Alternative Control Techniques Document: Stationary Diesel Engines

Total Page:16

File Type:pdf, Size:1020Kb

Alternative Control Techniques Document: Stationary Diesel Engines Alternative Control Techniques Document: Stationary Diesel Engines FINAL REPORT EPA Contract No. EP-D-07-019 Work Assignment No. 2-07 EC/R Project No. MME-207 Prepared For: Energy Strategies Group U.S. Environmental Protection Agency (EPA) Office of Air Quality Planning and Standards Sector Policies and Programs Division Research Triangle Park, NC 27711 Prepared By: Bradley Nelson EC/R Incorporated 501 Eastowne Drive, Suite 250 Chapel Hill, North Carolina 27514 March 5, 2010 This page is intentionally left blank. Table of Contents 1.0 INTRODUCTION AND PURPOSE ..................................................................................... 1 2.0 DESCRIPTION OF STATIONARY DIESEL ENGINES .................................................. 3 2.1 OPERATING DESIGN CONSIDERATIONS ................................................................................ 3 2.2 OPERATING CYCLES ............................................................................................................ 4 2.2.1 Two-Stroke Cycle ........................................................................................................ 5 2.2.2 Four-Stroke Cycle ....................................................................................................... 7 2.3 CHARGING METHODS .......................................................................................................... 7 2.3.1 Natural Aspiration ...................................................................................................... 7 2.3.2 Blower-Scavenging ..................................................................................................... 9 2.3.3 Turbocharging/Supercharging ................................................................................... 9 2.4 ENGINE SIZES..................................................................................................................... 10 2.5 INDUSTRY APPLICATIONS .................................................................................................. 10 2.5.1 Stationary Diesel Engine Population ........................................................................ 11 2.5.2 Stationary Diesel Engine Applications ..................................................................... 13 2.6 REFERENCES FOR CHAPTER 2 ......................................................................................... 14 3.0 CHARACTERIZATION OF DIESEL EXHAUST EMISSIONS ................................... 17 3.1 FORMATION OF DIESEL EXHAUST EMISSIONS .................................................................... 17 3.1.1 Formation of Nitrogen Oxides .................................................................................. 17 3.1.1.1 Formation of Thermal NOX ............................................................................ 18 3.1.1.2 Formation of Fuel NOX ................................................................................... 18 3.1.2 Other Products of Incomplete Combustion............................................................... 19 3.1.2.1 Formation of PM ............................................................................................. 19 3.1.2.2 Formation of THC........................................................................................... 20 3.1.2.3 Formation of CO ............................................................................................. 21 3.2 CRITERIA POLLUTANT EMISSION FACTORS ........................................................................ 22 3.3 REFERENCES FOR CHAPTER 3 ......................................................................................... 28 4.0 DIESEL ENGINE CONTROL TECHNIQUES ................................................................ 31 4.1 DIESEL PARTICULATE FILTER/CATALYZED DIESEL PARTICULATE FILTER ........................ 32 4.1.1 Process Description .................................................................................................. 32 4.1.2 Potential Pollutant Reductions ................................................................................. 34 4.1.3 Potential Problems/Issues with DPF/CDPF ............................................................ 34 4.2 SELECTIVE CATALYTIC REDUCTION .................................................................................. 35 4.2.1 Process Description .................................................................................................. 36 4.2.2 Potential Pollutant Reductions ................................................................................. 38 4.2.3 Potential Problems/Issues with SCR ......................................................................... 38 4.3 DIESEL OXIDATION CATALYST .......................................................................................... 40 4.3.1 DOC Process Description......................................................................................... 40 4.3.2 Potential Pollutant Reductions ................................................................................. 41 4.3.3 Potential Issues/Problems with DOCs ...................................................................... 41 4.4 FLOW-THROUGH FILTER .................................................................................................... 41 4.4.1 FTF Process Description .......................................................................................... 42 i 4.4.2 Potential Pollutant Reductions for FTF ................................................................... 43 4.4.3 Potential Issues/Problems with FTF ......................................................................... 43 4.5 EXHAUST GAS RECIRCULATION ......................................................................................... 