Optimization of a Chem-E-Car New Jersey Governor’S School of Engineering and Technology 2014

Total Page:16

File Type:pdf, Size:1020Kb

Optimization of a Chem-E-Car New Jersey Governor’S School of Engineering and Technology 2014 Optimization of a Chem-E-Car New Jersey Governor’s School of Engineering and Technology 2014 Michael Amoako David Fan Wendy Ide [email protected] [email protected] [email protected] Teaneck High School Montgomery High School High Technology HS Nina Lin Marcus Loo [email protected] [email protected] Lenape High School Park Ridge High School Abstract Introduction In light of the recent movement towards The need for affordable and efficient reducing fossil fuel consumption, the need alternative energy sources is a defining issue for a suitable alternative energy source is of the twenty-first century that is receiving greater than ever. To explore the utility of growing attention from both the scientific household products as unconventional yet community and the public alike. While efficient energy sources, a car powered hydrocarbons have driven a majority of the entirely by chemical reactions was built. world’s energy consumption for over a Fuel cell batteries of varying salinity, pH, century, such sources are both unsustainable and designs were built and tested while a and environmentally detrimental. If the stopping mechanism was calibrated. A world’s energy needs continue to grow at shoebox-sized car was then built with both their current rate, fossil fuel reserves are the battery and stopping mechanism estimated to deplete by 2052, followed by implemented and tested at various distances natural gas by 2060 and coal by 2088.1 The and loads. It was found that increasing consequences of using these energy sources salinity increased battery current but did not to the end will be unprecedented, both for affect the voltage, while increasing and the environment and the global economy. decreasing pH both increased current and Thus, it is clear that the world needs to find voltage. The iodine clock reaction was also a feasible alternative. found to follow a first-order law, with a While substantial advances in reaction time linearly proportional to the alternative energy have recently been made concentration of iodine. Ultimately, the car in the automobile industry, current was able to stop at each intended distance alternative energy sources for powering through the iodine clock reaction. Although vehicles are either expensive or not widely the aluminum batteries and iodine clock accessible to all. Ethanol fuels, for example, were implemented to power only a shoebox are not practical because they provide low sized car, the scale-up of similar, widely mileage per gallon and require a large available materials could possibly mean a amount of organic material and land to future of globally accessible transportation. produce, land that is increasingly difficult to provide.2 Currently, hydrogen fuel cars are . very expensive and often require high 1 running temperatures, reducing their the cathode half-cell is the site of reduction, longevity and efficacy. In addition, and both are connected by a salt bridge. The hydrogen fuel is difficult to safely transport salt bridge contains an electrolyte or for mass distribution because it needs to be aqueous solution of ions, which flow freely compressed and purified.2 Because of the between the anode and cathode to maintain public’s inaccessibility to many “green” charge neutrality in each. Without the salt technologies, the future depends on bridge, the cathode would become developing a less demanding way to progressively more negative as it gains encourage the use of alternative energy in electrons, while the anode would become vehicles. progressively more positive.4 Since The objective of this project is to electrons always flow from the substance investigate and employ common household being oxidized to the substance being products as nonconventional energy sources reduced, this buildup of charge would render in a car powered entirely by chemical the cell nonfunctional. reactions. The car must also be able to travel Cell potential, the difference in ability variable distances and carry variable loads of electrons to flow from one place to with no additional user input. In addition, another or the difference between the anode the goal is to gain a better understanding of and cathode potential to become oxidized, how chemical reactions can be calibrated to can be quantified in volts (V) as voltage. automate processes and how engineers Cell potential can also be thought of as the optimize what is available to achieve the potential energy that drives redox intended goal. The project began by reactions.4,5 In this sense, electrons fall from conceptualizing, building, and optimizing a the anode, which has a higher potential to battery system and stopping mechanism become oxidized, to the cathode which has a before finally building the actual car and lower potential to become oxidized. Cell testing it. potential is calculated by subtracting the reduction potentials of the anode half- reaction from that