New Organosilicon Chemistry Paulina Elena Gonzalez Navarro University of Texas at El Paso, [email protected]

Total Page:16

File Type:pdf, Size:1020Kb

New Organosilicon Chemistry Paulina Elena Gonzalez Navarro University of Texas at El Paso, Paulinaegonzalez@Live.Com University of Texas at El Paso DigitalCommons@UTEP Open Access Theses & Dissertations 2016-01-01 New Organosilicon Chemistry Paulina Elena Gonzalez Navarro University of Texas at El Paso, [email protected] Follow this and additional works at: https://digitalcommons.utep.edu/open_etd Part of the Chemistry Commons Recommended Citation Gonzalez Navarro, Paulina Elena, "New Organosilicon Chemistry" (2016). Open Access Theses & Dissertations. 654. https://digitalcommons.utep.edu/open_etd/654 This is brought to you for free and open access by DigitalCommons@UTEP. It has been accepted for inclusion in Open Access Theses & Dissertations by an authorized administrator of DigitalCommons@UTEP. For more information, please contact [email protected]. NEW ORGANOSILICON CHEMISTRY PAULINA ELENA GONZALEZ NAVARRO Doctoral Program in Chemistry APPROVED: Keith H. Pannell, Ph.D., Chair Hemant K. Sharma, Ph.D. Rosa Maldonado, Ph.D. Shizue Mito, Ph.D. Skye Fortier, Ph.D. Charles Ambler, Ph.D. Dean of the Graduate School Copyright © by Paulina Elena Gonzalez Navarro 2016 DEDICATION Este trabajo está dedicado a mi Familia, especialmente a mi Papá, Pepe González, quien me motivó a llegar más lejos, a tener una mayor preparación profesional, a crecer como persona, y a luchar por mis metas. A pesar de que se fue al cielo cuando yo apenas empezaba el doctorado, seguí de pie tratando de corresponder con todo lo que él en vida hizo por mí. A mi Mamá, Ma. Elena Navarro, una mujer hermosa y fuerte, quien es el pilar de la familia y que da todo por sus hijos, que gracias a su amor y el de mis hermanos, me hicieron seguir adelante. A José y Alejandra, mis hermanos, quienes siempre me han apoyado sin importar las circunstancias y por ser los amigos incondicionales. A mi esposo Ricardo, mi compañero de vida, que, gracias a su amor, apoyo y paciencia, este camino se hizo más ligero y placentero. NEW ORGANOSILICON CHEMISTRY by PAULINA ELENA GONZALEZ NAVARRO, B.Sc. in Chemistry DISSERTATION Presented to the Faculty of the Graduate School of The University of Texas at El Paso in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Department of Chemistry THE UNIVERSITY OF TEXAS AT EL PASO December 2016 ACKNOWLEDGEMENTS I would like to express my sincere gratitude to my advisor, Dr. Keith H. Pannell, for his expert guidance, constant encouragement, wise knowledge, and motivational enthusiasm shown throughout the course of these years. He is the best mentor that I could have, a great friend and amazing person. I am very thankful he gave me the opportunity to work in his research group, for helping me become a better scientist, and for his support when I most needed it. To Dr. Hemant Sharma, who showed me many laboratory techniques, how to do research and the valuable insights and recommendations. He has been a good friend, always helping me with my projects and for pushing me to improve my skills. I would like to acknowledge my committee members Professors Dr. Shizue Mito, Dr. Skye Fortier, and Dr. Rosa Maldonado for the time and help they spent during the achievement of this dissertation. I also want to thank Dr. Alejandro Metta-Magaña for his assistance in solving X-ray crystal structures of compounds herein presented. Special thanks to Dr. Dale Alexander, who accepted me as his Teacher Assistant in the Periodic Table Laboratory. It was the greatest teaching experience that I could have. He is the best Professor that a student could hope, with his sense of humor, simple experiments and explanations, learning and teaching chemistry was so much fun. I thank my lab mates Isabel Saucedo, Dr. Renzo Arias, Dr. Robinson Roacho, Dr. Sanchita Chakrabarty, Alexander Craig, Jorge Martinez, and Raul Cuevas for the science discussions, collaborations, good moments, laughs and all the fun we shared together during these years, and all the students that have done research in Dr. Pannell’s laboratory: Peiyu, Yangjie, Lianqian, Sarah, Alex, Joe, Liz, Matt and David. In addition, I like to thank the faculty and staff from the UTEP Chemistry Department, especially to Dr. Katja Michael and Dr. Mahesh Narayan, for their guidance and help during my doctoral studies. The research was supported by the Robert Welch Foundation, Houston, Texas. v I gratefully acknowledge my family for all support and unconditional love. Thank you mom and dad for educating me and making me the person that I am now. To my siblings, José and Alejandra, for your support and cheerfulness. To María Jose, the new family member, for bringing happiness in the family. To my husband, Ricardo Perez, for his patience, help and love, for making me laugh even when I was extremely stressed. To