43 4.5.1 EGR Process Description ......................................................................................... 44 4.5.2 Potential Pollutant Reductions ................................................................................. 44 4.5.3 Potential Issues/Problems with EGR ........................................................................ 44 4.6 OPEN AND CLOSED CRANKCASE VENTILATION SYSTEM ................................................... 45 4.6.1 Open and Closed Crankcase Ventilation System Process Description .................... 46 4.6.2 Potential Pollutant Reductions ................................................................................. 46 4.6.3 Potential Issues/Problems with OCV/CCV ............................................................... 46 4.7 ULTRA LOW SULFUR DIESEL (ULSD) FUEL ...................................................................... 47 4.7.1 Potential Pollutant Reductions ................................................................................. 47 4.7.2 Potential Issues/Problems with ULSD ...................................................................... 47 4.8 EMERGING CONTROL TECHNOLOGIES ................................................................................ 48 4.8.1 Lean NOX Catalysts .................................................................................................. 48 4.8.2 NOX Adsorbers .......................................................................................................... 48 4.9 SELECTION OF STATIONARY DIESEL CONTROL TECHNIQUES ............................................. 50 4.10 REFERENCES FOR CHAPTER 4 ......................................................................................... 52 5.0 CONTROL COSTS ............................................................................................................. 55 5.1 COST EVALUATION METHODOLOGY .................................................................................. 55 5.2 CONTROL COSTS FOR DIESEL ENGINES .............................................................................. 56 5.2.1 Control Costs for SCR .............................................................................................. 56 5.2.1.1 Capital Costs ........................................................................................................ 56 5.2.1.2 Annual Costs ................................................................................................... 57 5.2.1.3 SCR Cost per Ton of NOX Removed ................................................................... 57 5.2.2 Control Costs for CDPF ........................................................................................... 59 5.2.2.1 Capital Costs ................................................................................................... 59 5.2.2.2 Annual Costs ................................................................................................... 59 5.2.2.3 CDPF Cost per Ton of PM and THC Removed ............................................. 59 5.2.3 Control Costs for DOC ............................................................................................. 60 5.2.3.1 Capital Costs ................................................................................................... 60 5.2.3.2 Annual Costs ................................................................................................... 64 5.2.3.3 DOC Cost per Ton of PM, CO, and THC Removed ...................................... 64 5.2.4 Control Costs for FTF .............................................................................................. 64 5.2.4.1 Capital Costs ................................................................................................... 64 5.2.4.2
Recommended publications
  • Final Report
    Prepared by Legislative Policy and Research Office Task Force on Supporting Businesses in Reducing Diesel Emissions Final Report December 2020 TASK FORCE MEMBERS Susheela Jayapal Multnomah County (Task Force Chair) Dr. Erika Moseson Oregon Thoracic Society Mary Peveto Neighbors for Clean Air Portland Jana Jarvis Oregon Trucking Associations Bob Short CalPortland, Oregon Concrete & Aggregate Producers Larry Gescher HP Civil, Associated General Contractors Maria Hernandez-Segoviano Portland Public Schools Sen. Michael Dembrow, Senate District 23 Sen. Dennis Linthicum, Senate District 28 Rep. Shelly Boshart Davis, House District 15 Rep. Rob Nosse, House District 42 STAFF Patrick Brennan, Legislative Analyst Legislative Policy and Research Office [email protected] 503-986-1674 A publication of the Oregon Legislative Policy and Research Office, which provides centralized, professional, and nonpartisan research, issue analysis and committee management services for the Legislative Assembly. The Legislative Policy and Research Office does not provide legal advice. This document contains general information that is current as of the date of publication. Subsequent action by the legislative, executive, or judicial branches may affect accuracy. Report on Task Force on Supporting Businesses in Reducing Diesel Emissions | December 23, 2020 2 Chair: Susheela Jayapal Members: Sen. Michael Dembrow Sen. Dennis Linthicum Staff: Patrick Brennan, LPRO Analyst Rep. Shelly Boshart Davis Sean Murphy, Committee Assistant Rep. Rob Nosse Larry Gescher Maria Hernandez-Segoviano Jana Jarvis Erika Moseson Mary Peveto Bob Short 80th LEGISLATIVE ASSEMBLY TASK FORCE ON SUPPORTING BUSINESSES IN REDUCING DIESEL EMISSIONS Oregon State Capitol 900 Court St. NE, Rm 453-A Salem, OR 97301 PHONE 503-986-1674 FAX 503-364-0545 December 17, 2020 To: Honorable Peter Courtney, President of the Senate Honorable Tina Kotek, Speaker of the House Submitted herewith is the final report of the Task Force on Supporting Businesses in Reducing Diesel Emissions.
