Scintigraphic Techniques for Early Detection of Cancer Treatment–Induced Cardiotoxicity

Total Page:16

File Type:pdf, Size:1020Kb

Scintigraphic Techniques for Early Detection of Cancer Treatment–Induced Cardiotoxicity Journal of Nuclear Medicine, published on March 18, 2011 as doi:10.2967/jnumed.110.082784 CONTINUING EDUCATION Scintigraphic Techniques for Early Detection of Cancer Treatment–Induced Cardiotoxicity Lioe-Fee de Geus-Oei1, Annelies M.C. Mavinkurve-Groothuis2, Louise Bellersen3, Martin Gotthardt1, Wim J.G. Oyen1, Livia Kapusta4,5, and Hanneke W.M. van Laarhoven6 1Department of Nuclear Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; 2Department of Pediatric Hematology and Oncology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; 3Department of Cardiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; 4Children’s Heart Centre, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; 5Heart Institute, Schneider Children’s Medical Center of Israel, Petach Tikvah, Israel; and 6Department of Medical Oncology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands Learning Objectives: On successful completion of this activity, participants should be able to describe (1) the role of nuclear medicine imaging techniques in the assessment of cancer treatment–induced cardiotoxicity; (2) the mechanisms on which these scintigraphic techniques are based; and (3) the specific role the scintigraphic techniques could play in the future in the clinical work-up of patients at risk for cardiotoxicity. Financial Disclosure: The authors of this article have indicated no relevant relationships that could be perceived as a real or apparent conflict of interest. CME Credit: SNM is accredited by the Accreditation Council for Continuing Medical Education (ACCME) to sponsor continuing education for physicians. SNM designates each JNM continuing education article for a maximum of 1.0 AMA PRA Category 1 Credit. Physicians should claim only credit commensurate with the extent of their participation in the activity. For CE credit, participants can access this activity through the SNM Web site (http://www.snm.org/ce_online) through April 2012. nal PET, with its wide range of tracers; 111In-antimyosin, which New antitumor agents have resulted in significant survival is a specific marker for myocardial cell injury and necrosis; 99m benefits for cancer patients. However, several agents may have Tc-annexin V scintigraphy, which visualizes apoptosis and serious cardiovascular side effects. Left ventricular ejection cell death; fatty-acid-use scintigraphy, which visualizes the fraction measurement by 99mTc multigated radionuclide angiog- storage of free fatty acids in the lipid pool of the cytosol (which 111 raphy is regarded as the gold standard to measure cardiotox- can be impaired by cardiotoxic agents); and In-trastuzumab icity in adult patients. It identifies left ventricular dysfunction imaging, to study trastuzumab targeting to the myocardium. To with high reproducibility and low interobserver variability. A define the prognostic importance and clinical value of each of decrease in left ventricular ejection fraction, however, is a rela- these functional imaging techniques, prospective clinical trials tively late manifestation of myocardial damage. Nuclear cardio- are warranted. logic techniques that visualize pathophysiologic processes at Key Words: cardiotoxicity; cancer treatment; early detection the tissue level could detect myocardial injury at an earlier J Nucl Med 2011; 52:560–571 stage. These techniques may give the opportunity for timely DOI: 10.2967/jnumed.110.082784 intervention to prevent further damage and could provide insights into the mechanisms and pathophysiology of cardio- toxicity caused by anticancer agents. This review provides an overview of past, current, and promising newly developed radiopharmaceuticals and describes the role and recent advan- he development of new antitumor agents, especially ces of scintigraphic techniques to measure cardiotoxicity. Both T first-order functional imaging techniques (visualizing mechani- molecular targeting agents, has significantly improved the cal [pump] function), such as 99mTc multigated radionuclide treatment options for cancer patients in the past decade. angiography and 99mTc gated blood-pool SPECT, and third- Although these advances have