my friends, my favorite people, Lizeth Rivera, Griselda Lopez and Lineth Rivera, for being more than friends, thank you for all the sleepless nights, great and bad moments, adventures, for taking care of me when I most needed it, and most importantly for being my family in Texas and allowing me to feel at home. To Marisol Romero, Dr. Danisha Rivera, Dr. Roberto de la Torre, Ana Melendez, and the Gaias soccer team: Iliana, Andrea, Kari, Karen, Galia, and Nalle, for the friendship and all the memorable experiences we have been through. I also thank my grandmas, aunties, uncles and cousins for their support. Finally, I thank God for blessing me with the most wonderful family, husband, and friends, for the great opportunities and for helping me to achieve the goals in my life. Without all of you, your help and support, this work would never have been possible, THANK YOU! vi ABSTRACT The formation of siloxymethylamine intermediates R3SiOCH2NMe2, 1, as initial products of the reduction of DMF by hydrosilanes catalyzed by Mo(CO)5NMe3 has been reported. These siloxymethylamines can react with R’3SiH to form trimethylamine and disiloxanes, and with chlorosilanes to form disiloxanes and ClCH2NMe2, Eschenmoser’s salt. I shall illustrate, in Chapter 1, how attempts to react 1, formed in situ in the presence of chlorosilanes R’3SiCl in the hope producing heterosilyl disiloxanes, R3SiOSiR’3, was not successful but led to a newly discovered activation of the Si-Cl bond by DMF. - In Chapter 2, we surmised that 1 acts as a transient siloxy-imminium ion pair [R3SiO] + [CH2NMe2] , and further suggested that these intermediates could be useful Mannich reagents, dimethylaminomethyl [Me2NCH2] transfer agents. Furthermore, I shall present the reactions between 1 and compounds with a series of E-H bonds (E = O, S, N) which prove its utility and reliability as a new [CH2NMe2] transfer reagent. We have previously reported the formation of a series of group 14 substituted methanes, (R3E)nCH4-n (E = Si, Ge, Sn, Pb; R = combinations of methyl and aryl groups; n = 2,3,4). We also used these materials where an R group = C6H5 to form Cr(CO)3 derivatives. During such studies we observed significant C-E bond cleavage products to form (R3E)n-1CH4-n products. It was proposed that the Cr(CO)3 substituent was responsible for this E-C bond activation. Now we have synthesized silicon and germanium homologous compounds with their Cr(CO)3 derivatives, and will study their hydrolytic stability, Chapter 3. Treatment of arenechromiumtricarbonyl complexes with regular n-Bu2O/THF will also be described to illustrate the potential activation of E-C bonds by the transition metal substituent. vii TABLE OF CONTENTS DEDICATION ...............................................................................................................................III ACKNOWLEDGEMENTS ............................................................................................................ V ABSTRACT ................................................................................................................................. VII TABLE OF CONTENTS ............................................................................................................ VIII LIST OF TABLES ........................................................................................................................ XI LIST OF FIGURES .................................................................................................................... XIII LIST OF SCHEMES................................................................................................................ XVIII CHAPTER 1. ACTIVATION OF CHLOROSILANES BY DMF .................................................1 1.1 Abstract ...................................................................................................................................1 1.2 Research Objectives ................................................................................................................2 1.3 Introduction .............................................................................................................................2 1.3.1 Organometallic Chemistry .............................................................................................2 1.3.2 Organosilanes .................................................................................................................2 1.3.3 Hydrosilanes ..................................................................................................................3 1.3.4 Reduction of Amides to Amines ....................................................................................4 1.3.5 Siloxanes ........................................................................................................................6 1.4 Results and Discussion ...........................................................................................................7