    [Show full text]
  • Cooling Systems
    SEBD0518-09 c 2008 Caterpillar Printed in U.S.A. Contents Understanding Cooling Systems . .4 Cleaning of Heavy-Duty Coolant/Antifreeze Function . 4 Systems . 26 Function of Components. 4 Commercial Heavy-Duty Coolant/Antifreeze Cooling System Temperature . 6 and Supplemental Coolant Additive . 26 Factors That Affect the Cooling System . .8 Water and Supplemental Coolant Additive . .27 Sources of Heat. 8 Cooling Systems with Larger Capacities . 28 Oil Coolers . 8 Adding the Cat SCA to Water at the Aftercoolers. 9 Initial Fill. 28 Transmission, Marine Transmission, or Torque Adding the Cat SCA to Water for Converter Oil Coolers. 9 Maintenance . 28 Retarder Coolers . 10 S•O•S Services Coolant Analysis . .29 Water Cooled Exhaust Manifolds and Water New, Refilled, or Converted Systems. 29 Cooled Turbocharger Shields . 10 Recommended Interval for S•O•S Coolant Hydraulic Oil Coolers. 10 Sampling . 29 Safety Recommendations . .11 S•O•S Coolant Analysis (Level 1) . 29 S•O•S Coolant Analysis (Level 2) . 29 Cooling System Maintenance . .12 Coolant . 12 Caterpillar® Conditioner Elements . .30 Heat Transfer. 12 Functional Effects . .32 Protection Against Freezing of the Coolant . 12 Corrosion Resistance. 12 Pitting and Cavitation-erosion . 33 Scale and Deposits . 12 Rust . 35 Compatibility . 12 Acidity-Alkalinity Imbalance . 36 Non-Foaming . 12 Galvanic and Electrolytic Corrosion. 36 Sediment . 12 Scale and Deposit Formation . 37 Cylinder Wall Pitting . 13 Aeration. 37 Coolant Properties . .14 Coolant-Related Failures . .38 Water . 14 Cracked or Warped Cylinder Heads . 38 Additives . 15 Cylinder Block . 39 Glycol . 15 Piston Seizure . 39 Testing Glycol Concentrations . 16 Cold Operating Temperatures . 40 Coolant Recommendations . .17 Service and Periodic Maintenance .
    [Show full text]
  • Stationary Reciprocating Engine Diesel Retrofit Case Studies
    CASE STUDIES OF STATIONARY RECIPROCATING DIESEL ENGINE RETROFIT PROJECTS November 2009 Manufacturers of Emission Controls Association 1730 M Street, NW * Suite 206 * Washington, DC 20036 www.meca.org www.dieselretrofit.org Table of Contents 1.0 Introduction................................................................................................................. 2 2.0 Stationary Diesel Engine Case Studies...................................................................... 3 2.1 Demonstration of Emission Control Technologies on Diesel-Fueled Backup Generators .................................................................................................................... 3 2.2 The Simultaneous Reduction of NOx, PM, HC and Co from Large Stationary Diesel Engines Using SCR and Particulate Filters ...................................................... 5 2.3 Diesel Retrofit of Emergency Backup Power Engine in Puerto Rico................... 7 2.4 Controlling NOx from Gas Drilling Rig Engines ................................................. 7 2.5 Kings County, CA, Department of Public Works................................................... 7 2.6 National Steel and Shipbulding Company (NASSCO)........................................... 8 2.7 Pacific Bell-SBC Telecommunications Facility..................................................... 9 2.8 Santa Clara County Building Operations.............................................................. 9 2.9 Sierra Nevada Brewing Company, Chico, CA....................................................
    [Show full text]
  • Draft Technology Assessment: Lower Nox Heavy-Duty Diesel Engines
    DRAFT TECHNOLOGY ASSESSMENT: LOWER NOX HEAVY-DUTY DIESEL ENGINES September 2015 State of California AIR RESOURCES BOARD This report has been prepared by the staff of the Air Resources Board. Publication does not signify that the contents reflect the views and policies of the Air Resources Board, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. TABLE OF CONTENTS Contents Page Executive Summary ................................................................................................ ES-1 I. Introduction and Purpose of Assessment ...................................................... I-1 II. History of Emission Control for Heavy-Duty Diesel Engines ....................... II-1 III. Technologies Evaluated ................................................................................. III-1 A. Advanced Aftertreatment Systems ............................................................. III-1 1. Advanced SCR catalysts ................................................................................ III-1 2. Passive NOX adsorber ................................................................................... III-2 3. Combined SCR-DPF systems ........................................................................ III-3 4. Close-coupled SCR catalyst........................................................................... III-4 5. Alternative Sources for Ammonia ................................................................... III-4 6. Urea Delivery System ...................................................................................