of the cathode half- 0 0 0 2. Background reaction (E cell = E cathode - E anode), or adding the oxidation potential of the anode half- 2.1 Basic Electrochemistry reaction to the reduction potential of the 0 0 cathode half-reaction (E cell = E anode + Electrochemical processes employ both 0 E cathode). Oxidation potential is the negative oxidation and reduction, which are the loss of reduction potential since both are and gain of electrons, respectively. When opposite processes. paired together in a redox reaction, electrons flow from the reducing agent (substance that 2.2 Circuits is oxidized—loses electrons) to the oxidizing agent (substance that is reduced—gains Circuit configuration is essential to electrons), generating electrical potential maximizing voltage and current output as energy that can be harnessed to perform differently designed circuits have various work, i.e., on a motor. electrical properties. Series circuits allow Galvanic cells can harness this energy electrons to flow in only one direction, while by separating the oxidation and reduction parallel circuits allow electrons to flow in 6 processes and diverting the electrons multiple directions. Electron flow is produced through an external circuit.3 The severed when one component of a series anode half-cell is the site of oxidation while circuit fails. Because the car photoreceptor, 2 motor, and power source are wired in series, parallel, the components experience the circuit is broken when the photoreceptor equivalent voltage drops and split current no longer receives light (see Diagram 1). proportionally. Since voltage is constant However, in a parallel circuit, if one over resistors in parallel, I and R are component fails, the rest of the components inversely proportional to each other. This still receive electron flow.7 means that higher resistors let less current pass through them than lower resistors when in parallel. When batteries are wired in series, their voltages add. On the other hand, when batteries are wired in parallel, the total voltage equals the voltage of a single cell. The advantage to wiring batteries in parallel is that the overall current capacity increases. In order to generate enough current to power Diagram 1 the car, three different wiring methods can be followed—series, parallel or a hybrid configuration. Three definitions that require an understanding of basic circuitry are as follow: 2.3 Aluminum-Air Batteries 1. Voltage (V) is the measure of potential difference between two points, in Aluminum and oxygen act as the volts (V) anode and cathode, respectively, in the car. 2. Current (I) accounts for the amount While oxygen itself is reduced in the battery, of electrons that flow in the wire, in amperes activated carbon is used as an adsorbent to (A) capture oxygen upon contact with the air. 3. Resistance (R) measures any Because activated carbon is very porous, its hindrance of movement for the electrons, in large surface area allows it to capture ohms (Ω) oxygen on its surface, facilitating the reaction of oxygen with water to form Mathematically, voltage, current, and hydroxide ion, which then reacts with resistance are related by Ohm’s Law: V = aluminum itself. Paper towels drenched in IR.5 Power (Watts) is defined as P = IV for saline solution serve as the salt-bridge that ohmic circuits. preserves charge neutrality in each half-cell, In a series circuit, the total resistance while copper wires transfer electron flow to equals the sum of the individual resistances the DC motor. of the components. Current is uniform throughout a series circuit and voltage drops The consistency of carbon directly split proportionally. Note that since current affects oxygen’s rate of diffusion through (I) is constant through a series circuit for the salt solution and into the aluminum resistors, V and R are directly proportional. anode. According to Fick’s Law, the rate of Therefore, higher resistors experience diffusion is directly proportional to surface greater voltage drops than lower resistors. area and concentration difference, but In a parallel circuit, total resistance is inversely proportional to the distance over the reciprocal of the sum of the reciprocals which diffusion occurs.7 The size of the of each individual resistance. When wired in activated carbon particles gives perspective 3 into the manner in which mass transport has a higher reduction potential, is reduced occurs in a reaction chamber. In this case, instead of oxygen. Thus, both increasing and oxygen from the air diffuses into the porous decreasing pH are hypothesized to increase medium with the help of activated carbon. cell voltage and current.8 This can be seen in The surface of the carbon between particles Equations 4 and 5. act as a ‘oxygen carrier’ and eventually - - - initiates the reduction process with the (4) ClO- + H2O + 2e → Cl + 2OH o electrolyte solution. Larger particles will not E net = 0.89 be able to carry out the adsorption process + - (5) HOCl + H + e → ½Cl2 (g) + H2O due to their limited surface area, while o E net = 1.63 smaller particles will impede the diffusion of oxygen.
