons depends on the propagation of The synchronization transitions between inphase and action potentials across axons. The finite conduction antiphase oscillations for delay-coupled FHN system is speed and the information processing time in synapses studied in [34]. Wang et al. [35] reported that time lead to a conduction delay. The speed of signal trans- delay can control the occurrence of some bifurcations mission through unmyelinated axonal fibers is in the in two synaptically coupled FHN neurons. However, order of 1 m/s, which results in existence of time de- only codimension-1 bifurcations are discussed in these lays up to 80 ms for propagation through the cortical papers. Fan and Hong [36], and also Xu et al. [37], network [15, 16]. Moreover, the interaction delay be- considered the stability and Hopf bifurcation of dou- tween the oscillators can be as large as the oscillation ble delay coupled FHN system with different coupling period [17]. Therefore, time delay is inevitable in sig- strength. Yao and Tu [38] discussed the combined effect nal transmission for real neurons. On the other hand, of coupling strength and multiple delays on the stabil- time-delayed feedback mechanisms might be intention- ity of the rest point, and they obtained stability switches ally implemented to control neural disturbances, e.g. in the coupled FHN neural system with multiple delays. to suppress alpha rhytm [18] and undesired synchrony In addition to the study of Hopf bifurcation, Zhen and of firing neurons in Parkinson’s disease or epilepsy Xu [39], and also Rankovic [40] discussed the effects [19, 20, 21]. Various delayed feedback loops have been of the coupling strength and delay on steady state bifur- proposed as effective and powerful therapy of neuro- cations in coupled systems with identical neurons. The logical diseases which are caused by synchronization of Bautin bifurcation due to small delay, was analyzed by neurons [20, 21, 22, 23, 24, 25]. Buric and Todorovic [41]. Nevertheless, in that paper From the modeling viewpoint, delay in dynamical sys- the time-delayed argument of the coupling function was tems is exhibited whenever the system’s behavior is de- replaced by its Taylor expansion, so that their delay- pendent at least in part on its history. There are many differential system was approximated by ordinary dif- technological and biological systems which exhibit such ferential equations. Zhen and Xu [42] studied Bautin bi- 2 furcation of completely synchronous FHN neurons. Li neurons in the work of Zhen and Xu [39], and also Li and Jiang [43], investigated Hopf and Bogdanov-Takens and Jiang [43] are assumed identical which leads to a bifurcations in a coupled FHN neural system with gap symmetry for their system of equations, that can not be junction for identical neurons. In [44] it was shown that found in our system. Instead the symmetry in our solu- in a simple motif of two coupled FHN systems with two tions is due to the inherent symmetry of the FHN neu- different delay times and with self-feedback, complex rons, namely our system of equations is equivariant un- dynamics arise.
Recommended publications
  • Introduction to Bifurcation Analysis
    PhD mini course: introduction to bifurcation analysis G.A.K. van Voorn Dept Theor. Biology, Vrije Universiteit de Boelelaan 1087, 1081 HV Amsterdam, the Netherlands [email protected] June 19,20,21,22,26, 2006 Abstract This pdf document provides the textual background in the mini course on bifurca- tion analysis, by George van Voorn. It is the companion material by the powerpoint presentations posted on the site www.bio.vu.nl/thb. Goal of this manuscript is to explain some of the basics of bifurcation theory to PhD-students at the group. The emphasis is strongly on the biological interpretation of bifurcations; mathematics are reduced to an absolute minimum. Some expert things are covered as well, with the goal that it is possible for the reader to understand results of model analyses at the group in sufficient detail. Keywords: bifurcation analysis, equilibria, ODE systems. 1 1 Introduction In scientific fields as diverse as fluid mechanics, electronics, chemistry and theoretical ecology, there is the application of what is referred to as bifurcation analysis; the analysis of a system of ordinary differential equations (ODE’s) under parameter variation. Performing a local bifurcation analysis is often a powerful way to analyse the properties of such systems, since it predicts what kind of behaviour (system is in equilibrium, or there is cycling) occurs where in parameter space. With local bifurcations linearisation in state space at the critical point of the parameter space provides sufficient information. For a good introduction on the basics of local bifurcation analysis the reader is referred to Guckenheimer and Holmes (1985), Wiggins (1990) and Kuznetsov (2004), be it these are all very mathematical in their approach.