Recommended publications
  • Reduction of CO2 by Hydrosilanes in the Presence of Formamidinates Of
    Reduction of CO2 by Hydrosilanes in the Presence of Formamidinates of Group 13 and 12 Elements Weiheng Huang, Thierry Roisnel, Vincent Dorcet, Clement Orione, Evgueni Kirillov To cite this version: Weiheng Huang, Thierry Roisnel, Vincent Dorcet, Clement Orione, Evgueni Kirillov. Re- duction of CO2 by Hydrosilanes in the Presence of Formamidinates of Group 13 and 12 Elements. Organometallics, American Chemical Society, 2020, 39 (5), pp.698-710. 10.1021/acs.organomet.9b00853. hal-02531302 HAL Id: hal-02531302 https://hal-univ-rennes1.archives-ouvertes.fr/hal-02531302 Submitted on 15 Apr 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Reduction of CO2 by Hydrosilanes in the Presence of Formamidinates of Groups 13 and 12 Elements Weiheng Huang,a Thierry Roisnel,b Vincent Dorcet,b Clement Orione,c and Evgueni Kirillov a,* a Organometallics: Materials and Catalysis laboratories, Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, F-35700 Rennes, France b Centre de diffraction X, Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, F-35700 Rennes, France c CRMPO, Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, F-35700 Rennes, France Graphical Abstract / For the Table of content entrymanuscript Accepted * Correspondence to Evgueni Kirillov ([email protected]); Fax: +33 (0)223236938.
    [Show full text]
  • Hydrosilylation Reactions Catalyzed by Rhenium
    molecules ReviewReview HydrosilylationHydrosilylation ReactionsReactions CatalyzedCatalyzed byby RheniumRhenium DuoDuo WeiWei1,2 1,2,, Ruqaya Ruqaya Buhaibeh Buhaibeh 22, ,Yves Yves Canac Canac 22 andand Jean-Baptiste Jean-Baptiste Sortais Sortais 2,3,*2,3, * 11 Univ.University Rennes, Rennes, CNRS, CNRS, ISCR - ISCR-UMR UMR 6226, 6226, F-35000 35000 Rennes, Rennes, France; France; [email protected] [email protected] 22 LCC-CNRS,LCC-CNRS, Université Université dede Toulouse, Toulouse, UPS, UPS, 31400 31400 Toulouse, Toulouse, France; [email protected] (R.B.); [email protected]@lcc-toulouse.fr (Y.C.) (Y.C.) 33 InstitutInstitut Universitaire Universitaire de de France France 1 1 rue rue Descartes, Descartes, 75231 CEDEX Paris 05, Cedex 75231 Paris,05, France France ** Correspondence:Correspondence: [email protected] [email protected] Abstract:Abstract: Hydrosilylation isis anan important process,process, notnot onlyonly inin thethe siliconsilicon industryindustry toto produceproduce siliconsilicon polymers,polymers, butbut alsoalso in finefine chemistry. InIn this review,review, thethe developmentdevelopment ofof rhenium-basedrhenium-based catalystscatalysts forfor thethe hydrosilylationhydrosilylation of of unsaturated unsaturated bonds bonds in in carbonyl-, carbonyl-, cyano-, cyano-, nitro-, nitro-, carboxylic carboxylic acid acid derivatives derivatives and alkenesand alkenes is summarized. is summarized. Mechanisms Mechanisms of rhenium-catalyzed of rhenium-catalyzed
    [Show full text]
  • Iridium-Catalyzed Markovnikov Hydrosilylation of Terminal Alkynes Achieved by Using a Trimethylsilyl- Protected Trihydroxysilane
    ARTICLE https://doi.org/10.1038/s42004-019-0206-4 OPEN Iridium-catalyzed Markovnikov hydrosilylation of terminal alkynes achieved by using a trimethylsilyl- protected trihydroxysilane Xingze Xie1,2, Xueyan Zhang1,2, Weiwei Gao1, Congcong Meng1, Xiaojun Wang1 & Shengtao Ding 1 1234567890():,; Developing efficient strategies for Markovnikov hydrosilylation of alkynes is still an important goal. The steric and electronic properties of hydrosilanes are key factors in controlling selectivity in these reactions. Here by using a trimethylsilyl-protected trihydroxysilane, we report a mild, efficient strategy for Markovnikov hydrosilylation of terminal alkynes with the simple catalyst [Ir(μ-Cl)(cod)]2. A variety of terminal alkynes are hydrosilylated efficiently with outstanding α-regioselectivity. This protocol is successfully utilized in the late-stage hydrosilylation of derivatives of various bio-relevant molecules. The residual silyl group, -Si (OSiMe3)3, can participate in organic transformations directly, or be converted into other useful silyl groups. 1 State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China. 2These authors contributed equally: Xingze Xie, Xueyan Zhang. Correspondence and requests for materials should be addressed to S.D. (email: stding@mail. buct.edu.cn) COMMUNICATIONS CHEMISTRY | (2019) 2:101 | https://doi.org/10.1038/s42004-019-0206-4 | www.nature.com/commschem 1 ARTICLE COMMUNICATIONS CHEMISTRY | https://doi.org/10.1038/s42004-019-0206-4 inyl-substituted silicon compounds, or vinylsilanes, are iridium catalyst, which is compatible with a variety of functional Vremarkable building blocks in organic synthesis, polymer groups, and performs efficiently in modifying derivatives of bio- chemistry and materials science.