Recommended publications
  • Mathematical Modelling of the Vitamin C Clock Reaction Arxiv:1808.06010
    Mathematical modelling of the vitamin C clock reaction R. Kerr, W. M. Thomson and D. J. Smith∗ Abstract Chemical clock reactions are characterised by a relatively long induction period followed by a rapid `switchover' during which the concentration of a clock chemical rises rapidly. In addition to their interest in chemistry education, these reactions are relevant to industrial and biochemical applications. A substrate-depletive, non- autocatalytic clock reaction involving household chemicals (vitamin C, iodine, hy- drogen peroxide and starch) is modelled mathematically via a system of nonlinear ordinary differential equations. Following dimensional analysis the model is analysed in the phase plane and via matched asymptotic expansions. Asymptotic approxi- mations are found to agree closely with numerical solutions in the appropriate time regions. Asymptotic analysis also yields an approximate formula for the dependence of switchover time on initial concentrations and the rate of the slow reaction. This formula is tested via `kitchen sink chemistry' experiments, and is found to enable a good fit to experimental series varying in initial concentrations of both iodine and vitamin C. The vitamin C clock reaction provides an accessible model system for mathematical chemistry. 1 Introduction `Clock reactions' encompass many different chemical processes in which, following mixing of the reactants, a long induction period of repeatable duration occurs, followed by a rapid visible change. These reactions have been studied for over a century, with early examples including the work of H. Landolt on the sulphite{iodate reaction in the 1880s { for review arXiv:1808.06010v2 [math.DS] 24 Mar 2019 see Horv´ath& Nagyp´al[1], and the work of G.
    [Show full text]
  • Kinetics, Equilibrium & Catalysis
    Kinetics, Equilibrium & Catalysis The rates of chemical reactions as a function of temperature will be discussed via the use of light sticks at 3 different temperatures and the H2/O2 balloon explosion. The concept of activation barriers to chemical reactions will thus be introduced. The catalytic decomposition of H2O2 and oscillating Iodine reaction will also be performed along with the chemical principles involved. Stuff: * thermos bottle (or insulated container) (you provide) * boiling hot water to put in thermos (you provide) * ice (you provide) * water in container (you provide) * large disposable plastic or aluminum tray (e.g., turkey pan) (you provide) * roll of paper towels for cleaning up messes (you provide) * small amount of dishwashing detergent liquid (you provide) Propane torch (we provide, please return) 2 large plastic graduated cylinders (we provide, please clean & return) 3 × 250 mL beakers for the light sticks (we provide, please return) 3 light sticks (we will provide) balloons – H2, O2 and several H2/O2 mixtures (we provide) potassium iodide solution, dilute & concentrated (we provide, return empty containers) 15% and 30% H2O2 (hydrogen peroxide) solution (we provide, return empty containers) oscillating iodine clock reaction kit (we provide – return empty containers) 600 mL beaker for oscillating clock rxn (we provide - please clean & return) General SAFETY notes: You are representing LSU. Please be professional and safety conscious. 90% of safety is using good common sense and being cautious. Wear safety glasses when working with chemicals. Store the 15 and 30% H2O2 and oscillating iodine clock Solution A (15% H2O2) in a refrigerator if you pick up the chemicals the day before the demo.
