Realitytesting

Total Page:16

File Type:pdf, Size:1020Kb

Realitytesting EDITORIAL ImmunoscintigraphyForLungCancerDetection: RealityTesting IMAGING TESTS FOR LUNG (Type Fo23C5) for lung cancer detec cost of screening programs depends CANCER DETECTION tion (6). This investigation is a pilot on the intrinsic cost of the test itself The development of new imaging study rather than an detailed test of and the added cost and morbidity of modalities will continue to play a cen the actual screening utility of immu false-positive tests that lead to other ti'a.lrole in the development of better noscintigraphy for lung cancer detec unnecessary procedures. The low tests for cancer screening and staging. tion. Biggi et al. report that 57 of 63 specificity of immunoscintigraphy Radiologic studies enjoy a special ad patients with confirmed lung cancer (0.45) in the small control group used vantageover many other medical tests and 6 of 11 controls with other non by Biggi et al. is quite disturbing be because all-importantlocalization cc lung cancerchest diseaseshad positive cause it implies lack oftumor specific curs in concert with detection. There uptake of the isotope. The high test ity of the antibody preparation and! is no better illustration ofthe practical sensitivity (0.90) is promising but not or low signal-to-noise of radionuclide importance of joint localization and necessarily what can be expected if an in the tumor. The use of immunoscin detection than in the heavy reliance actual screening program were con tigraphy in its present form would be on mammography for the detection ducted. The patient population on likely to lead to high added cost and of non-palpable breastcancers. which the data are drawn are likely to morbidity from false-positive tests. In the case oflung cancer, effective be quite different from actual screen Although we have knowledge of the screening tests remain an important ing populations where the detection actual false-positive rate that would public health challenge because mci of minimal disease is at a premium. occur ifimmunoscintigraphy wereap dence and mortality remain high, and In fact, Biggi and colleagues report plied to normal ratherthan non-can large segments of the population con that false-negativestended to occur in cer chest disease controls as used by tinue to smoke cigarettes. The grow lesions < 2 cm diameter, and in those Biggi et al., it still appears that a large ing health risk from lung cancer is in the perihilar region. The inclusion fraction of false-positives would be a emphasized by new statistics showing of six small-cell cancers in the study considerable risk. In chest radiogra lung cancer superceding breast cancer group suggeststhat the high sensitivity phy, it is known that the false-positive as the most common cause of cancer may partlybe due to advanced disease rateisintherangeof0%—lO%per death among women (1). Chest ra in some cases. We do not have any conventional radiographic examina diography with (2) or without (3) sup precise knowledge of the stage of the tion for lung cancer (7). plementary sputum cytology can de lung cancer lesions reported by Biggi In its presentform, immunoscintig tect lung cancer at an earlier stage et al., nor do we know the relative raphy is unlikely to be a practical, or than controls, but screening with this performance ofconventional chest ra robustscreeningmethod for earlylung conventional modality is not thought diography in this group. It is likely cancerdetection. The sensitivity offers to reduce overall lung cancer mortal that conventional radiographywould little, if any, advantage over chest ity (4). It is clear that the search for have a good chance of detecting the radiography and the false-positive rate an effective new lung cancer screening small peripheral lung cancers missed may be very high. Few subjects will test should look beyond conventional by immunoscintigraphy. It is unfor bewillingto takethe additionaltime radiography and sputum cytology. tunate that immunoscintigraphyjoins (and cost) involved in a return hospi conventional radiography in exhibit tal visit for imaging the after radio IMMUNOSCINTIGRAPHY ing rather low sensitivity to perihilar nucide injection. Even if immuno lung cancer