prolonged survival, several order functional imaging techniques (visualizing pathophysio- agents may have serious cardiovascular side effects. Tras- logic and neurophysiologic processes at the tissue level) are tuzumab (Herceptin; Genentech), a humanized monoclonal discussed. Third-order functional imaging techniques comprise antibody against human epidermal growth factor receptor 123 I-metaiodobenzylguanidine scintigraphy, which images the type 2 (HER2), is one such agent that is new and successful efferent sympathetic nervous innervations; sympathetic neuro- but has been associated with cardiac dysfunction (1). In a recent analysis of the incidence of cardiac adverse events in Received Aug. 29, 2010; revision accepted Dec. 8, 2010. patients with early breast cancer who were treated with For correspondence or reprints contact: Lioe-Fee de Geus-Oei, Department of Nuclear Medicine (internal postal code 444), Radboud trastuzumab in an adjuvant setting (Herceptin Adjuvant University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, Trial), trastuzumab was discontinued because of cardiac The Netherlands. E-mail: [email protected] disorders in approximately 5% of patients. At a median COPYRIGHT ª 2011 by the Society of Nuclear Medicine, Inc. follow-up of 3.6 y, the incidence of cardiac endpoints (se- 560 THE JOURNAL OF NUCLEAR MEDICINE • Vol. 52 • No. 4 • April 2011 jnm082784-sn n 3/17/11 Copyright 2011 by Society of Nuclear Medicine. vere congestive heart failure, significant left ventricular of treatment and can be subacute or chronically progres- ejection fraction [LVEF] decrease) was higher in the tras- sive. Acute or subacute cardiotoxicity with anthracyclines tuzumab group than in the observation group (2). Prelimi- occurs during or immediately after infusion, is usually self- nary analysis from randomized controlled trials and case limiting, and resolves when therapy is discontinued. Late- control studies showed a pooled incidence of cardiotoxicity onset cardiotoxicity, however, occurs more frequently in of 10% in trastuzumab-containing arms, whereas the pooled children and can be noted more than 1 y after treatment incidence of cardiotoxicity in studies using a nontrastuzu- (10). Also, cardiac abnormalities may start early and can mab comparative arm was 2% (3). Therefore, close mon- progress over time to overt cardiomyopathy. Oeffinger et al. itoring of patients treated with trastuzumab is warranted. showed in a group of more than 10,000 survivors of child- Of the classic cytotoxic agents, anthracyclines are well hood cancer that the risk of dying from cardiac disease was known for their dose-dependent acute and chronic, irrever- 8 times higher than in the healthy population (11). In a sible and progressive cardiomyopathy. In trials of adjuvant recent study by van der Pal et al., 27% of adult childhood anthracycline-based treatment for breast cancer, a 5-y cancer survivors had an abnormal cardiac function (12). incidence of chronic heart failure of up to 3.2% has been The strongest predictors were anthracycline dose, cardiac reported, depending on the type of combination regimen irradiation, and younger age at diagnosis. At 6 y after and on the cumulative dose of anthracycline (4). It has been anthracycline therapy, subclinical heart failure occurs in suggested that the combination of anthracyclines and tax- up to 65% of childhood cancer survivors (13). Besides anes, which are currently the standard treatment for node- trastuzumab and anthracyclines, several other anticancer positive breast cancer, further increases cardiotoxicity (5,6). agents may have cardiotoxic effects (Table 1) (14). Patients ½Table 1 Furthermore, up to 0.5% of adults will be a survivor of who have been treated with both cardiotoxic chemotherapy some form of childhood cancer treated with anthracyclines and radiotherapy that included the heart in the irradiated (7). A large proportion of these survivors are at risk for volume are especially prone to cumulative negative cardio- developing cardiomyopathy, necessitating close follow-up vascular effects. evaluation and regular assessment. Furthermore, patients may be treated with both anthra- POTENTIAL MECHANISMS OF CARDIOTOXICITY cyclines and trastuzumab. It was recently demonstrated that Characterization of the mechanism of trastuzumab- and patients treated with