    [Show full text]
  • Application of Briggs-Rauscher Reaction for Measurement of Antioxidant Capacity of Croatian Wines
    APPLICATION OF BRIGGS-RAUSCHER REACTION FOR MEASUREMENT OF ANTIOXIDANT CAPACITY OF CROATIAN WINES * J. GAJDOŠ KLJUSURI Ć , S. DJAKOVI Ć, I. KRUHAK , K. KOVA ČEVI Ć GANI Ć, D. KOMES and Ž. KURTANJEK Faculty of Food Technology and Biotechnology, University of Zagreb Pierottijeva 6, 10 000 Zagreb. Croatia Briggs-Rauscher (BR) reaction is one of the most commonly studied oscillation reactions which has been applied for measurement of antioxidant activity of water-soluble substances. By addition of free radicals (from fruits or vegetables), there is an immediate quenching of oscillations. The reaction is followed potentiometrically and the inhibition time (IT), or time of no oscillations, is proportional to concentration of antioxidant. pH of BR reaction is about 2, what is similar to that of the fluids of the main digestive process (human stomach), giving in vitro information’s on antioxidant activity at “real digestion conditions” and can help in assessment of nutrition for maintenance of health and prevention of diseases. Antioxidant activities of different concentrations of native Croatian red and white wines are analysed by inhibition of BR reaction and determination of total phenols using galic acid as the calibration standard. By use of mathematical models, relative antioxidant activities of antioxidants and amounts of total phenols are estimated. Second order polynomial calibration curve is estimated in the range of 150-2500 galic acid equivalent (GAE mg l –1), with standard error of 84 GAE mg l -1. Keywords: Briggs-Rauscher reaction, white and red wines, antioxidant capacity, prediction of total phenols in wine * To whom correspondence should be addressed. Fax: 00 385 1 483 60 83; e-mail: [email protected] 1 Phenolic compounds of major dietary constituents are widely accepted as antioxidant substances which play important role in maintenance of human health and in prevention of diseases (ALONSO et al., 2004; CORDENUNSI et al., 2004; GALVANO et al., 2004; GONZALES -PARAMAS et al., 2004; CAI et al., 2004; VITAGLIONE & FOGLIANO , 2004).
    [Show full text]
  • Homeschool Sciencescience Activityactivity && Videovideo Seriesseries
    HomeschoolHomeschool ScienceScience ActivityActivity && VideoVideo SeriesSeries Includes detailed project steps, explanations and key concepts, tips & tricks, and access to instructional videos. Designed by real scientists for our future generation. SuperchargedSupercharged ScienceScience www.SuperchargedScience.com A collection of quick and inexpensive science experiments that work you through electricity, introduce you to chemistry, and present project ideas guaranteed to get your kids excited to do science. Vol. 5 Chemistry Issue 2 Supercharged Science SuperchargedScience.com IINTRODUCTIONNTRODUCTION Thank You for Do you remember your fact, every chemical is first experience with real potentially harmful if not science? The thrill when handled properly. That is purchasing the something you built yourself why I’ve prepared a special actually worked? Can you set of chemistry experiments recall a teacher that made a that include step-by-step Homeschool difference for you that demonstrations on how to changed your life? properly handle the chemicals, use them in the Science Activity First, let me thank you for experiment, and dispose of caring enough about your them when you’re finished. child to be a homeschool & Video Series. parent. As you know, this is Chemistry is predictable, a huge commitment. While, just as dropping a ball from a you may not always get the height always hits the floor. I hope you will credit you deserve, never Every time you add 1 doubt that it really does teaspoon of baking soda to 1 make a difference. cup of vinegar, you get the find it to be both same reaction. It doesn’t simply stop working one time This book has free videos and explode the next.
    [Show full text]
  • Hydrogen Peroxide Variation[Edit]
    Question #61133 – Chemistry – Physical chemistry Answer: A chemical clock or oscillating reaction is a complex mixture of reacting chemical compounds in which the concentration of one or more components exhibits periodic changes, or where sudden property changes occur after a predictable induction time.[1] They are a class of reactions that serve as an example of non-equilibrium thermodynamics, resulting in the establishment of a nonlinear oscillator. The reactions are theoretically important in that they show that chemical reactions do not have to be dominated by equilibrium thermodynamic behavior. In cases where one of the reagents has a visible color, crossing a concentration threshold can lead to an abrupt color change in a reproducible time lapse. Examples of clock reactions are the Belousov- Zhabotinsky reaction, the Briggs-Rauscher reaction, the Bray-Liebhafsky reaction and the iodine clock reaction. The concentration of products and reactants of oscillatory chemical systems can be approximated in terms of dampedoscillations. The iodine clock reaction (STd3) is a classical chemical clock demonstration experiment to display chemical kinetics in action; it was discovered by Hans Heinrich Landolt in 1886.[1] Two colourless solutions are mixed and at first there is no visible reaction. After a short time delay, the liquid suddenly turns to a shade of dark blue. The iodine clock reaction exists in several variations. In some variations, the solution will repeatedly cycle from colorless to blue and back to colorless, until the reagents are depleted. Hydrogen peroxide variation[edit] This reaction starts from a solution of hydrogen peroxide with sulfuric acid. To this is added a solution containing potassium iodide, sodium thiosulfate, and starch.