lesions. scintigraphy became inexpensive and Radiolabeled monoclonal antibody convenient, there seems to be little to to lung cancer tumor-associated anti recommend it over radiography. REALITY TESTING gen (5) provides an attractive new Although it is possible that im imaging vehicle for cancer detection. The utility ofa cancer screeningtest provement in the radionucide anti In this issue, Biggi and colleagues de depends ultimately on its ability to body preparation may increase the scribe the use of immunoscintigraphy detect early disease and reduce mor signal-to-noise in tumor, it is hard to with ‘‘‘In-labeledanti-CEA Mab tality in the screened population by be very optimistic about the potential early treatment intervention. Conven ofimmunoscintigraphy in lung cancer ReCOIVOdJUI.15, 1991;acceptedJul. 17, 1991. tional radiographicscreening for lung detection. A much simpler conven For reprints contact: Reginald Greene, MD, The cancer can accomplish the first crite tional form of imaging may actually Department of RadiOlOgy,Harvard Medical School and MassachusettsGeneralHospital,Boston,MA rion for utility but it has not yet been do the job better. Detection of lung 02114. shown to meet the second aim. The cancer with immunoscintigraphy is Immunoscintigraphyfor LungCancerDetection•Greene 2069 analogous to picking up a straightpin Massachusetts General Hospital Sloan-Kettering study in New York. Chest 1984;86:44—53. with a front-end loader. Much more Boston, Massachusetts 4. Fontana RS, Sanderson DR. Woolner LB. Tay than the pin will be scooped up, and br WF, Miller WE, Muhm JR. Lung cancer a great deal of effort will be required screening: the Mayo program. I Occup Med to cull out the pin. It is easierto stoop 1986;28:746—50. REFERENCES 5. Goldenberg DM, Kim FH, Deland FH, et al. over and pick up the pin in the con Radioimmunodetectionof cancer with radio ventional way. The quest for a more active antibodies to carcino.embryonic antigen. 1. SilverbergE, Lubera J. Cancer statisticsCA Cancer Res l980;40:2984—2992. effective test for early lung cancer de l988;38:5—22. 6. Biggi A, Buccheri G, Ferrigno D, et al. Detec tection should look beyond both con 2. Fontana RS. Screening for lung cancer. In: tion of suspected lung cancer by scintigraphy ventional radiographyand immuno Miller AB, ed. Screeningfor cancer. New York: with ‘‘‘In-anti-carcinoembryonic antigen AcademicPress;1985:377—395. monoclonalantibodies(TypeF023C5).I Nucl scintigraphy as it exists today. 3. Melamed MR. Flehinger N, Zaman MB, Hee Med 199l;32:2064—2068. ReginaldGreene lan RT, Perchick WA, Martinin N. Screening 7. Eddy DM. Screeningfor lung cancer.Ann In for early lung cancer. Results ofthe Memorial ternMed 1989;111:232—237. Harvard Medical School Erratum In the September1991issueofthe Journal,the captionsfor Figures1and 2 in the article,“AnAnalysisofCerebralBlood Flow in Acute Closed-Head Injury Using Technetium-99m-HMPAO SPECT and Computed Tomography,―by Steven N. Roper et al, were placed incorrectly. The corrected captions and figuresare reprinted below. @ 1.1. 45@2@ 0 3'E$.'@ ____@ @1N @ECT @ RT.@LT. @63 FIGURE 1. Imaging stud ies from a 45-yr-old male who was thrown from a horse. XCT (A) shows left occiptial contusion and SPECT (B)shows decreased CBFin bothoccipitallobes. A.S. 1@ % H@@R @LA @EDC?R FIGURE 2. Imaging stud @ ies from a 19-yr-old male RT Lt. who suffered a non-pene trating gunshot wound to the left temporalare. XCT (A) shows a left frontotem poral contusion. SPECT(B) showsdecreasedCBF in the left frontotemporoparietal, right frontal, and right cc 4 cipital areas. ADDENDUM Please note the following change for the article “Reorientationof the Left Ventricular Long-Axis on Myocardial Transaxial Tomograms by a Linear Fitting Method―by He et al, which appeared in the September issue of the Journal (pages 1794—1900).On page 1796,line 9, the statement: (using y = ax + b, where a was the slope ofthe fitted line and b the intercepton the y-axisofthe fittedstraightline in the transferredcoordinate)shouldbe changedto: (usingy = bx + a, where b was the slopeof the fitted line and a was the intercepton the y-axisof the fitted straightline in the transferred coordinate). 2070 The Journal of Nuclear Medicine •Vol. 32 •No. 11 •November 1991.