anthracyclines and cyclophosphamide, anthracycline-induced cardiotoxicity may play an impor- followed by trastuzumab and paclitaxel, showed a 3-y tant role in developing strategies to prevent cardiac cumulative incidence of cardiac events, congestive heart dysfunction. However, a clear understanding of the patho- failure, and cardiac death of 4.1%, compared with 0.8% in physiology of cardiotoxicity is still lacking. This is patients treated with anthracyclines and cyclophosphamide particularly true for the pathophysiology of cardiac dys- alone (8). Also, a recent meta-analysis of the National Sur- function associated with trastuzumab. Trastuzumab trials gical Adjuvant Breast and Bowel Project B-31 and North report a high incidence of fall in ejection fraction (8,15,16). Central Cancer Treatment Group trials demonstrated that The end of trastuzumab and start of treatment for heart patients treated with trastuzumab in addition to sequential failure often results
Recommended publications
  • Clinical Appropriateness Guidelines Positron Emission Testing, Other PET Applications, Including Oncologic Tumor Imaging Effective Date: April 21, 2014
    Clinical Appropriateness Guidelines Positron Emission Testing, Other PET Applications, including Oncologic Tumor Imaging Effective Date: April 21, 2014 Proprietary and Confidential Date of Origin: 03/30/2005 Last reviewed: 11/14/2013 Last revised: 01/15/2013 Clinical Appropriateness Guidelines 8600 W Bryn Mawr Avenue South Tower - Suite 800 Chicago, IL 60631 P. 773.864.4600 Copyright © 2014. AIM Specialty Health. All Rights Reserved www.aimspecialtyhealth.com Table of Contents Administrative Guideline ..........................................................................................................3 Disclaimer ..............................................................................................................................................................3 Use of AIM’s Diagnostic Imaging Guidelines..........................................................................................................4 Multiple Simultaneous Imaging Requests ..............................................................................................................5 General Imaging Considerations ............................................................................................................................6 PET - Other PET Applications, Including Oncologic Tumor Imaging ......................................8 PET Bibliography ....................................................................................................................12 Table of Contents | Copyright © 2014. AIM Specialty Health. All Rights Reserved.
    [Show full text]
  • Diagnosis and Treatment of Myocarditides
    DIAGNOSIS AND TREATMENT OF MYOCARDITIDES Clinical guidelines Task force for preparing the text of recommendations Chairperson: Professor S.N. Tereshchenko (Moscow), Task force members: I.V. Zhirov (MD, Moscow), Professor V.P. Masenko (MD, Moscow), O.Yu. Narusov (Ph.D., Moscow), S.N. Nasonova (Ph.D., Moscow), Professor A.N. Samko (MD, Moscow), O.V. Stukalova (Ph.D., Moscow) and M.A. Shariya (MD, Moscow) Expert Committee: Professor Arutyunov G.P. (Moscow), Professor Moiseev S.V. (Moscow), Professor Vasyuk Yu.A. (Moscow), Professor Garganeeva A.A. (Tomsk), Professor Glezer M.G. (Moscow region), Professor Tkacheva O.N. (Moscow) Professor Shevchenko A.O. (Moscow), Professor Govorin A.V. (Chita), Professor Azizov V.A. (Azerbaijan), Professor Mirrahimov E.M. (Kyrgyzstan), Professor Abdullaev T.A. (Uzbekistan), Ph.D. Panfale E.M. (Moldova), MD Sudzhaeva O.A. (Belarus) Moscow, 2019 TABLE OF CONTENTS Page INTRODUCTION ............................................................................................................. 4 Evidence Base for Diagnosis and Treatment of Myocarditides…………….……6 I. MYOCARDITIDES CLASSIFICATION ................................................................... 5 1. Fulminant myocarditis. .................................................................................................... 6 2. Acute myocarditis. ........................................................................................................... 6 3. Chronic active myocarditis. ............................................................................................