    [Show full text]
  • Chaos: the Mathematics Behind the Butterfly Effect
    Chaos: The Mathematics Behind the Butterfly E↵ect James Manning Advisor: Jan Holly Colby College Mathematics Spring, 2017 1 1. Introduction A butterfly flaps its wings, and a hurricane hits somewhere many miles away. Can these two events possibly be related? This is an adage known to many but understood by few. That fact is based on the difficulty of the mathematics behind the adage. Now, it must be stated that, in fact, the flapping of a butterfly’s wings is not actually known to be the reason for any natural disasters, but the idea of it does get at the driving force of Chaos Theory. The common theme among the two is sensitive dependence on initial conditions. This is an idea that will be revisited later in the paper, because we must first cover the concepts necessary to frame chaos. This paper will explore one, two, and three dimensional systems, maps, bifurcations, limit cycles, attractors, and strange attractors before looking into the mechanics of chaos. Once chaos is introduced, we will look in depth at the Lorenz Equations. 2. One Dimensional Systems We begin our study by looking at nonlinear systems in one dimen- sion. One of the important features of these is the nonlinearity. Non- linearity in an equation evokes behavior that is not easily predicted due to the disproportionate nature of inputs and outputs. Also, the term “system”isoftenamisnomerbecauseitoftenevokestheideaof asystemofequations.Thiswillbethecaseaswemoveourfocuso↵ of one dimension, but for now we do not want to think of a system of equations. In this case, the type of system we want to consider is a first-order system of a single equation.
    [Show full text]
  • Deterministic Chaos: Applications in Cardiac Electrophysiology Misha Klassen Western Washington University, [email protected]
    Occam's Razor Volume 6 (2016) Article 7 2016 Deterministic Chaos: Applications in Cardiac Electrophysiology Misha Klassen Western Washington University, [email protected] Follow this and additional works at: https://cedar.wwu.edu/orwwu Part of the Medicine and Health Sciences Commons Recommended Citation Klassen, Misha (2016) "Deterministic Chaos: Applications in Cardiac Electrophysiology," Occam's Razor: Vol. 6 , Article 7. Available at: https://cedar.wwu.edu/orwwu/vol6/iss1/7 This Research Paper is brought to you for free and open access by the Western Student Publications at Western CEDAR. It has been accepted for inclusion in Occam's Razor by an authorized editor of Western CEDAR. For more information, please contact [email protected]. Klassen: Deterministic Chaos DETERMINISTIC CHAOS APPLICATIONS IN CARDIAC ELECTROPHYSIOLOGY BY MISHA KLASSEN I. INTRODUCTION Our universe is a complex system. It is made up A system must have at least three dimensions, of many moving parts as a dynamic, multifaceted and nonlinear characteristics, in order to generate machine that works in perfect harmony to create deterministic chaos. When nonlinearity is introduced the natural world that allows us life. e modeling as a term in a deterministic model, chaos becomes of dynamical systems is the key to understanding possible. ese nonlinear dynamical systems are seen the complex workings of our universe. One such in many aspects of nature and human physiology. complexity is chaos: a condition exhibited by an is paper will discuss how the distribution of irregular or aperiodic nonlinear deterministic system. blood throughout the human body, including factors Data that is generated by a chaotic mechanism will a ecting the heart and blood vessels, demonstrate appear scattered and random, yet can be dened by chaotic behavior.
    [Show full text]
  • Lecture 11: Dynamical Systems 10
    15-382 COLLECTIVE INTELLIGENCE – S19 LECTURE 11: DYNAMICAL SYSTEMS 10 TEACHER: GIANNI A. DI CARO LIMIT CYCLES So far … Unstable equilibrium Periodic orbit: ! " + $ = !(") (-limit set of points Something new: limit cycles / orbital stability 2 LIMIT CYCLES § A limit cycle is an isolated closed trajectory: neighboring trajectories are not close, they are spiral either away or to the cycle § If all neighboring trajectories approach the limit cycle: stable, unstable otherwise, half-stable in mixed scenarios § In a linear system closed orbits are not isolated à No limit cycles 3 LIMIT CYCLE EXAMPLE '̇ = '(1 − '+) % ,̇ = 1 ' ≥ 0 § Radial and angular dynamics are uncoupled, such that they can be analyzed separately § The motion in , is a rotation with constant angular velocity § Treating '̇ = '(1 − '+) as a vector field on the line, we observe that there are two critical points, (0) and (1) § The phase space (', '̇) shows the functional relation: (0) is an unstable fixed point, (1) is stable, since the trajectories from either sides go back to ' = 1 A solution component !(#) starting outside unit circle ends to the circle (! oscillates with amplitude 1 r=1 4 VAN DER POL OSCILLATOR . = ! !"" + ! − %(1 − !()!" 0 = !′ ." = 0 0" = −. + % 1 − .( 0 Harmonic Nonlinear oscillator damping Positive (regular) Negative (reinforcing) damping for ! > 1 damping for ! < 1 Oscillations are large: it Oscillations are small: it à System settles into a self-sustained forces them to decay pumps them back oscillation where the energy dissipated over one cycle balances the energy pumped in à Unique limit cycle for each value of , > - Two different initial conditions converge to the same limit cycle 5 VAN DER POL OSCILLATOR !"" + ! − %(1 − !()!" % = 5 Numeric integration.