    [Show full text]
  • Teaching Kinetics with the Landolt Iodine Clock Rxn
    TEACHING KINETICS WITH THE LANDOLT IODINE CLOCK RXN Kenneth Lyle, PhD Department of Chemistry Duke University P. M. Gross Chemical Laboratories Box 90347 Durham, NC 27708 [email protected] 919.660.1621 CHEMICAL CONCEPTS Chemical Kinetics • Measuring reaction times • Predicting the influence changing the concentration of a reactant species has on the time of reaction • First-order kinetics Scientific Process Skills • Making qualitative and quantitative observations • Making qualitative and quantitative predictions based on observations • Experimental design Stoichiometry • Interpreting chemical equations • Limiting reactant HOW DEMONSTRATION ADDRESSES THE CONCEPTS The measurement of reaction rates involves the determination of the time required for a specific quantity of reactant to be consumed or product to be formed. In this demonstration the time required for the sodium bisulfite ion to be consumed by the potassium iodate is determined. This requires a “signal” that indicates that the species has been consumed. In the Landolt iodine clock reaction the sudden change from colorless to blue-black indicates the bisulfite ion has been consumed. Having the students “measure time” by counting at a constant rate from the first moments the two solutions come in contact until the formation of the blue-black starch-iodine complex involves them in measuring the rate of reaction. Based on their observations of the time required for the first mixture to react, the students are asked to make a qualitative prediction of the time required to react if the iodate concentration is cut in half and to explain their reasoning. The reaction is then carried out and the students are able to test their prediction by counting out the time to 2 react.
    [Show full text]
  • Fundamentals of Chemistry Lab # 10 Factors Affecting Chemical Kinetics Objective the Main Objective of This Ex
    Ryan Evans April 22 2004 Fundamentals of Chemistry Lab II CHEM 211 LB – Thursday Afternoon Fundamentals of Chemistry Lab # 10 Factors Affecting Chemical Kinetics Objective The main objective of this experiment is to determine the order of a reaction with respect to one of the reactants. Some other sub­objectives include: knowing how to set up a rate law equation and knowing the different factors that affect the rate of a chemical reaction. Methods and Materials Old Nassau Reaction ­ ­ 2­ + Step 1: IO3 + 3HSO3 ® I­ + 3SO4 + 3H ­ + ­ ­ Step 2: 5I + 6H + IO3 ® I + 3H2O + 3I2 ­ ­ 2­ + Step 3: I2 + HSO3 + H2O ® 2I + SO4 + 3H ­ ­5 ­ Amount of HSO3 in moles = .0020 * .02 = 4 * 10 mol of HSO3 ­ ­4 ­ Amount of IO3 in moles = .02 * .02 = 4 * 10 mol of IO3 ­ Amount of HSO3 needed in reaction = ­4 ­ ­ ­ ­ 4*10 mol of IO3 * (3 mol of HSO3 /1 mol of IO3 ) = .0012 mol of HSO3 ­ Amount of IO3 needed in reaction = ­5 ­ ­ ­ ­5 ­ 4*10 mol of HSO3 * (1 mol of IO3 /3mol of HSO3 ) = 1.33 * 10 mol of IO3 ­ ­ Because all of the HSO3 can react it is the limiting reactant and the IO3 is in excess A solution of 20 mL of 0.0020 M sodium bisulfate solution was measured and poured into a beaker. Next 20 mL of 0.020 M potassium iodate solution was poured into a second beaker. The temperature of both solutions were adjusted until they were within 0.5 degrees C then recorded. Then the potassium iodate solution was added to the bisulfate solution.