    [Show full text]
  • EPA's Air Quality Rules for Reciprocating Internal Combustion
    EPA’s Air Quality Rules for Reciprocating Internal Combustion Engines and their Application to Combined Heat and Power RRIICCEE aarree 5522%% ooff ttoottaall CCHHPP pprriimmee mmoovveerrss Micro-turbine, 362 Waste Heat to Power Other 96 Boiler/ 25 Steam Turbine Fuel Cell 734 158 Combined Cycle 227 Combustion Turbine 444 Recip. Engine 2,262 ICF CHP Installation Database, 2014 AAggeennddaa Introduction – Gary McNeil, EPA Combined Heat and Power Partnership How EPA Air Quality Regulations Affect Combined Heat and Power Facilities - Roy Crystal, EPA Region I EPA’s Air Quality Regulations for Stationary RICE - Melanie King, U.S. EPA Office of Air Quality Planning & Standards Question and Answer Session 1 - Susan Lancey, EPA Region I How Combined Heat and Power Facilities Can Comply with EPA Air Quality Regulations for Stationary RICE - Roy Crystal, EPA Region I Question and Answer Session 2 - Susan Lancey, EPA Region I WWeebbiinnaarr LLooggiissttiiccss • All attendees will be muted throughout this webinar. • If you have a question for the presenters or are having difficulty with the webinar software, please submit your question for webinar staff via the Questions box. 4 PPoollllss aanndd SSuurrvveeyy QQuueessttiioonnss • Two polls today • At the end of the webinar, a feedback survey will appear on your screen. • Please take a moment to complete this survey. 5 WWeebbiinnaarr SSlliiddeess aanndd RReeccoorrddiinngg • Slides from today’s webinar presentations and the question and answer log will be available in PDF on the CHP website next week:
    [Show full text]
  • General State Permit
    State of New Hampshire Department of Environmental Services Air Resources Division General State Permit GSP-EG-0512 Source Category: Internal Combustion Engines – Emergency Generators or Fire Pump Engines This General State Permit (GSP) is established in accordance with the New Hampshire Code of Administrative Rules, Env- A 620, Procedures for Establishing and Reestablishing General State Permits, Env-A 610, General State Permits and General Permits Under Title V, and RSA 125-C of the New Hampshire Laws. The established milestones are as follows: Date of Proposed General State Permit February 7, 2020 Date Proposed General State Permit Sent to EPA February 7, 2020 Public Notice Date February 7, 2020 Close of Public Comment Period March 9, 2020 Public Hearing Date None Requested Expiration Date of General State Permit June 30, 2025 This General State Permit is issued for the specific emergency engine(s) described in the registration package submitted to the New Hampshire Department of Environmental Services, Air Resources Division (department) in accordance with Env-A 610.08, Procedures for Registering to Operate Under a General State Permit. Any replacement emergency engine or additional emergency engine that the facility wants to install during the permit term requires a new or updated registration package to be submitted to the department for review. Within seven (7) months prior to the end of the General State Permit period, the department will begin the reestablishment procedures in accordance with Env-A 620, Procedures for Establishing and Reestablishing General State Permits. The department shall notify each owner or operator of the outcome of the reestablishment process in writing.
    [Show full text]
  • RULE 1110.2 EMISSIONS from GASEOUS- and LIQUID-FUELED ENGINES (A) Purpose
    (Adopted August 3, 1990)(Amended September 7, 1990)(Amended August 12, 1994) (Amended December 9, 1994)(Amended November 14, 1997)(Amended June 3, 2005) (Amended February 1, 2008)(Amended July 9, 2010)(Amended September 7, 2012) (Amended December 4, 2015)(Amended June 3, 2016)(Amended November 1, 2019) RULE 1110.2 EMISSIONS FROM GASEOUS- AND LIQUID-FUELED ENGINES (a) Purpose The purpose of Rule 1110.2 is to reduce Oxides of Nitrogen (NOx), Volatile Organic Compounds (VOCs), and Carbon Monoxide (CO) from engines. (b) Applicability All stationary and portable engines over 50 rated brake horsepower (bhp) are subject to this rule. (c) Definitions For the purpose of this rule, the following definitions shall apply: (1) AGRICULTURAL STATIONARY ENGINE is a non-portable engine used for the growing and harvesting of crops of the raising of fowl or animals for the primary purpose of making a profit, providing a livelihood, or conducting agricultural research or instruction by an educational institution. An engine used for the processing or distribution of crops or fowl or animals is not an agricultural engine. (2) APPROVED EMISSION CONTROL PLAN is a control plan, submitted on or before December 31, 1992, and approved by the Executive Officer prior to November 14, 1997, that was required by subdivision (d) of this rule as amended September 7, 1990. (3) BREAKDOWN is a physical or mechanical failure or malfunction of an engine, air pollution control equipment, or related operating equipment that is not the result of operator error, neglect, improper operation or improper maintenance procedures, which leads to excess emissions beyond rule related emission limits or equipment permit conditions.