Recommended publications
  • Clinical Appropriateness Guidelines Positron Emission Testing, Other PET Applications, Including Oncologic Tumor Imaging Effective Date: April 21, 2014
    Clinical Appropriateness Guidelines Positron Emission Testing, Other PET Applications, including Oncologic Tumor Imaging Effective Date: April 21, 2014 Proprietary and Confidential Date of Origin: 03/30/2005 Last reviewed: 11/14/2013 Last revised: 01/15/2013 Clinical Appropriateness Guidelines 8600 W Bryn Mawr Avenue South Tower - Suite 800 Chicago, IL 60631 P. 773.864.4600 Copyright © 2014. AIM Specialty Health. All Rights Reserved www.aimspecialtyhealth.com Table of Contents Administrative Guideline ..........................................................................................................3 Disclaimer ..............................................................................................................................................................3 Use of AIM’s Diagnostic Imaging Guidelines..........................................................................................................4 Multiple Simultaneous Imaging Requests ..............................................................................................................5 General Imaging Considerations ............................................................................................................................6 PET - Other PET Applications, Including Oncologic Tumor Imaging ......................................8 PET Bibliography ....................................................................................................................12 Table of Contents | Copyright © 2014. AIM Specialty Health. All Rights Reserved.
    [Show full text]
  • Impact of Preoperative Endoscopic Ultrasound in Surgical Oncology
    REVIEW Impact of preoperative endoscopic ultrasound in surgical oncology Endoscopic ultrasound (EUS) has a strong impact on the imaging and staging of solid tumors within or in close proximity of the upper GI tract. Technological developments during the last two decades have increased the image quality and allowed very detailed visualization of local tumor spread and lymph node affection. Current indications for EUS of the upper GI tract encompass the differentiation between benign and malignant lesions, the staging of esophageal, gastric and pancreatic cancer, and the procurement of a biopsy specimen through fine-needle aspiration. Various technical innovations during the past two decades have increased the diagnostic quality and have simultaneously strengthened the role of EUS in the clinical setting. This article will give a compressed summary on the current state of EUS and possible further technical developments. 1 KEYWORDS: 3D imaging elastosonography endoscopic ultrasound miniprobes Sascha S Chopra & oncologic surgery Michael Hünerbein† 1Department of General & Transplantation Surgery, Charité Campus Virchow-Clinic, Berlin, Conventional endoscopic ultrasound the so-called ‘miniprobes’ into the biliary system Germany Linear versus radial systems or the pancreatic duct in order to obtain high-res- †Author for correspondence: Department of Surgery & Surgical Endoscopic ultrasound (EUS) with flex- olution radial ultrasound images locally. Present Oncology, Helios Hospital Berlin, ible endoscopes is an important diagnostic and mini probes show a diameter of 2–3 mm and oper- 13122 Berlin, Germany Tel.: +49 309 417 1480 therapeutic tool, especially for the local staging ate with frequencies between 12 and 30 MHz. Fax: +49 309 417 1404 of gastrointestinal (GI) cancers, the differen- The main drawbacks of these devices are the lim- michael.huenerbein@ tiation between benign and malignant tumors, ited durability and the decreased depth of penetra- helios-kliniken.de and interventional procedures, such as biopsies tion (~2 cm).