    [Show full text]
  • Control of Selectivity in Hydrosilane-Promoted Heterogeneous Palladium-Catalysed Reduction of Furfural and Aromatic Carboxides
    ARTICLE DOI: 10.1038/s42004-018-0033-z OPEN Control of selectivity in hydrosilane-promoted heterogeneous palladium-catalysed reduction of furfural and aromatic carboxides Hu Li 1, Wenfeng Zhao1, Shunmugavel Saravanamurugan2, Wenshuai Dai3, Jian He1, 1234567890():,; Sebastian Meier4, Song Yang 1 & Anders Riisager5 The production of liquid fuels and fine chemicals often involves multi-step reaction processes with selective hydrogenation as one of the key steps. This step most often depends on high- pressure excess hydrogen gas, fossil resources, and newly prepared metallic catalysts. Here we describe an approach to tune activity and selectivity toward transfer hydrogenation of renewable biomass derivatives over commercially available Pd/C using liquid hydrosilane as hydrogen source. The appropriate control of water-doping content, acid type, reaction temperature, and liquid H− donor dosage permits the selective formation of four different value-added products in high yields (≥90%) from bio-based furfural under mild reaction conditions (15–100 °C). Mechanistic insights into the hydrosilane-mediated cascade reac- tions of furfural are obtained using isotope labeling. The catalyst is recyclable and can selectively reduce an extensive range of aromatic carbonyl compounds to the corresponding alcohols or hydrocarbons in 83–99% yield, typically at 25–40 °C. 1 State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Engineering Lab for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, 550025 Guiyang, China. 2 Laboratory of Bioproduct Chemistry, Center of Innovative and Applied Bioprocessing (CIAB), Mohali, Punjab 140306, India. 3 Beijing National Laboratory of Molecular Science, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 100049 Beijing, China.
    [Show full text]
  • Platinum-Catalyzed Hydrosilylation in Polymer Chemistry
    polymers Review Platinum-Catalyzed Hydrosilylation in Polymer Chemistry Ruslan Yu. Lukin 1,2,*, Aidar M. Kuchkaev 1,2, Aleksandr V. Sukhov 1,2, Giyjaz E. Bekmukhamedov 1,2 and Dmitry G. Yakhvarov 1,2,* 1 Alexander Butlerov Institute of Chemistry, Kazan Federal University, 420008 Kazan, Russia; [email protected] (A.M.K.); alex.suhoff@rambler.ru (A.V.S.); [email protected] (G.E.B.) 2 Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of the Russian Academy of Sciences, 420088 Kazan, Russia * Correspondence: [email protected] (R.Y.L.); [email protected] (D.G.Y.); Tel.: +7-843-2337416 (R.Y.L. & D.G.Y.); Fax: +7-843-2732253 (R.Y.L. & D.G.Y.) Received: 20 July 2020; Accepted: 15 September 2020; Published: 23 September 2020 Abstract: This paper addresses a review of platinum-based hydrosilylation catalysts. The main field of application of these catalysts is the curing of silicone polymers. Since the 1960s, this area has developed rapidly in connection with the emergence of new polymer compositions and new areas of application. Here we describe general mechanisms of the catalyst activity and the structural effects of the ligands on activity and stability of the catalysts together with the methods for their synthesis. Keywords: silicone polymers; hydrosilylation; organometallic catalysts; platinum complexes 1. Introduction The hydrosilylation reaction (also referred to as hydrosilation) is widely used in the organosilicon industry. This reaction represents the addition of silicon-hydrogen bonds (Si–H) via an unsaturated carbon–carbon double bond (C=C), carbon–oxygen, and carbon–nitrogen double bonds.