    [Show full text]
  • Bifurcations Involving Fixed Points and Limit Cycles in Biological Systems Michael R
    This is page 41 Printer: Opaque this 3 Bifurcations Involving Fixed Points and Limit Cycles in Biological Systems Michael R. Guevara 3.1 Introduction Biological systems display many sorts of dynamic behaviors including con- stant behavior, simple or complex oscillations, and irregular fluctuating dynamics. As parameters in systems change, the dynamics may also also change. For example, changing the ionic composition of a medium bathing nerve cells or cardiac cells can have marked effects on the behaviors of these cells and may lead to the stabilization or destabilization of fixed points or the initiation or termination of rhythmic behaviors. This chapter concerns the ways that constant behavior and oscillating behavior can be stabilized or destabilized in differential equations. We give a summary of the mathe- matical analysis of bifurcations and biological examples that illustrate the mathematical concepts. While the context in which these bifurcations will be illustrated is that of low-dimensional systems of ordinary differential equations, these bifurcations can also occur in more complicated systems, such as partial differential equations and time-delay differential equations. We first describe how fixed points can be created and destroyed as a parameter in a system of differential equations is gradually changed, pro- ducing a bifurcation. We shall focus on three different bifurcations: the saddle-node bifurcation, the pitchfork bifurcation, and the transcritical bi- furcation (Abraham and Shaw 1982; Thompson and Stewart 1986; Wiggins 1990; Strogatz 1994). We then consider how oscillations are born and how they die or metamor- phose. There are several bifurcations in which limit cycles are created or destroyed.
    [Show full text]
  • Lecture 8: Dynamical Systems 7
    15-382 COLLECTIVE INTELLIGENCE – S18 LECTURE 8: DYNAMICAL SYSTEMS 7 INSTRUCTOR: GIANNI A. DI CARO GEOMETRIES IN THE PHASE SPACE § Damped pendulum One cp in the region between two separatrix Saddle Asymptotically Separatrix unstable Basin of attraction Asymptotically stable spiral (or node) § Undamped Closed orbits pendulum (periodic) Fixed point (any period) Center: the linearization approach doesn’t allow to say much about stability 2 GEOMETRIES IN THE PHASE SPACE … § Question 1: The linearization approach for Lyapounov studying the stability of critical points is a purely functions local approach. Going more global, what about the basin of attraction of a critical point? § Question 2: When the linearization approach fails as a method to study the stability of a critical point, can we rely on something else? § Question 3: Are critical points and well separated closed orbits all the geometries we can have in the phase space? Limit cycles § Question 4: Does the dimensionality of the phase space impact on the possible geometries and limiting behavior of the orbits? § Question 5: Are critical points and closed orbits the only forms of attractors in the dynamics of the phase space? Is chaos related to this? 3 LYAPUNOV DIRECT METHOD: POTENTIAL FUNCTIONS �̇ = � � , �: ℝ) → ℝ) � �(�) = Potential energy of the system when in state �, �: ℝ) → ℝ � �(�) �1 �0 § Time rate of chanGe of � �(�) alonG a solution trajectory �(�), we need to take the derivative of � with respect to �. UsinG the chain rule: �� �� ��0 �� ��) �� �� = + ⋯ + = �0 �0,… , �) + ⋯ + �) �0, … , �) �� ��0 �� ��) �� ��0 ��) Solutions do not appear, only the system itself! 4 LYAPUNOV FUNCTIONS § �̇ = � � , �: ℝ) → ℝ) § �9 equilibrium point of the system § A function �: ℝ) → ℝ continuously differentiable is called a Lyapunov function for �9 if for some neighborhood � of �9 the following hold: 1.