    [Show full text]
  • Immunoscintigraphy and Radioimmunotherapy in Cuba: Experiences with Labeled Monoclonal Antibodies for Cancer Diagnosis and Treatment (1993–2013)
    Review Article Immunoscintigraphy and Radioimmunotherapy in Cuba: Experiences with Labeled Monoclonal Antibodies for Cancer Diagnosis and Treatment (1993–2013) Yamilé Peña MD PhD, Alejandro Perera PhD, Juan F. Batista MD ABSTRACT and therapeutic tools. The studies conducted demonstrated the good INTRODUCTION The availability of monoclonal antibodies in Cuba sensitivity and diagnostic precision of immunoscintigraphy for detect- has facilitated development and application of innovative techniques ing various types of tumors (head and neck, ovarian, colon, breast, (immunoscintigraphy and radioimmunotherapy) for cancer diagnosis lymphoma, brain). and treatment. Obtaining different radioimmune conjugates with radioactive isotopes OBJECTIVE Review immunoscintigraphy and radioimmunotherapy such as 99mTc and 188Re made it possible to administer radioimmuno- techniques and analyze their use in Cuba, based on the published lit- therapy to patients with several types of cancer (brain, lymphoma, erature. In this context, we describe the experience of Havana’s Clini- breast). The objective of 60% of the clinical trials was to determine cal Research Center with labeled monoclonal antibodies for cancer pharmacokinetics, internal dosimetry and adverse effects of mono- diagnosis and treatment during the period 1993–2013. clonal antibodies, as well as tumor response; there were few adverse effects, no damage to vital organs, and a positive tumor response in a EVIDENCE ACQUISITION Basic concepts concerning cancer and substantial percentage of patients. monoclonal antibodies were reviewed, as well as relevant inter- national and Cuban data. Forty-nine documents were reviewed, CONCLUSIONS Cuba has experience with production and radiola- among them 2 textbooks, 34 articles by Cuban authors and 13 by beling of monoclonal antibodies, which facilitates use of these agents.
    [Show full text]
  • Chapter 12 Monographs of 99Mtc Pharmaceuticals 12
    Chapter 12 Monographs of 99mTc Pharmaceuticals 12 12.1 99mTc-Pertechnetate I. Zolle and P.O. Bremer Chemical name Chemical structure Sodium pertechnetate Sodium pertechnetate 99mTc injection (fission) (Ph. Eur.) Technetium Tc 99m pertechnetate injection (USP) 99m ± Pertechnetate anion ( TcO4) 99mTc(VII)-Na-pertechnetate Physical characteristics Commercial products Ec=140.5 keV (IT) 99Mo/99mTc generator: T1/2 =6.02 h GE Healthcare Bristol-Myers Squibb Mallinckrodt/Tyco Preparation Sodium pertechnetate 99mTc is eluted from an approved 99Mo/99mTc generator with ster- ile, isotonic saline. Generator systems differ; therefore, elution should be performed ac- cording to the manual provided by the manufacturer. Aseptic conditions have to be maintained throughout the operation, keeping the elution needle sterile. The total eluted activity and volume are recorded at the time of elution. The resulting 99mTc ac- tivity concentration depends on the elution volume. Sodium pertechnetate 99mTc is a clear, colorless solution for intravenous injection. The pH value is 4.0±8.0 (Ph. Eur.). Description of Eluate 99mTc eluate is described in the European Pharmacopeia in two specific monographs de- pending on the method of preparation of the parent radionuclide 99Mo, which is generally isolated from fission products (Monograph 124) (Council of Europe 2005a), or produced by neutron activation of metallic 98Mo-oxide (Monograph 283) (Council of Europe 2005b). Sodium pertechnetate 99mTc injection solution satisfies the general requirements of parenteral preparations stated in the European Pharmacopeia (Council of Europe 2004). The specific activity of 99mTc-pertechnetate is not stated in the Pharmacopeia; however, it is recommended that the eluate is obtained from a generator that is eluted regularly, 174 12.1 99mTc-Pertechnetate every 24 h.