    [Show full text]
  • Nucleophile Induced Ligand Rearrangement Reactions of Alkoxy- and Arylsilanes
    Edinburgh Research Explorer Nucleophile induced ligand rearrangement reactions of alkoxy- and arylsilanes Citation for published version: Docherty, JH, Dominey, AP & Thomas, SP 2019, 'Nucleophile induced ligand rearrangement reactions of alkoxy- and arylsilanes', Tetrahedron. https://doi.org/10.1016/j.tet.2019.04.062 Digital Object Identifier (DOI): 10.1016/j.tet.2019.04.062 Link: Link to publication record in Edinburgh Research Explorer Document Version: Peer reviewed version Published In: Tetrahedron General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 25. Sep. 2021 Graphical Abstract To create your abstract, type over the instructions in the template box below. Fonts or abstract dimensions should not be changed or altered. Nucleophile induced ligand rearrangement Leave this area blank for abstract info. reactions of alkoxy- and arylsilanes Jamie H. Dochertya*, Andrew P. Domineyb and Stephen P. Thomasa* aEaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, UK. bGSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, UK. 1 Tetrahedron journal homepage: www.elsevier.com Nucleophile induced ligand rearrangement reactions of alkoxy- and arylsilanes Jamie H.
    [Show full text]
  • Recent Advances in Liquid Hydrosilane-Mediated Catalytic N-Formylation of Amines With
    RSC Advances REVIEW View Article Online View Journal | View Issue Recent advances in liquid hydrosilane-mediated catalytic N-formylation of amines with CO2 Cite this: RSC Adv., 2020, 10,33972 Zhengyi Li,a Zhaozhuo Yu,a Xiaoxiang Luo,a Chuanhui Li,a Hongguo Wu,a Wenfeng Zhao,ab Hu Li *a and Song Yang*a Carbon dioxide is an ideal raw material for the synthesis of complex organic compounds because of its rich, non-toxic, and good physical properties. It is of great significance to transform CO2 into valuable fine chemicals and develop a green sustainable cycle of carbon surplus. Based on hydrosilane as a reducing agent, this work summarizes the recent applications of reductive amidation of CO2 using different Received 5th July 2020 catalysts such as organocatalysts, ionic liquids (ILs), salts, transition metal complexes, and solvents. The Accepted 8th September 2020 main factors affecting the reductive amidation of CO2 and the possible reaction mechanism are DOI: 10.1039/d0ra05858k discussed. Moreover, the future orientation and catalytic systems of the formylation of amines with CO2 rsc.li/rsc-advances and hydrosilane are prospected. Creative Commons Attribution-NonCommercial 3.0 Unported Licence. 1 Introduction reduction of CO2 o en requires harsh experimental conditions, such as high temperature, high pressure, and the use of some The use of fossil fuels contributes to climate change by emitting precious metals.18 Hydrosilane and hydroborane as more effi- 1 large amounts of CO2. But human beings have to rely on fossil cient and convenient reductants for reductive amidation of CO2 fuels to get a lot of commercial chemicals.2 So far, great efforts duo to their weaker and more polar Si–H and B–H bonds in – 19 have been made to reduce the use of fossil fuels or to nd comparison to the H H bond in the H2.
