Microstructural Stability and the Kinetics of Textural Evolution

Total Page:16

File Type:pdf, Size:1020Kb

Microstructural Stability and the Kinetics of Textural Evolution Microstructural Stability and The Kinetics of Textural Evolution Andrew Lind Submitted in accordance with the requirements for the degree of Doctor of Philosophy. University of Leeds Department of Earth Sciences May, 1996 The candidate confirms that the work submitted is his own and the appropriate credit has been given where reference has been made to the work of others. Abstract This thesis is concerned with constraining the processes by which a rock texture may be altered in the geological history after a rock has been deformed and the rates at which that microstructural modification may occur. The area which has been chosen to investigate microstructural change is the Ballachulish aureole in the NW Highlands of Scotland, using samples from the Appin Quartzite. Rocks in this region were deformed during the Caledonian orogeny. Post-dating the deformation was the intrusion of the Ballachulish granite. As a consequence of the thermal perturbation associated with the granite intrusion, deformation microstructures were gradually altered. This process is known as annealing. The Ballachulish aureole is essentially a ‘natural laboratory’ which preserves an annealing experiment over geological time; rocks are gradually annealed along the traverse towards the intrusive complex where higher temperatures were attained. Rocks have been sampled along a traverse from outside the igneous aureole towards the contact. A variety of microstructural elements have been characterised using image analysis and crystallographic techniques, some of which have been developed during this study. The changes in rock fabrics along the traverse are used as a basis for developing models of annealing for many microstructural features, including dislocations, subgrains, subgrain walls and grains. The relative stability of each of these microstructures is assessed to show that dislocations are the least stable, then subgrains and grains. An interesting ‘mesh’ microstructure is identified, preserving evidence of fracturing on a grain scale. These mesh-grains are very stable, surviving annealing in some cases altogether. The presence of impurities on all scales of observation are shown to greatly influence the mechanisms of microstructural change. The kinetics of microstructural modification are examined using theoretical models based on the processes of annealing which have been identified during this investigation. Again these indicate that impurities can have marked implications on the rates of microstructural change. Kinetic models for rocks undergoing regional prograde and retrograde metamorphosis are developed to indicate how this work may be applied on a more regional tectonic scale. Acknowledgements This project is the brainchild of Rob Knipe, Geoff Lloyd and Andy Bamicoat, all three of them are thanked for obtaining the grant, giving me the opportunity to carry out the research and their distinctive styles of supervision during my tenure of the studentship. NERC are acknowledged for their lavish funding of the project Special thanks for intellectual and technical support go to: Dave Prior, Graeme Potts and John Wheeler for their enthusiasm and good humour during my time at Liverpool; Andy Farmer, for some strange reason (only known to himself) has spent hours, if not days guiding me through the rigours of programming, microstructural geology and of late writing-up - cheers very much for putting yourself through it (I’m blaming you if it all goes wrong). Mark Jessell, Neil-Henrick Schmidt and Dave Mainprice are thanked for managing to show some interest in the work. Closer to home thanks to members of the struccy group some of whom have been a source of inner strength when things are going wrong (“It’s never too late......”) - Ned, Jock, Napalm, Slime, Neil, Edd, Lochlann, Will (you’re sorely missed), Wibbs, Yen, Louise, Dani, Rob, Helena, Shona, MOOOSE and Steve - no apologies to anybody for my bad temper at the computer. The Keiths did a grand job on the thin section front. Robert Marshall is thanked for his patience at the polisher. Eric Condliffe and Tony Nichols help in electron optics is appreciated. The Beer Police would like to offer long service medals to Ned, Napalm and Chopper and Sergeant Girth would like to thank Jock for his top tips (and his introduction to t*t cakes). Cheers to the “we’re only going for a gallon” crew - those I’ve already mentioned above know who they are, together with Klaus, Dave, Nigel, Chopper Sue and Clare. Other socialites include: G-Tech (all of them), Tim, uz&Edd, Kath, Alex H., Quebtin Fisher, Tim Buddin, Ken Baxter, A1 (Fat Knacker) Boulton, Slimbo, Karen B, Kathy, Natasha and Anne. Gold stars will be issued to Andy F, Sue, Ned, Napalm, Neil, Nigel, Wibbs and Clare; Andy and Sue for Otley trips, meals, hols etc.; Ned, Napalm and Neil for destroying my health; Nige, Wibbs (even if your socks are bleached round the toes) and Clare for being good for a laugh . The family have all been superstars throughout, cheers for your continued support (and money) - Mum, Michael, Stephen and Granddad etc.. In return you now receive a brand new door stop in the form of a thesis. Table of Contents Title Abstract........................................................................................................... i Acknowledgements........................................................................................ii Table of Contents.........................................................................................iv Table of Figures............................................................................................ xi CHAPTER 1 INTRODUCTION 1.1 The Geological Setting............................................................................ 2 1.2 Aims Of Thesis....................................................................................... 3 1.3 Thesis Layout...........................................................................................4 CHAPTER 2 DEFORMATION MECHANISMS AND MICROSTRUCTURAL MODIFICATION 2.1 Introduction............................................................................................ 6 2.1.1 Non-Crystal Plastic Mechanisms....................................................................................7 2.1.1.a Diffusive Mass Transfer.............................................................................................................7 2.1.1.b Cataclasis...................................................................................................................................7 2.1.2 Crystal Plasticity............................................................................................................... 8 2.2 Rock Rheologies 11 2.3 Processes Affecting Rock Rheologies...................................................12 2.3.1 Hardening......................................................................................................................... 