    [Show full text]
  • Diagnostic Yield and Safety Profile of Endomyocardial Biopsy in the Non
    REC Interv Cardiol. 2019;1(2):99-107 Original article Diagnostic yield and safety profile of endomyocardial biopsy in the non-transplant setting at a Spanish referral center Eusebio García-Izquierdo Jaén,a Juan Francisco Oteo Domínguez,a,* Marta Jiménez Blanco,a Cristina Aguilera Agudo,a Fernando Domínguez,a Jorge Toquero Ramos,a Javier Segovia Cubero,a Clara Salas Antón,b Arturo García-Touchard,a José Antonio Fernández-Díaz,a Rodrigo Estévez-Loureiro,a Francisco Javier Goicolea Ruigómez,a and Luis Alonso-Pulpóna a Servicio de Cardiología, Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain b Servicio de Anatomía Patológica, Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain ABSTRACT Introduction and objectives: Endomyocardial biopsy (EMB) is an established diagnostic tool in myocardial disease. However, this technique may carry major complications. We present the diagnostic and safety results of our experience in EMB in the non-trans- plant setting. We also present the results after the implementation of a technical and safety protocol developed at our center. Methods: We retrospectively analyzed the data of all EMBs conducted in non-transplant patients from September 2004 through July 2018. We compared the diagnostic yield and rate of major complications of EMB in two different periods: before and after implementing the protocol. Results: We included 204 EMBs performed in 190 patients. The most frequent indications were the evaluation of ventricular dys- function or suspected myocarditis (51.5%) and the evaluation of restrictive cardiomyopathy or suspected infiltrative disease (44.6%). One hundred and seventy-two EMBs were performed in the right cardiac chambers (84.3%) and 30 EMBs in the left cardiac chambers (14.7%).
    [Show full text]
  • Impact of Preoperative Endoscopic Ultrasound in Surgical Oncology
    REVIEW Impact of preoperative endoscopic ultrasound in surgical oncology Endoscopic ultrasound (EUS) has a strong impact on the imaging and staging of solid tumors within or in close proximity of the upper GI tract. Technological developments during the last two decades have increased the image quality and allowed very detailed visualization of local tumor spread and lymph node affection. Current indications for EUS of the upper GI tract encompass the differentiation between benign and malignant lesions, the staging of esophageal, gastric and pancreatic cancer, and the procurement of a biopsy specimen through fine-needle aspiration. Various technical innovations during the past two decades have increased the diagnostic quality and have simultaneously strengthened the role of EUS in the clinical setting. This article will give a compressed summary on the current state of EUS and possible further technical developments. 1 KEYWORDS: 3D imaging elastosonography endoscopic ultrasound miniprobes Sascha S Chopra & oncologic surgery Michael Hünerbein† 1Department of General & Transplantation Surgery, Charité Campus Virchow-Clinic, Berlin, Conventional endoscopic ultrasound the so-called ‘miniprobes’ into the biliary system Germany Linear versus radial systems or the pancreatic duct in order to obtain high-res- †Author for correspondence: Department of Surgery & Surgical Endoscopic ultrasound (EUS) with flex- olution radial ultrasound images locally. Present Oncology, Helios Hospital Berlin, ible endoscopes is an important diagnostic and mini probes show a diameter of 2–3 mm and oper- 13122 Berlin, Germany Tel.: +49 309 417 1480 therapeutic tool, especially for the local staging ate with frequencies between 12 and 30 MHz. Fax: +49 309 417 1404 of gastrointestinal (GI) cancers, the differen- The main drawbacks of these devices are the lim- michael.huenerbein@ tiation between benign and malignant tumors, ited durability and the decreased depth of penetra- helios-kliniken.de and interventional procedures, such as biopsies tion (~2 cm).