    [Show full text]
  • Non-Classical Hydrosilane Mediated Reductions Promoted by Transition
    Non-classical hydrosilane mediated reductions promoted by transition metal complexes Manuel Iglesias,* Francisco J. Fernández-Alvarez,* Luis A. Oro* Departamento de Química Inorgánica-Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza – CSIC, Facultad de Ciencias 50009, Zaragoza – Spain. 1 Abstract This article reviews the most recent advances on the study of non-classical mechanisms for the reduction of organic substrates with hydrosilanes catalyzed by transition metals. A wide variety of catalytic cycles that go beyond the classical steps described for Ojima, Chalk-Harrod and modified Chalk-Harrod mechanisms, as representative examples, have been proposed in recent years. In this review, these alternative mechanistic proposals have been analyzed and classified according to the type of substrate, focusing on the reduction / hydrosilylation of carbonyl compounds (ketones and aldehydes), carbon dioxide, silylesters, amides, N-heterocycles, alkyl halides, nitriles, alkenes and alkynes. In spite of the broad diversity of non-classical reaction mechanisms hitherto reported, the catalytic cycles described for each substrate have been arranged in different categories according to their characteristics. The epigraph dedicated to the first type of substrate (carbonyl compounds) comprises most of the mechanisms described in this review for the reduction of polar bonds, which, to some extent, show a relationship to those proposed for non-polar bonds (alkenes and alkynes). Remarkable types of reaction mechanisms
    [Show full text]
  • (TMS)3Sih Radical-Based Reagent
    Molecules 2012, 17, 527-555; doi:10.3390/molecules17010527 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Recent Applications of the (TMS)3SiH Radical-Based Reagent Chryssostomos Chatgilialoglu 1,* and Jacques Lalevée 2 1 ISOF, Consiglio Nazionale delle Ricerche, 40129 Bologna, Italy 2 Institut de Science des Matériaux de Mulhouse IS2M, LRC CNRS 7228-ENSCMu-UHA, 15, rue Jean Starcky, 68057 Mulhouse Cedex, France; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +39-051-639-8309; Fax: +39-051-639-8349. Received: 29 November 2011; in revised form: 29 December 2011 / Accepted: 2 January 2012 / Published: 6 January 2012 Abstract: This review article focuses on the recent applications of tris(trimethylsilyl)silane as a radical-based reagent in organic chemistry. Numerous examples of the successful use of (TMS)3SiH in radical reductions, hydrosilylation and consecutive radical reactions are given. The use of (TMS)3SiH allows reactions to be carried out under mild conditions with excellent yields of products and remarkable chemo-, regio-, and stereoselectivity. The strategic role of (TMS)3SiH in polymerization is underlined with emphasis on the photo-induced radical polymerization of olefins and photo-promoted cationic polymerization of epoxides. Keywords: tris(trimethylsilyl)silane; radical reactions; silyl radical; reduction; hydrosilylation; photopolymerization 1. Introduction In the late eighties, Chatgilialoglu and coworkers introduced tris(trimethylsilyl)silane, (TMS)3SiH, as a radical-based reducing agent for functional group modifications and a mediator of sequential radical reactions [1]. (TMS)3SiH has found multiple applications in organic synthesis as well as in polymers and material science [2–5].
    [Show full text]
  • Abstract Reduction of Ketones to Alcohols And
    ABSTRACT REDUCTION OF KETONES TO ALCOHOLS AND TERTIARY AMINES USING 1-HYDROSILATRANE Sami E. Varjosaari, Ph.D. Department of Chemistry and Biochemistry Northern Illinois University, 2018 Marc J. Adler, Co-Director Thomas M. Gilbert, Co-Director 1-Hydrosilatrane is an easily synthesized, stable, solid silane which can be made into an efficient reducing agent in the presence of a Lewis base, by taking advantage of the properties of hypervalent silicon. Due to the simplicity of use and handling, 1-hydrosilatrane has the potential to be an appealing alternative to other more widely used reducing agents. Aromatic and aliphatic ketones were readily reduced with 1-hydrosilatrane in the presence of potassium tert-butoxide. The discovery of diastereoselectivity in the reduction of menthone, a chiral ketone, led to enantioselective reductions of prochiral ketones using chiral Lewis base activators. Enantiomeric excesses of up to 86% were observed. It was also shown that 1-hydrosilatrane could act as a chemoselective reducing agent in the formation of tertiary amines via direct reductive aminations, in the absence of activator or solvent. Attempts were also made to take advantage of the steric properties of silicon protecting groups in meta-directing electrophilic aromatic substitution of phenols, leading to a one-pot synthesis of O-aryl carbamates. i NORTHERN ILLINOIS UNIVERSITY DEKALB, ILLINOIS MAY 2018 REDUCTION OF KETONES TO ALCOHOLS AND TERTIARY AMINES USING 1-HYDROSILATRANE BY SAMI ENSIO VARJOSAARI ©2018 SAMI ENSIO VARJOSAARI A DISSERTATION SUBMITTED TO THE GRADUATE SCHOOL IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE DOCTOR OF PHILOSOPHY DEPARTMENT OF CHEMISTRY AND BIOCHEMISTRY Doctoral Co-Directors: Marc J.