    [Show full text]
  • Spark Ignition (SI) Engines
    Con 10-1 Initials DNR Use Facility No: Only CP/CI Doc Date IOWA DEPARTMENT OF NATURAL RESOURCES AIR QUALITY BUREAU REGISTRATION FOR Stationary Spark Ignition Internal Combustion Engines less than 400 brake horsepower Instructions: Completion of this form is intended to allow facilities to qualify for an exemption from the requirement to obtain an air construction permit, and is also intended to assist facilities in complying with federal New Source Performance Standards (NSPS) and National Emission Standards for Hazardous Air Pollutants (NESHAP). Only facilities meeting all of the following conditions may use this form: The facility owner or operator is planning to install, modify, or reconstruct a stationary spark ignition internal combustion engine (SI engine1) that is rated less than 400 brake horsepower (bhp) after March 18, 2009. The facility owner or operator is choosing to use the 400 bhp exemption for the SI engine [567 Iowa Administrative Code (IAC) 22.1(2)"r"]. Alternatively, the owner or operator must apply for an air construction permit for the SI engine as specified in 567 IAC 22.1(1), or must qualify for another exemption. An owner or operator planning to install, modify, or reconstruct an SI engine greater than or equal to 400 bhp must obtain a construction permit unless otherwise exempt, and may also be subject to NSPS and NESHAP requirements. The facility is not located in Linn or Polk Counties. 1SI engine is either a gasoline fueled engine or an engine with a spark plug (or other sparking device) and with operating characteristics similar to the theoretical Otto combustion cycle.
    [Show full text]
  • Steam Engine Collection
    STEAM ENGINE COLLECTION The New England Museum of Wireless And Steam Frenchtown Road ~ East Greenwich, R.I. International Mechanical Engineering Heritage Collection Designated September 12, 1992 The American Society of Mechanical Engineers INTRODUCTION It has been said that an operating steam engine is ‘visual music’. The New England Museum of Wireless and Steam provides the steam engine enthusiast, the mechanical engineer and the public at large with an opportunity to experience the ‘music’ when the engines are in steam. At the same time they can appreciate the engineering skills of those who designed the engines. The New England Museum of Wireless and Steam is unusual among museums in its focus on one aspect of mechanical engineering history, namely, the history of the steam engine. It is especially rich in engines manufactured in Rhode Island, a state which has had an influence on the history of the steam engine in the United States out of all proportion to its size and population. Many of the great names in the design and manufacture of steam engines received their training in Rhode Island, most particularly in the shops of the Corliss Steam Engine Co. in Providence. George H. Corliss, an important contributor to steam engine technology, founded his company in Providence in 1846. Engines that used his patent valve gear were built in large numbers by the Corliss company, and by others, both in the United States and abroad, either under license or in various modified forms once the Corliss patent expired in 1870. The New England Museum of Wireless and Steam is particularly fortunate in preserving an example of a Corliss engine built by the Corliss Steam Engine Company.
    [Show full text]
  • Vintage Torque December 2013
    D E CE M BE R 2 0 13 Editor Viv Gray On August 31st and September 1st the weather was superb for our club’s Working Weekend and once again Malcolm and David Mycock put on a great display. This year we had more people than ever demon- strating their old machines. The high- light for me was Mr Barry Ayres with an unrestored 2 cylinder 1930 Hart Parr 18-36 on all steel wheels. He was ploughing with a 2 furrow trailed Oli- ver TNT plough. This tractor has 3 forward and 1 reverse gear and runs on petrol/TVO. It was a real pleasure to watch, it really ran and pulled very well, it is a credit to the Ayres family. One of our younger members was Mr Aaron Smith who was working his dad’s 1951 Ferguson Tea 20 petrol/TVO tractor pulling a mounted Ferguson 2 furrow plough. Another tractor that was going very well for its age was Mr Neil Ayres on a superb Allis Chalmers 1948 Model U running on petrol/TVO, registration number KPW 198, pulling a 3 furrow trailed Ransome plough. A sightyou do not see very often was Mr Mick Patrick for the first time having a go at ploughing with his 1940’s Fordson Standard N fitted with a Daihatsu 4 cylinder diesel engine and of course electric start. Mick was pulling a Ransome 2 furrow trailed plough. Then came Mr David Giles with his 1951 Ford County Crawler, registration number WCF 188, pulling a Fordson 3 furrow Elite plough for the first time out.