    [Show full text]
  • Intractable Chest Pain in Cardiomyopathy: Treatment by a Novel Technique of Cardiac Cryodenervation with Quantitative Immunohistochemical Assessment of Success
    574 Br HeartJ 1993;69:574-577 TECHNIQUE Br Heart J: first published as 10.1136/hrt.70.6.574 on 1 December 1993. Downloaded from Intractable chest pain in cardiomyopathy: treatment by a novel technique of cardiac cryodenervation with quantitative immunohistochemical assessment of success J AR Gaer, L Gordon, J Wharton, J M Polak, K M Taylor, W McKenna, D J Parker Abstract she described episodes of chest pain, usually A novel method of cardiac denervation on exertion but also at rest and at night. The by cryoablation has been developed ex- pain occurred up to 10 times daily and her perimentally. The technique uses liquid exercise tolerance had deteriorated from four nitrogen delivered under pressure to miles to 200 yards. Although she denied ablate the principal sources of cardiac paroxysmal nocturnal dyspnoea, she slept innervation-namely, the adventitia sur- with three pillows. Her medication at this rounding the aorta, pulmonary arteries, time consisted of sotalol (80 mg twice daily) and veins. The technique has been veri- and verapamil (240 mg twice daily). She had fied experimentally both in vivo by four children (aged 6, 8, 10, and 11 years) all physiological means and in vitro by of whom were healthy. She was unaware of a quantitative immunohistochemistry and family history of hypertrophic cardiomyopa- the measurement of myocardial nor- thy, although two members of her family had adrenaline concentrations. A 35 year old died suddenly in middle age. On admission a woman presented with intractable pre- soft pansystolic murmur and considerable cordial pain, normal epicardial coronary obesity were noted.
    [Show full text]
  • Immunoscintigraphy and Radioimmunotherapy in Cuba: Experiences with Labeled Monoclonal Antibodies for Cancer Diagnosis and Treatment (1993–2013)
    Review Article Immunoscintigraphy and Radioimmunotherapy in Cuba: Experiences with Labeled Monoclonal Antibodies for Cancer Diagnosis and Treatment (1993–2013) Yamilé Peña MD PhD, Alejandro Perera PhD, Juan F. Batista MD ABSTRACT and therapeutic tools. The studies conducted demonstrated the good INTRODUCTION The availability of monoclonal antibodies in Cuba sensitivity and diagnostic precision of immunoscintigraphy for detect- has facilitated development and application of innovative techniques ing various types of tumors (head and neck, ovarian, colon, breast, (immunoscintigraphy and radioimmunotherapy) for cancer diagnosis lymphoma, brain). and treatment. Obtaining different radioimmune conjugates with radioactive isotopes OBJECTIVE Review immunoscintigraphy and radioimmunotherapy such as 99mTc and 188Re made it possible to administer radioimmuno- techniques and analyze their use in Cuba, based on the published lit- therapy to patients with several types of cancer (brain, lymphoma, erature. In this context, we describe the experience of Havana’s Clini- breast). The objective of 60% of the clinical trials was to determine cal Research Center with labeled monoclonal antibodies for cancer pharmacokinetics, internal dosimetry and adverse effects of mono- diagnosis and treatment during the period 1993–2013. clonal antibodies, as well as tumor response; there were few adverse effects, no damage to vital organs, and a positive tumor response in a EVIDENCE ACQUISITION Basic concepts concerning cancer and substantial percentage of patients. monoclonal antibodies were reviewed, as well as relevant inter- national and Cuban data. Forty-nine documents were reviewed, CONCLUSIONS Cuba has experience with production and radiola- among them 2 textbooks, 34 articles by Cuban authors and 13 by beling of monoclonal antibodies, which facilitates use of these agents.