    [Show full text]
  • Iodine Clock Reaction 63 This Is the Hydrogen Peroxide/ Potassium Iodide ‘Clock’ Reaction
    Iodine clock reaction 63 This is the hydrogen peroxide/ potassium iodide ‘clock’ reaction. A solution of hydrogen peroxide is mixed with one containing potassium iodide, starch and sodium thiosulfate. After a few seconds the colourless mixture suddenly turns dark blue. This is one of a number of reactions loosely called the iodine clock. It can be used as an introduction to experiments on rates / kinetics. Lesson organisation This demonstration can be used at secondary level as an introduction to some of the ideas about kinetics. It can be used to stimulate discussion about what factors affect the rate of reaction. It also makes a useful starting-point for a student investigation. As described this is intended as a demonstration, best done on a large scale for the most visual impact. The demonstration itself takes less than 1 minute. For a student investigation, the quantities required would be smaller but volumes then need to be measured quite accurately with, for example, disposable plastic syringes. It also lends itself to a class competition aiming for a change at a teacher determined time. Apparatus and chemicals Eye protection Balance (1 or 2 d.p.) • Volumetric flasks (1 dm3), Beakers (100 cm3), 5 Beaker (250 cm3) Beaker (2 dm3) Boiling tubes, 5 Boiling tube rack Measuring cylinder (50 cm3) Measuring cylinders (100 cm3), 2 Stirring rod or magnetic stirrer and follower (optional) Stopclock/timer, 5 0.2 g soluble starch 1M sulfuric acid (Irritant), 50 cm3 Potassium iodide (KI), 6.0 g. (Low hazard) Sodium thiosulfate-5-water (Na2S2O3.5H2O), 7.5 g (Low hazard) 3 20 volume hydrogen peroxide solution (H2O2(aq)), 100 cm (Irritant) Deionised/distilled water, 1 dm3.
    [Show full text]
  • Iodine Clock Reaction Part 1
    Experiment #5. Iodine Clock Reaction Part 1 Introduction In this experiment you will determine the Rate Law for the following oxidation-reduction reaction: + — 2 H (aq) + 2 I (aq) + H2O2 (aq) I 2 (aq) + 2 H2O (l) (1) The rate or speed of the reaction is dependent on the concentrations of iodide ion (I-) and hydrogen peroxide, H2O2. (The spectator ions are left off the reaction.) Therefore, we can write the Rate Law (concentration dependence) for the reaction as: x y Rate = k [I ] [H2O2] (2) - Where: x is the order of the reaction in I , y is the order of the reaction in H2O2, and k is the rate constant. The temperature dependence of the rate is seen in k – that is, there is a separate value of k for each temperature at which the reaction takes place. The temperature must therefore be held constant to accurately calculate x, y and k. Since the Rate Law is empirical, we have to go to the lab to make measurements that will enable these values to be calculated. The rate will be measured for the reaction near time = 0, so that few products been formed and there will be no reverse reaction. The concentrations of iodide and hydrogen peroxide will be varied and the rates compared to find each order (i.e., the exponents x and y). This is the Method of Initial Rates and it will be used to find x, y and k. As with a lot of kinetics, the concentration of reactants or products at any instant is difficult to measure directly, so in this lab the rate will be determined indirectly.