    [Show full text]
  • Manganese Catalysis in the Activation of Si-H and B-H Bonds and Synthesis of Degradable Poly(Silylether)S from Renewable Resources
    University of North Dakota UND Scholarly Commons Theses and Dissertations Theses, Dissertations, and Senior Projects January 2019 Manganese Catalysis In The Activation Of Si-H And B-H Bonds And Synthesis Of Degradable Poly(silylether)s From Renewable Resources Srikanth Vijjamarri Follow this and additional works at: https://commons.und.edu/theses Recommended Citation Vijjamarri, Srikanth, "Manganese Catalysis In The Activation Of Si-H And B-H Bonds And Synthesis Of Degradable Poly(silylether)s From Renewable Resources" (2019). Theses and Dissertations. 2872. https://commons.und.edu/theses/2872 This Dissertation is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact [email protected]. MANGANESE CATALYSIS IN THE ACTIVATION OF SI-H AND B-H BONDS AND SYNTHESIS OF DEGRADABLE POLY(SILYLETHER)S FROM RENEWABLE RESOURCES by Srikanth Vijjamarri Bachelor of Science, Osmania University, Hyderabad, India, 2009 Master of Science, Osmania University, Hyderabad, India, 2011 A Dissertation Submitted to the Graduate School of the University of North Dakota in partial fulfillment of the requirements for the degree of Doctor of Philosophy Grand Forks, North Dakota December 2019 PERMISSION Title MANGANESE CATALYSIS IN THE ACTIVATION OF SI-H AND B-H BONDS AND SYNTHESIS OF DEGRADABLE POLY(SILYLETHER)S FROM RENEWABLE RESOURCES Department Chemistry Degree Doctor of Philosophy In presenting this dissertation in partial fulfillment of the requirements for a graduate degree from the University of North Dakota, I agree that the library of this University shall make it freely available for inspection.
    [Show full text]
  • Some Aspects of the Chemistry of Alkynylsilanes
    SYNTHESIS0039-78811437-210X Georg Thieme Verlag Stuttgart · New York 2018, 50, A–AD review A en Syn thesis G. L. Larson Review Some Aspects of the Chemistry of Alkynylsilanes Gerald L. Larson* Gelest Inc., 11 East Steel Road, Morrisville, PA 18940, USA [email protected] Received: 26.01.2018 Accepted after revision: 13.03.2018 Published online: 18.05.2018 DOI: 10.1055/s-0036-1591979; Art ID: ss-2018-e0053-sr License terms: Abstract In amongst the considerable chemistry of acetylenes there lies some unique chemistry of alkynylsilanes (silylacetylenes) some of which is reviewed herein. This unique character is exemplified not only in the silyl protection of the terminal C–H of acetylenes, but also in the ability of the silyl group to be converted into other functionalities after reaction of the alkynylsilane and to its ability to dictate and improve the regioselectivity of reactions at the triple bond. This, when combined Gerald (Jerry) Larson led Vice-President of R&D for Gelest Inc. for with the possible subsequent transformations of the silyl group, makes nearly 20 years before his retirement where he retains the position of their chemistry highly versatile and useful. Senior Research Fellow and Corporate Consultant. He received his B.Sc. 1 Introduction degree in chemistry from Pacific Lutheran University in 1964 and his 2 Safety Ph.D. in chemistry (organic/inorganic) from the University of California- 3 Synthesis Davis in 1968. He served an NIH-postdoctoral year with Donald Mat- 4 Protiodesilylation teson at Washington State University and a postdoctoral year with Diet- 5 Sonogashira Reactions mar Seyferth at MIT, after which he joined the faculty of the University 6 Cross-Coupling with the C–Si Bond of Puerto Rico-Río Piedras as an assistant professor in 1970 reaching full 7 Stille Cross-Coupling professor in 1979.
    [Show full text]