    [Show full text]
  • Chapter 12 Monographs of 99Mtc Pharmaceuticals 12
    Chapter 12 Monographs of 99mTc Pharmaceuticals 12 12.1 99mTc-Pertechnetate I. Zolle and P.O. Bremer Chemical name Chemical structure Sodium pertechnetate Sodium pertechnetate 99mTc injection (fission) (Ph. Eur.) Technetium Tc 99m pertechnetate injection (USP) 99m ± Pertechnetate anion ( TcO4) 99mTc(VII)-Na-pertechnetate Physical characteristics Commercial products Ec=140.5 keV (IT) 99Mo/99mTc generator: T1/2 =6.02 h GE Healthcare Bristol-Myers Squibb Mallinckrodt/Tyco Preparation Sodium pertechnetate 99mTc is eluted from an approved 99Mo/99mTc generator with ster- ile, isotonic saline. Generator systems differ; therefore, elution should be performed ac- cording to the manual provided by the manufacturer. Aseptic conditions have to be maintained throughout the operation, keeping the elution needle sterile. The total eluted activity and volume are recorded at the time of elution. The resulting 99mTc ac- tivity concentration depends on the elution volume. Sodium pertechnetate 99mTc is a clear, colorless solution for intravenous injection. The pH value is 4.0±8.0 (Ph. Eur.). Description of Eluate 99mTc eluate is described in the European Pharmacopeia in two specific monographs de- pending on the method of preparation of the parent radionuclide 99Mo, which is generally isolated from fission products (Monograph 124) (Council of Europe 2005a), or produced by neutron activation of metallic 98Mo-oxide (Monograph 283) (Council of Europe 2005b). Sodium pertechnetate 99mTc injection solution satisfies the general requirements of parenteral preparations stated in the European Pharmacopeia (Council of Europe 2004). The specific activity of 99mTc-pertechnetate is not stated in the Pharmacopeia; however, it is recommended that the eluate is obtained from a generator that is eluted regularly, 174 12.1 99mTc-Pertechnetate every 24 h.
    [Show full text]
  • Clinical Applications of SPECT/CT: New Hybrid Nuclear Medicine Imaging System
    IAEA-TECDOC-1597 Clinical Applications of SPECT/CT: New Hybrid Nuclear Medicine Imaging System August 2008 IAEA-TECDOC-1597 Clinical Applications of SPECT/CT: New Hybrid Nuclear Medicine Imaging System August 2008 The originating Section of this publication in the IAEA was: Nuclear Medicine Section International Atomic Energy Agency Wagramer Strasse 5 P.O. Box 100 A-1400 Vienna, Austria CLINICAL APPLICATIONS OF SPECT/CT: NEW HYBRID NUCLEAR MEDICINE IMAGING SYSTEM IAEA, VIENNA, 2008 IAEA-TECDOC-1597 ISBN 978-92-0-107108-8 ISSN 1011–4289 © IAEA, 2008 Printed by the IAEA in Austria August 2008 FOREWORD Interest in multimodality imaging shows no sign of subsiding. New tracers are spreading out the spectrum of clinical applications and innovative technological solutions are preparing the way for yet more modality marriages: hybrid imaging. Single photon emission computed tomography (SPECT) has enabled the evaluation of disease processes based on functional and metabolic information of organs and cells. Integration of X ray computed tomography (CT) into SPECT has recently emerged as a brilliant diagnostic tool in medical imaging, where anatomical details may delineate functional and metabolic information. SPECT/CT has proven to be valuable in oncology. For example, in the case of a patient with metastatic thyroid cancer, neither SPECT nor CT alone could identify the site of malignancy. SPECT/CT, a hybrid image, precisely identified where the surgeon should operate. However SPECT/CT is not just advantageous in oncology. It may also be used as a one-stop- shop for various diseases. Clinical applications with SPECT/CT have started and expanded in developed countries.