    [Show full text]
  • Clinical Applications of SPECT/CT: New Hybrid Nuclear Medicine Imaging System
    IAEA-TECDOC-1597 Clinical Applications of SPECT/CT: New Hybrid Nuclear Medicine Imaging System August 2008 IAEA-TECDOC-1597 Clinical Applications of SPECT/CT: New Hybrid Nuclear Medicine Imaging System August 2008 The originating Section of this publication in the IAEA was: Nuclear Medicine Section International Atomic Energy Agency Wagramer Strasse 5 P.O. Box 100 A-1400 Vienna, Austria CLINICAL APPLICATIONS OF SPECT/CT: NEW HYBRID NUCLEAR MEDICINE IMAGING SYSTEM IAEA, VIENNA, 2008 IAEA-TECDOC-1597 ISBN 978-92-0-107108-8 ISSN 1011–4289 © IAEA, 2008 Printed by the IAEA in Austria August 2008 FOREWORD Interest in multimodality imaging shows no sign of subsiding. New tracers are spreading out the spectrum of clinical applications and innovative technological solutions are preparing the way for yet more modality marriages: hybrid imaging. Single photon emission computed tomography (SPECT) has enabled the evaluation of disease processes based on functional and metabolic information of organs and cells. Integration of X ray computed tomography (CT) into SPECT has recently emerged as a brilliant diagnostic tool in medical imaging, where anatomical details may delineate functional and metabolic information. SPECT/CT has proven to be valuable in oncology. For example, in the case of a patient with metastatic thyroid cancer, neither SPECT nor CT alone could identify the site of malignancy. SPECT/CT, a hybrid image, precisely identified where the surgeon should operate. However SPECT/CT is not just advantageous in oncology. It may also be used as a one-stop- shop for various diseases. Clinical applications with SPECT/CT have started and expanded in developed countries.
    [Show full text]
  • Monoclonal Antibody Imaging) Using In-111 Satumomab Pendetide (Oncoscint) Or Tc-99M Arcitumomab (IMMU-4, CEA-Scan
    Medical Policy Radioimmunoscintigraphy Imaging (Monoclonal Antibody Imaging) Using In-111 Satumomab Pendetide (OncoScint) or Tc-99m Arcitumomab (IMMU-4, CEA-Scan) Table of Contents • Policy: Commercial • Coding Information • Information Pertaining to All Policies • Policy: Medicare • Description • References • Authorization Information • Policy History Policy Number: 638 BCBSA Reference Number: 6.01.36A NCD/LCD: N/A Related Policies None Policy Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity Medicare HMO BlueSM and Medicare PPO BlueSM Members Radioimmunoscintigraphy using satumomab pendetide or arcitumomab as the monoclonal antibody may be MEDICALLY NECESSARY in patients with known or suspected recurrent colorectal carcinoma under the following conditions: • In patients with an elevated carcinoembryonic antigen level, who have no evidence of disease with other imaging modalities (i.e., CT), in whom a second-look laparotomy is under consideration, or • In patients with an isolated, potentially resectable recurrence identified with conventional imaging modalities (i.e., CT), for whom the detection of additional occult lesions would alter the surgical plan. Other applications of radioimmunoscintigraphy using In-111 satumomab pendetide (OncoScint) or Tc- 99m-arcitumomab (IMMU-4, CEA-Scan) are INVESTIGATIONAL, including, but not limited to: • Ovarian cancer • Breast cancer • Medullary thyroid cancer, and • Lung cancer. Prior Authorization Information Inpatient • For services described in this policy, precertification/preauthorization IS REQUIRED for all products if the procedure is performed inpatient. 1 Outpatient • For services described in this policy, see below for products where prior authorization might be required if the procedure is performed outpatient. Outpatient Commercial Managed Care (HMO and POS) Prior authorization is not required. Commercial PPO and Indemnity Prior authorization is not required.