    [Show full text]
  • Investigation of the Overall Order of Reaction Between Hydrogen Peroxide and Iodide in Acidic Medium (A Clock Reaction)
    Microscale Chemistry Experiment (1) Investigation of the Overall Order of Reaction between Hydrogen Peroxide and Iodide in Acidic Medium (A Clock Reaction) Student Handout Purposes - To determine the order of the reaction between H2O2(aq) and I (aq) in acidic medium with respect to 1. H2O2(aq), 2. I-(aq) and 3. H+(aq). Introduction The kinetics of the reaction: - + H2O2(aq) + 2I (aq) + 2H (aq) ⎯⎯→ I2(aq) + 2H2O(l) 2- can be investigated by the introduction of a small and fixed amount of S2O3 (aq) and starch indicator. - + H2O2(aq) + 2I (aq) + 2H (aq) ⎯⎯→ I2(aq) + 2H2O(l) ……….. main reaction 2- 2- - 2S2O3 (aq) + I2(aq) ⎯⎯→ S4O6 (aq) + 2I (aq) …….monitor reaction Starch solution + I2(aq) ⎯⎯→ blue complex ………… ..indicator reaction 2- The added S2O3 (aq) ions consume the I2(aq) ions produced from the main reaction. As 2- long as there are S2O3 (aq) ions in the reaction mixture, I2(aq) ions formed from the main 2- reaction will be instantaneously consumed by the S2O3 (aq) ions and the starch indicator 2- will not be affected. However, when all S2O3 (aq) ions are consumed, the I2(aq) ions start to build up and will immediately turn the starch indicator to deep blue. - + The overall result is that upon mixing different amounts of H2O2(aq), I (aq), H (aq), 2- S2O3 (aq) and starch indicator, no change will be observed at the start of the experiment, but the reaction mixture suddenly changes to deep blue after a period of time. The time 2- elapsed before the development of the blue colour depends on the amount of S2O3 (aq) 2- used.
    [Show full text]
  • Chemical Acoustic Emission Analysis Ofthe Briggs-Rauscher Iodine Clock
    Chemical Acoustic Emission Analysis of the Briggs-Rauscher Iodine Clock by Ivan Heinz Brock B. Sc. University of Toronto, 1988 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in The Faculty of Graduate Studies Department of Chemistry We accept this thesis as conforming to the required standard The University of British Columbia September 1995 © Ivan Heinz Brock, 1995 ____________________ In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. (Signature) Department of The University of British Coluibia Vancouver, Canada Date DE-6 (2/88) II AB STRACT The oscillations observed in the Briggs-Rauscher Iodine Clock were studied using chemical acoustic emission (CAE) analysis. The experimental system evolved through three separate designs. The first early design employed a batch delivery system and utilized a piezoelectric transducer as the CAE sensor. The second design employed a flow delivery system and the oscillating reaction was monitored simultaneously by CAE, ultraviolet- visible spectrophotometry, and an ion-selective electrode. Sampling periods of 4.0 seconds made this a “low resolution” system. The third design was an optimized version of the second, with shorter sampling periods (1.0 seconds), which led to higher resolution data.
    [Show full text]
  • Iodine Clock Reaction Kinetics
    Name:_________________________________________ Section________________________ Chemistry 118 Laboratory University of Massachusetts Boston IODINE CLOCK REACTION KINETICS LEARNING GOALS 1. Investigate the effect of reactant concentration on the rate of a chemical reaction. 2. Investigate the effect of temperature on the rate of a chemical reaction. 3. Become familiar with manipulating rate equations. 4. Become familiar with applying and using the Arhenius Equation. 5. Become familiar with linearizing exponential functions. 6. Become adept at graphing using Excel. INTRODUCTION In this experiment we will investigate the kinetics of the oxidation of iodide ion (I-) to molecular iodine (I2) by hydrogen peroxide (H2O2): slow + - H2O2 + 2 H + 2 I I2 + 2 H2O (1) As this reaction proceeds, the colorless reactants gradually develop a brown color due to the product I2. Because of the difficulty of timing the appearance of the I2, we make use of another much faster reaction in the same solution to mark the progress of the slow reaction: fast 2- - 2- I2 + 2 S2O3 2 I + S4O6 (2) The reaction Reaction 2 is so fast that I2 produced by reaction 1 is consumed instantaneously by the 2- 2- 2- thiosulfate (S2O3 ), so that the I2 color cannot develop. Because both S2O3 and S4O6 are colorless, the solution remains colorless. The goal is to measure the initial rate in which hydrogen peroxide reacts as a function of the initial hydrogen peroxide concentration and the reaction temperature. Therefore, we will only add enough thiosulfate to react less than 20 % of the I2 produced from reaction 1. The reaction solution will stay colorless until the instant at which all the thiosulfate is consumed, and free I2 begins to appear.
    [Show full text]