    [Show full text]
  • Limit-Cycle Oscillations and Chaos in Reaction Networks Subject to Conservation of Mass (Nonlinear Dynamics/Free-Energy Transduction/Linkage) ENRICO Di CERA*T, PAUL E
    Proc. Nati. Acad. Sci. USA Vol. 86, pp. 142-146, January 1989 Biophysics Limit-cycle oscillations and chaos in reaction networks subject to conservation of mass (nonlinear dynamics/free-energy transduction/linkage) ENRICO Di CERA*t, PAUL E. PHILLIPSON*, AND JEFFRIES WYMAN§ *Istituto di Fisica, UniversitA Cattolica, Largo F. Vito 1, 00168 Rome, Italy; tDepartment of Physics, Box 390, University of Colorado, Boulder, CO 80309- 0390; and §Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309-0215. Contributed by Jeffries Wyman, August 1, 1988 ABSTRACT A cyclic network of autocatalytic reactions conservative oscillations, they can be used as skeletons in involving an unbuffered cofactor and a number of components other reaction mechanisms to generate complex dynamical subject to conservation of mass displays a surprising richness behavior. In this paper we demonstrate with a particular of dynamical behaviors. Limit-cycle oscillations are possible model that under suitable conditions the conservative nature over a wide range of parameter values. Additionally, a cascade of the oscillations is lost and these networks can display a of period-doubling bifurcations leading to chaos can coexist surprising richness of dynamical behaviors, from limit-cycle with a multiplicity of stable steady states. These results draw oscillations to a cascade of period-doubling bifurcations attention to the role of unbuffering as a feedback in biochemi- leading to chaos. A peculiar feature of the model is the possi- cal systems. bility of either periodic oscillations or chaos coexisting with a multiplicity of stable steady states. Periodic patterns of temporal self-organization may appear in several reactions and biochemical regulatory processes THE MODEL when the system under consideration obeys certain general The particular model considered here is a four-component properties (1): (i) it is open to mass or energy transfer; (ii) it autocatalytic network, such as Eq.
    [Show full text]
  • Limit Cycle - Wikipedia
    Limit cycle - Wikipedia https://en.wikipedia.org/wiki/Limit_cycle Limit cycle In mathematics, in the study of dynamical systems with two- dimensional phase space, a limit cycle is a closed trajectory in phase space having the property that at least one other trajectory spirals into it either as time approaches infinity or as time approaches negative infinity. Such behavior is exhibited in some nonlinear systems.[1] Limit cycles have been used to model the behavior of a great many real world oscillatory systems. The study of limit cycles was initiated by Henri Poincaré (1854–1912). Stable limit cycle (shown in bold) and two other trajectories spiraling into it Contents Definition Properties Stable, unstable and semi-stable limit cycles Finding limit cycles Open problems See also References Stable limit cycle (shown in bold) for the Van der Pol oscillator Definition We consider a two-dimensional dynamical system of the form where is a smooth function. A trajectory of this system is some smooth function with values in which satisfies this differential equation. Such a trajectory is called closed (or periodic) if it is not constant but returns to its starting point, i.e. if there exists some such that for all . An orbit is the image of a trajectory, a subset of . A closed orbit, or cycle, is the image of a closed trajectory. A limit cycle is a cycle which is the limit set of some other trajectory. Properties By the Jordan curve theorem, every closed trajectory divides the plane into two regions, the interior and the exterior of the curve.
    [Show full text]
  • Be- Yond the Lotka-Volterra Model
    5 The Dynamics of Two Interacting Populations: Be- yond the Lotka-Volterra model Many insights into the dynamics of interacting species rely on the Lotka-Volterra frame- work. This raises the question how reliable and general these results can be. Indeed, the model makes several rather restrictive assumptions, such as a linear dependence of per capita birth rates on the densities (e.g. no Allee effect) and no density dependence of the pair interaction parameters (cx; cy; cxy; cyx do not depend on x or y). This can have unbio- logical consequences, e.g. for mutualism, where populations can grow without bounds for some parameter choices. In more general, we should ask for any model whether changes in the modeling assumptions can lead to qualitatively new effects. 5.1 A general two-species competition model A general model of interacting populations (without immigration) is of the form x_ = x F (x; y) (1a) y_ = y G(x; y); (1b) with continuously differentiable functions G(x; y) and F (x; y). For most natural systems it will be impossible to determine the exact functional form of F and G. It is therefore desirable to obtain results without specifying F and G but only constraining them by certain boundary conditions. Here, we follow this approach for the case of competition between two populations. We make the following assumptions: 1. Competing populations affect each others growth rates negatively. Therefore, @F (x; y) @G(x; y) < 0 and < 0: (2) @y @x 2. Competition occurs due to shared resources (e.g., food, nesting sites).