    [Show full text]
  • Multicenter Study of Immunoscintigraphy with Radiolabeled Monoclonal Antibodies in Patients with Melanoma1
    [CANCER RESEARCH 46, 4817-4822, September 1986] Multicenter Study of Immunoscintigraphy with Radiolabeled Monoclonal Antibodies in Patients with Melanoma1 A. G. Siccardi,2 G. L. Buraggi, L. Callegaro, G. Mariani, P. G. Natali, A. Abbati, M. Bestagno, V. Caputo, L. Mansi, R. Masi, G. Panini-Ili, P. Riva, M. Salvatore, M. Sanguinati, L. Troncone, G. L. Turco, G. A. Scassettati, and S. Terrone Dipartimento di Biologia e Genetica, Università di Milano, Milano [A. G. S.J; Istituto Nazionale Tumori, Milano fG. L. B.J; Centro Ricerche-SORIN Biomedica, Saluggia [L. C..G.A. S.J; Istituto di Fisiologia Clínicadel Consiglio Nazionale delle Ricerche, Pisa [G. M.]; Istituto Tumori Regina Elena, Roma [P. G. N.]; Departments of Nuclear Medicine of Ospedale Maggiore, Bologna [A. A.], Spedali Civili, Brescia [M. B.], Università "La Sapienza", Roma [V. C.], Istituto Pascale, Napoli [L. M., M. Sai.], Ospedale di Careggi, Firenze fR. M.], Ospedale Bufalini-Cesena [G. P., P. R.J, Ospedali Galliera-Genova [M. San.], Università Cattolica, Roma [L. T.], Università di Torino, Torino [G. L. T.], Italy; and Department of Microbiology and Immunology, New York Medical College (S. F.], Valhalla, New York 10595 ABSTRACT in multiple metastatic lesions from different anatomic sites (9); A multicenter study was performed to analyze the efficacy of "Tc- (c) it is undetectable in normal tissues except in hair bulbs and and '"In-labeled F(ab')2 fragments of monoclonal antibody (MoAb) in limited areas of the Malpighian layer (7, 10); (d) it is present only in minute amounts in serum even in patients with advanced 225.28S (reactive with a high molecular weight melanoma associated antigen) to radioimage malignant lesions in patients with melanoma.
    [Show full text]
  • Role of Positron Emission Tomography Imaging in Metabolically Active Renal Cell Carcinoma
    Current Urology Reports (2019) 20:56 https://doi.org/10.1007/s11934-019-0932-2 NEW IMAGING TECHNIQUES (S RAIS-BAHRAMI AND K PORTER, SECTION EDITORS) Role of Positron Emission Tomography Imaging in Metabolically Active Renal Cell Carcinoma Vidhya Karivedu1 & Amit L. Jain2 & Thomas J. Eluvathingal3 & Abhinav Sidana4,5 # Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract Purpose of Review The clinical role of fluorine-18 fluoro-2-deoxyglucose (FDG)-positron emission tomography (PET) in renal cell carcinoma (RCC) is still evolving. Use of FDG PET in RCC is currently not a standard investigation in the diagnosis and staging of RCC due to its renal excretion. This review focuses on the clinical role and current status of FDG PET and PET/CT in RCC. Recent Findings Studies investigating the role of FDG PET in localized RCC were largely disappointing. Several studies have demonstrated that the use of hybrid imaging PET/CT is feasible in evaluating the extra-renal disease. A current review of the literature determines PET/CT to be a valuable tool both in treatment decision-making and monitoring and in predicting the survival in recurrent and metastatic RCC. Summary PET/CT might be a viable option in the evaluation of RCC, especially recurrent and metastatic disease. PET/CT has also shown to play a role in predicting survival and monitoring therapy response. Keywords Fluorodeoxyglucose (FDG) . Positron emission tomography/computed tomography (PET/CT) . Metabolically active renal cell carcinoma . Restaging . Metastases . Therapy monitoring Introduction common type, is potentially more metastatic than the other two variants [3]. RCC, in its early stages, has non-specific Renal cell carcinoma (RCC) ranks as the seventh leading disease-related symptoms, making early diagnosis a chal- cause of cancer-related deaths in the USA and accounts to lenge.