    [Show full text]
  • Monoclonal Antibody Imaging) Using In-111 Satumomab Pendetide (Oncoscint) Or Tc-99M Arcitumomab (IMMU-4, CEA-Scan
    Medical Policy Radioimmunoscintigraphy Imaging (Monoclonal Antibody Imaging) Using In-111 Satumomab Pendetide (OncoScint) or Tc-99m Arcitumomab (IMMU-4, CEA-Scan) Table of Contents • Policy: Commercial • Coding Information • Information Pertaining to All Policies • Policy: Medicare • Description • References • Authorization Information • Policy History Policy Number: 638 BCBSA Reference Number: 6.01.36A NCD/LCD: N/A Related Policies None Policy Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity Medicare HMO BlueSM and Medicare PPO BlueSM Members Radioimmunoscintigraphy using satumomab pendetide or arcitumomab as the monoclonal antibody may be MEDICALLY NECESSARY in patients with known or suspected recurrent colorectal carcinoma under the following conditions: • In patients with an elevated carcinoembryonic antigen level, who have no evidence of disease with other imaging modalities (i.e., CT), in whom a second-look laparotomy is under consideration, or • In patients with an isolated, potentially resectable recurrence identified with conventional imaging modalities (i.e., CT), for whom the detection of additional occult lesions would alter the surgical plan. Other applications of radioimmunoscintigraphy using In-111 satumomab pendetide (OncoScint) or Tc- 99m-arcitumomab (IMMU-4, CEA-Scan) are INVESTIGATIONAL, including, but not limited to: • Ovarian cancer • Breast cancer • Medullary thyroid cancer, and • Lung cancer. Prior Authorization Information Inpatient • For services described in this policy, precertification/preauthorization IS REQUIRED for all products if the procedure is performed inpatient. 1 Outpatient • For services described in this policy, see below for products where prior authorization might be required if the procedure is performed outpatient. Outpatient Commercial Managed Care (HMO and POS) Prior authorization is not required. Commercial PPO and Indemnity Prior authorization is not required.
    [Show full text]
  • Multicenter Study of Immunoscintigraphy with Radiolabeled Monoclonal Antibodies in Patients with Melanoma1
    [CANCER RESEARCH 46, 4817-4822, September 1986] Multicenter Study of Immunoscintigraphy with Radiolabeled Monoclonal Antibodies in Patients with Melanoma1 A. G. Siccardi,2 G. L. Buraggi, L. Callegaro, G. Mariani, P. G. Natali, A. Abbati, M. Bestagno, V. Caputo, L. Mansi, R. Masi, G. Panini-Ili, P. Riva, M. Salvatore, M. Sanguinati, L. Troncone, G. L. Turco, G. A. Scassettati, and S. Terrone Dipartimento di Biologia e Genetica, Università di Milano, Milano [A. G. S.J; Istituto Nazionale Tumori, Milano fG. L. B.J; Centro Ricerche-SORIN Biomedica, Saluggia [L. C..G.A. S.J; Istituto di Fisiologia Clínicadel Consiglio Nazionale delle Ricerche, Pisa [G. M.]; Istituto Tumori Regina Elena, Roma [P. G. N.]; Departments of Nuclear Medicine of Ospedale Maggiore, Bologna [A. A.], Spedali Civili, Brescia [M. B.], Università "La Sapienza", Roma [V. C.], Istituto Pascale, Napoli [L. M., M. Sai.], Ospedale di Careggi, Firenze fR. M.], Ospedale Bufalini-Cesena [G. P., P. R.J, Ospedali Galliera-Genova [M. San.], Università Cattolica, Roma [L. T.], Università di Torino, Torino [G. L. T.], Italy; and Department of Microbiology and Immunology, New York Medical College (S. F.], Valhalla, New York 10595 ABSTRACT in multiple metastatic lesions from different anatomic sites (9); A multicenter study was performed to analyze the efficacy of "Tc- (c) it is undetectable in normal tissues except in hair bulbs and and '"In-labeled F(ab')2 fragments of monoclonal antibody (MoAb) in limited areas of the Malpighian layer (7, 10); (d) it is present only in minute amounts in serum even in patients with advanced 225.28S (reactive with a high molecular weight melanoma associated antigen) to radioimage malignant lesions in patients with melanoma.