    [Show full text]
  • See Page 2 for More Tables
    AIR QUALITY BUREAU 502 E 9th St Des Moines IA 50319 Operating Permit Application - Part 2 ENGINE INFORMATION Facility Name: EIQ No.: EP # Ignition type Spark Compression EU # Black start?2 Yes No Engine manufacturer Emergency engine?3 Yes No Model # 2 or 4-Stroke? (SI only) 2-stroke 4-stroke Model year Rich or lean burn?4 (SI only) Rich burn Lean burn Fuel type Portable?5 Yes No Rated capacity (bhp) Certified Engine? Yes6 No Displacement CI only 7 (liters/cylinder) Modification/ reconstruction date Date of construction1 1Date the engine was ordered. 2An engine whose only purpose is to start up a combustion turbine 3Emergency stationary internal combustion engine is a stationary Internal Combustion Engine (ICE) whose operation is limited to emergency situations and required testing and maintenance. Examples include stationary ICE used to produce power for critical networks or equipment (including power supplied to portions of a facility) when electric power from the local utility (or the normal power source, if the facility runs on its own power production) is interrupted, or stationary ICE used to pump water in the case of fire or flood, etc. Stationary ICE used to supply power to an electric grid or that supply power as part of a financial arrangement with another entity are not considered to be emergency engines. 4Rich burn engine means any four-stroke spark ignited engine where the manufacturer’s recommended operating air/fuel ratio divided by the stoichiometric air/fuel ratio at full load conditions is less than or equal to 1.1. Engines originally manufactured as rich burn engines, but modified prior to December 19, 2002 with passive emission control technology for NOX (such as pre-combustion chambers) will be considered lean burn engines.
    [Show full text]
  • Stationary Engines Federal Facilities Webinar
    Stationary Engines Federal Facilities Webinar 40 CFR Part 60 Subparts IIII and JJJJ and 40 CFR Part 63 Subpart ZZZZ EPA Region 1: Cutler Enforcement Case & Common Violations Steve Rapp, Region 1 Air Technical Unit Manager Naval Computer and Telecommunications Area Master Station Located in Cutler, Maine ► Four 4,066 hp & one 906 hp engines ► All five of these engines subject to 40 CFR Part 63, Subpart ZZZZ ► Navy did not retrofit and test engines before compliance deadline in 2013 ► As part of 2017 settlement with EPA, Navy: • Installed pollution control equipment on all five engines; • Completed initial performance tests to demonstrate that the engines meet the national emissions standards; • Submitted required notifications and compliance status reports to EPA; • Paid a penalty of $811,000 for violations of the Clean Air Act. Engine Compliance Issues Observed on Inspections ► Lack of pollution controls, e.g., catalyst system ► Incorrect certifications/labels ► Failure to test or testing not performed at challenging loads ► Lack of records: hrs. of use, maintenance, parameter monitoring, etc. ► For emergency engines: ► failure to change oil/filter & inspect hoses/belts every 500 hours or annually ► Failure to inspect air cleaner (CI) or spark plugs (SI) every 1,000 hours or annually ► Lack of reports and plans: ► notification of compliance status (§63.6645(a) and 63.9(h) ► percent load report (§ 63.6620(i)) ► site specific monitoring plan (§ 63.6625(b)(1)) ► performance evaluation of continuous parameter monitoring system, e.g., temperature monitor at inlet of oxidation catalyst (§ 63.8(e)(4) ► semiannual reports (§ 63.665) EPA Region 4: Fort Gordon Enforcement Case & Cooperative Federalism Kevin Taylor, Region 4 Air Enforcement Inspector Cooperative Federalism ► EPA Region 4 and the Georgia Environmental Protection Division ► Together, Creating Tangible Environmental Results for the American People Fort Gordon RICE MACT Compliance Issues ► RICE MACT Engines did not achieve the regulatory CO limit of 23 ppmvd by the October 30, 2013 deadline.
    [Show full text]