    [Show full text]
  • 18F-FDG PET and PET/CT in Fever of Unknown Origin*
    CONTINUING EDUCATION 18F-FDG PET and PET/CT in Fever of Unknown Origin* Johannes Meller1, Carsten-Oliver Sahlmann1, and Alexander Konrad Scheel2 1Department of Nuclear Medicine, University of Go¨ttingen, Go¨ttingen, Germany; and 2Department of Nephrology and Rheumatology, University of Go¨ttingen, Go¨ttingen, Germany 18F-FDG PET seems to be more sensitive. It is expected that Fever of unknown origin (FUO) was originally defined as recurrent PET/CT technology will further improve the diagnostic impact fever of 38.3°C or higher, lasting 223 wk or longer, and undiag- of 18F-FDG PET in the context of FUO, as already shown in the nosed after 1 wk of hospital evaluation. The last criterion has un- oncologic context, mainly by improving the specificity of the dergone modification and is now generally interpreted as no method. diagnosis after appropriate inpatient or outpatient evaluation. Key Words: FDG; PET/CT; fever of unknown origin; FUO; infec- The 3 major categories that account for most FUOs are infec- tion; inflammation tions, malignancies, and noninfectious inflammatory diseases. J Nucl Med 2007; 48:35–45 The diagnostic approach in FUO includes repeated physical investigations and thorough history-taking combined with standardized laboratory tests and simple imaging procedures. Nevertheless, there is a need for more complex or invasive tech- niques if this strategy fails. This review describes the impact of Fever of unknown origin (FUO) was defined in 1961 18F-FDG PET in the diagnostic work-up of FUO. 18F-FDG accu- by Petersdorf and Beeson as recurrent fever of 38.3°Cor mulates in malignant tissues but also at the sites of infection higher, lasting 223 wk or longer, and undiagnosed after and inflammation and in autoimmune and granulomatous dis- 1 eases by the overexpression of distinct facultative glucose trans- 1 wk of hospital evaluation ( ).
    [Show full text]
  • Tumor Immunoscintigraphy by Means of Radiolabeled Monoclonal Antibodies
    [CANCER RESEARCH (SUPPL.) 50, 899s-903s. February I. 1990] Tumor Immunoscintigraphy by Means of Radiolabeled Monoclonal Antibodies: Multicenter Studies of the Italian National Research Council—Special Project "BiomédicalEngineering"l Antonio G. Siccardi Dipartimento di Biologia e Genetica per le Scienze Mediche, Università di Milano, Via Viotti 3/5, 20133 Milan, Italy Abstract configuration(s); and (d) pilot studies on tumor imaging, spec Four radioimmunopharmaceuticals ("'""Ir- and "'In-labeled anti-mel ificity tests, and comparisons between differently labeled re anoma and '"In- and 13ll-labeled anti-carcinoembryonic antigen I (ali')., agents. Stage 1 required the collaboration of several groups: S. Ferrane and coworkers at the Department of Microbiology and fragments derived from monoclonal antibodies 225.28S and F023C5) Immunology, New York Medical College, Valhalla, NY; M. were developed by means of a collaborative effort coordinated by the Italian National Research Council, Special Project "Biomedicai Engi Dovis and coworkers at the Research Center of Sorin Biome neering." After appropriate pilot studies, the radioimmunopharmaceuti dica; and P. G. Natali and coworkers at the Istituto Tumori cals, prepared by Sorin Biomedica (Saluggia, Italy), were distributed to Regina Elena, Rome, Italy. Stages 2, 3, and 4 were carried out 31 Nuclear Medicine departments in Italy and in 10 other European by L. Callegaro, G. Deleide, and coworkers at the Research countries within the framework of three immunoscintigraphy multicenter Center of Sorin Biomedica, Saluggia, Italy; by G. Mariani and studies. A total of 1245 patients were studied, 898 of whom carried 1725 coworkers at the CNR Institute of Clinical Physiology, Pisa, documented tumor lesions; 1596 of 2193 tumor lesions (468 of which Italy; by G.