    [Show full text]
  • Role of Positron Emission Tomography Imaging in Metabolically Active Renal Cell Carcinoma
    Current Urology Reports (2019) 20:56 https://doi.org/10.1007/s11934-019-0932-2 NEW IMAGING TECHNIQUES (S RAIS-BAHRAMI AND K PORTER, SECTION EDITORS) Role of Positron Emission Tomography Imaging in Metabolically Active Renal Cell Carcinoma Vidhya Karivedu1 & Amit L. Jain2 & Thomas J. Eluvathingal3 & Abhinav Sidana4,5 # Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract Purpose of Review The clinical role of fluorine-18 fluoro-2-deoxyglucose (FDG)-positron emission tomography (PET) in renal cell carcinoma (RCC) is still evolving. Use of FDG PET in RCC is currently not a standard investigation in the diagnosis and staging of RCC due to its renal excretion. This review focuses on the clinical role and current status of FDG PET and PET/CT in RCC. Recent Findings Studies investigating the role of FDG PET in localized RCC were largely disappointing. Several studies have demonstrated that the use of hybrid imaging PET/CT is feasible in evaluating the extra-renal disease. A current review of the literature determines PET/CT to be a valuable tool both in treatment decision-making and monitoring and in predicting the survival in recurrent and metastatic RCC. Summary PET/CT might be a viable option in the evaluation of RCC, especially recurrent and metastatic disease. PET/CT has also shown to play a role in predicting survival and monitoring therapy response. Keywords Fluorodeoxyglucose (FDG) . Positron emission tomography/computed tomography (PET/CT) . Metabolically active renal cell carcinoma . Restaging . Metastases . Therapy monitoring Introduction common type, is potentially more metastatic than the other two variants [3]. RCC, in its early stages, has non-specific Renal cell carcinoma (RCC) ranks as the seventh leading disease-related symptoms, making early diagnosis a chal- cause of cancer-related deaths in the USA and accounts to lenge.
    [Show full text]
  • Billing and Coding Guidelines Cardiac Catheterization and Coronary Angiography CV-006
    Billing and Coding Guidelines LCD Database ID Number L30719 LCD Title Cardiac Catheterization and Coronary Angiography Contractor's Determination Number CV-006 Coding Information General 1. List the appropriate CPT cardiac catheterization code/combination that most clearly describes the service(s) performed. 2. List the appropriate ICD-9 code describing the condition/diagnosis of the patient that is the reason for the right, left, or combined right/left catheterization service(s). 3. Cardiac catheterization codes 93452-93461 include contrast injections, image supervision, interpretation and report for imaging typically performed during these procedures. 4. When injections procedures for right atrial, aortic or pulmonary angiography are performed in conjunction with cardiac catheterization these services (93566-93568) are reported in addition to the appropriate catheterization code. 5. Services considered included in cardiac catheterization/angiography procedures (93452-93461) are as follows, when indicated: a. Local anesthesia and/or sedation b. Introduction, positioning, and repositioning of catheters c. Recording of intracardiac and intravascular pressures d. Obtaining blood samples for blood gases e. Cardiac output measurements f. Monitoring services, e.g., ECCS, arterial pressures, oxygen saturation g. Vascular catheter and line removal h. Final Evaluation i. Written Report 6. Swan Ganz Placement (93503). When a catheter is placed in the right heart for medically necessary monitoring purposes, the code 93503 must be reported. The codes describing a right heart catheterization (e.g., 93451) are used only for medically necessary diagnostic procedures. Do not report code 93503 in conjunction with other diagnostic cardiac catheterization codes. The code 93503 includes: a. Anesthesia or sedation. b. The insertion of the flow-directed catheter.
    [Show full text]