    [Show full text]
  • The Calculation Process of the Limit Cycle for Lorenz System
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 18 February 2021 doi:10.20944/preprints202102.0419.v1 The calculation process of the limit cycle for Lorenz system Hao Dong1,2,*, Bin Zhong1 1 Institute for Advanced Study, Chengdu University, Chengdu 610106, China 2 School of Mechanics and Engineering, Southwest jiaotong University, Chengdu 611756, China *Correspondence: [email protected]; Tel: 86 13008126583 Abstract: This work focuses on the bifurcation behavior before chaos phenomenon happens. Traditional numerical method is unable to solve the unstable limit cycle of nonlinear system. One algorithm is introduced to solve the unstable one, which is based one of the continuation method is called DEPAR approach. Combined with analytic and numerical method, the two stable and symmetrical equilibrium solutions exist through Fork bifurcation and the unstable and symmetrical limit cycles exist through Hopf bifurcation of Lorenz system. With the continuation algorithm, the bifurcation behavior and its phase diagram is solved. The results demonstrate the unstable periodical solution is around the equilibrium solution, besides the trajectory into the unstable area cannot escape but only converge to the equilibrium solution. Keywords: Lorenz equation; Hopf bifurcation; Unstable limit cycle; Calculation process; Continuation method; 1. Introduction Lorenz equation, nowadays its related phenomenon is famous known as ‘Butterfly effect’ [1-3]. Originally in 1963, Lorenz’s work focused on the numerical simulation of the dynamical model for the atmospheric prediction. His work demonstrated the results were rather sensitive to the initial conditions. Specifically, a slight variation in the initial condition of the equation might lead to a significant difference of the results, the phenomenon of which is called chaos.
    [Show full text]
  • Time Delay in the Swing Equation: a Variety of Bifurcations Time Delay in the Swing Equation: a Variety of Bifurcations T
    Time Delay in the Swing Equation: A Variety of Bifurcations Time Delay in the Swing Equation: A Variety of Bifurcations T. H. Scholl,1, a) L. Gröll,1, b) and V. Hagenmeyer1, c) Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany (Dated: 2019) The present paper addresses the swing equation with additional delayed damping as an example for pendulum-like systems. In this context, it is proved that recurring sub- and supercritical Hopf bifurcations occur if time delay is increased. To this end, a general formula for the first Lyapunov coefficient in second order systems with additional delayed damping and delay-free nonlinearity is given. In so far the paper extends results about stability switching of equilibria in linear time delay systems from Cooke and Grossman. In addition to the analytical results, periodic solutions are numerically dealt with. The numerical results demonstrate how a variety of qualitative behaviors is generated in the simple swing equation by only introducing time delay in a damping term. The swing equation is, e.g., at the core of any power system model. By delayed frequency control it becomes a pen- dulum equation with delayed damping - a system which is shown to exhibit highly complex dynamics. Repeating Hopf bifurcations lead again and again to the emergence of limit cycles as delay is increased. These limit cycles un- dergo further bifurcations including period doubling cas- cades and the birth of invariant tori. I. INTRODUCTION Second order ordinary differential equations with periodic nonlinearity describe various non-related systems such as syn- chronous generators or single-machine-infinite-bus (SMIB) equivalents of power systems, Josephson junction circuits, phase-locked loops or mechanical pendulum mechanisms1.
    [Show full text]
  • Chaos, Strange Attractors, and Weather
    A. A. Tsonis and Chaos, Strange Attractors, J. B. Eisner University of Wisconsin-Milwaukee, and Weather Department of Geosciences, Milwaukee, Wl 53201 Abstract paper to introduce the reader to some chaos theory concepts and some implications of chaos theory in Some of the basic principles of the theory of dynamical systems weather and climate. are presented, introducing the reader to the concepts of chaos theory and strange attractors and their implications in meteorology. New numerical techniques to analyze weather data according to the above theory are also presented. 2. Simple examples and definitions from the theory of dynamical systems 1. Introduction In the preceding paragraph the term "dynamical sys- Simplicity and regularity are associated with predict- tems" was used. What is a dynamical system? In sim- ability. For example, because the orbit of the earth is ple terms a dynamical system is a system whose simple and regular we can always predict when as- evolution from some initial state (which we know) tronomical winter will come. On the other hand, can be described by a set of rules. These rules may complexity and irregularity are almost synonymous be conveniently expressed as mathematical equa- with unpredictability. The atmosphere, being so tions. The evolution of such a system is best de- complex and irregular, is rather unpredictable. scribed by the so-called "state space." An example Those who try to explain the world we live in al- of a simple dynamical system, a pendulum, and its ways hoped that in the realm of the complexity and state space, is given below. irregularity observed in nature, simplicity would be Consider a pendulum that is allowed to swing back found behind everything, and finally unpredictable and forth from some initial state, as shown in figure events would become predictable.
    [Show full text]