    [Show full text]
  • Myocardial Distribution of Indium-111- Antimyosin Fab and Technetium-99M-Sestamibi in Experimental Nontransmural Infarction
    Myocardial Distribution of Indium-111- Antimyosin Fab and Technetium-99m-Sestamibi in Experimental Nontransmural Infarction Andreas J. Morguet, Dieter L., Münz,Hermann H. Klein, Sibylle Pich, Anne Conrady, Klaus Nebendahl, Heinrich Kreuzer, and Dieter Emrich Departments of Cardiology and Pulmonology, Nuclear Medicine and Experimental Animal Research, Georg August University, Göttingen,Germany Indium-111-labeled monoclonal antimyosin Fab frag Early revascularization in acute myocardial infarction results ments bind to myosin in myocytes which have lost their in normal, necrotic and partially damaged and partially sal membrane integrity and are used to indicate myocardial vaged ("intermediate") myocardium. By combining a perfusion damage (1-4). The distribution of myocardial blood flow tracer and a marker for myocardial injury, we attempted to can be assessed using the new perfusion tracer "Tc- differentiate between these three types of cardiac tissue. The sestamibi (5-8). LAD was occluded in nine pigs for 45 min and then reperfused. After 48 and 72 hr, 74 MBq 111ln-antimyosin Fab and 740 In the present study, both tracers were administered in MBq ""Tc-sestamibi, respectively, were injected intrave combination in a porcine nontransmural infarction model in order to differentiate between normal, necrotic and nously. Normally perfused myocardium was labeled with flu- partially damaged and partially salvaged ("intermediate") orescein and the heart excised. Three to four slices were cut from the apex. Tetrazolium staining revealed the zone of myocardium. necrosis. Tracer distribution on double-nuclide scintigrams of the slices also reflected the three different myocardial zones. MATERIALS AND METHODS Guided by fluorescence and macrohistochemistry, tissue samples were excised from each zone.
    [Show full text]
  • Imaging and Cancer: a Review
    MOLECULAR ONCOLOGY 2 (2008) 115–152 available at www.sciencedirect.com www.elsevier.com/locate/molonc Review Imaging and cancer: A review Leonard Fassa,b,* aGE Healthcare, 352 Buckingham Avenue, Slough, SL1 4ER, UK bImperial College Department of Bioengineering, London, UK ARTICLE INFO ABSTRACT Article history: Multiple biomedical imaging techniques are used in all phases of cancer management. Im- Received 6 March 2008 aging forms an essential part of cancer clinical protocols and is able to furnish morpholog- Received in revised form ical, structural, metabolic and functional information. Integration with other diagnostic 28 April 2008 tools such as in vitro tissue and fluids analysis assists in clinical decision-making. Hybrid Accepted 29 April 2008 imaging techniques are able to supply complementary information for improved staging Available online 10 May 2008 and therapy planning. Image guided and targeted minimally invasive therapy has the promise to improve outcome and reduce collateral effects. Early detection of cancer Keywords: through screening based on imaging is probably the major contributor to a reduction in Imaging mortality for certain cancers. Targeted imaging of receptors, gene therapy expression Cancer and cancer stem cells are research activities that will translate into clinical use in the Diagnosis next decade. Technological developments will increase imaging speed to match that of Staging physiological processes. Targeted imaging and therapeutic agents will be developed in Therapy tandem through close collaboration between academia and biotechnology, information Tracers technology and pharmaceutical industries. Contrast ª 2008 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved. 1. Introduction The future role of imaging in cancer management is shown in Figure 2 and is concerned with pre-symptomatic, minimally Biomedical imaging, one of the main pillars of comprehensive invasive and targeted therapy.
    [Show full text]