12 2.3.2 Softening............................................................................................................................13 2.3.2.a Recovery by Dislocation Climb................................................................................................ 13 2.3.2.b Recovery by Cross Slip................................. ........................................................................... 13 2.3.2.C Annihilation...............................................................................................................................14 2.3.2.d Polygonization........................................................................................................................... 14 2.3.3 Cyclicity of Hardening/Softening................................................................................. 14 2.3.4 Dynamic Recrystallisation.............................................................................................. 15 2.3.4.a Subgrain Rotation......................................................................................................................15 2.3.4.b Grain Boundary Migration........................................................................................................16 2.3.5 Interaction of Deformation Processes......................................................................... 17 2.4 Static Recovery......................................................................................18 2.4.1 Static Recovery by Grain Growth................................................................................19 2.4.1 .a Primary Recrystallisation..........................................................................................................19 2.4.1.b Normal Grain Growth...............................................................................................................20 2.4.2 Kinetics of Normal Grain Growth................................................................................22 2.4.3 Abnormal Grain Growth................................................................................................24 2.5 Geological Implications of Grain Growth.......................................... 24 2.6 Criteria To Recognise Annealing.........................................................26 2.6.1 Microscopic Observations............................................................................................ 26 2.6.2 Image Analysis Criteria.................................................................................................. 27 2.6.3 Crystallographic Criteria................................................................................................27
Recommended publications
  • Review On: Fractal Antenna Design Geometries and Its Applications
    www.ijecs.in International Journal Of Engineering And Computer Science ISSN:2319-7242 Volume - 3 Issue -9 September, 2014 Page No. 8270-8275 Review On: Fractal Antenna Design Geometries and Its Applications Ankita Tiwari1, Dr. Munish Rattan2, Isha Gupta3 1GNDEC University, Department of Electronics and Communication Engineering, Gill Road, Ludhiana 141001, India [email protected] 2GNDEC University, Department of Electronics and Communication Engineering, Gill Road, Ludhiana 141001, India [email protected] 3GNDEC University, Department of Electronics and Communication Engineering, Gill Road, Ludhiana 141001, India [email protected] Abstract: In this review paper, we provide a comprehensive review of developments in the field of fractal antenna engineering. First we give brief introduction about fractal antennas and then proceed with its design geometries along with its applications in different fields. It will be shown how to quantify the space filling abilities of fractal geometries, and how this correlates with miniaturization of fractal antennas. Keywords – Fractals, self -similar, space filling, multiband 1. Introduction Modern telecommunication systems require antennas with irrespective of various extremely irregular curves or shapes wider bandwidths and smaller dimensions as compared to the that repeat themselves at any scale on which they are conventional antennas. This was beginning of antenna research examined. in various directions; use of fractal shaped antenna elements was one of them. Some of these geometries have been The term “Fractal” means linguistically “broken” or particularly useful in reducing the size of the antenna, while “fractured” from the Latin “fractus.” The term was coined by others exhibit multi-band characteristics. Several antenna Benoit Mandelbrot, a French mathematician about 20 years configurations based on fractal geometries have been reported ago in his book “The fractal geometry of Nature” [5].
    [Show full text]
  • Classical Math Fractals in Postscript Fractal Geometry I
    Kees van der Laan VOORJAAR 2013 49 Classical Math Fractals in PostScript Fractal Geometry I Abstract Classical mathematical fractals in BASIC are explained and converted into mean-and-lean EPSF defs, of which the .eps pictures are delivered in .pdf format and cropped to the prescribed BoundingBox when processed by Acrobat Pro, to be included easily in pdf(La)TEX, Word, … documents. The EPSF fractals are transcriptions of the Turtle Graphics BASIC codes or pro- grammed anew, recursively, based on the production rules of oriented objects. The Linden- mayer production rules are enriched by PostScript concepts. Experience gained in converting a TEX script into WYSIWYG Word is communicated. Keywords Acrobat Pro, Adobe, art, attractor, backtracking, BASIC, Cantor Dust, C curve, dragon curve, EPSF, FIFO, fractal, fractal dimension, fractal geometry, Game of Life, Hilbert curve, IDE (In- tegrated development Environment), IFS (Iterated Function System), infinity, kronkel (twist), Lauwerier, Lévy, LIFO, Lindenmayer, minimal encapsulated PostScript, minimal plain TeX, Minkowski, Monte Carlo, Photoshop, production rule, PSlib, self-similarity, Sierpiński (island, carpet), Star fractals, TACP,TEXworks, Turtle Graphics, (adaptable) user space, von Koch (island), Word Contents - Introduction - Lévy (Properties, PostScript program, Run the program, Turtle Graphics) Cantor - Lindenmayer enriched by PostScript concepts for the Lévy fractal 0 - von Koch (Properties, PostScript def, Turtle Graphics, von Koch island) Cantor1 - Lindenmayer enriched by PostScript concepts for the von Koch fractal Cantor2 - Kronkel Cantor - Minkowski 3 - Dragon figures - Stars - Game of Life - Annotated References - Conclusions (TEX mark up, Conversion into Word) - Acknowledgements (IDE) - Appendix: Fractal Dimension - Appendix: Cantor Dust Peano curves: order 1, 2, 3 - Appendix: Hilbert Curve - Appendix: Sierpiński islands Introduction My late professor Hans Lauwerier published nice, inspiring booklets about fractals with programs in BASIC.
    [Show full text]
  • Exploring the Effect of Direction on Vector-Based Fractals
    Exploring the Effect of Direction on Vector-Based Fractals Magdy Ibrahim and Robert J. Krawczyk College of Architecture Illinois Institute of Technology 3360 S. State St. Chicago, IL, 60616, USA Email: [email protected], [email protected] Abstract This paper investigates an approach to begin the study of fractals in architectural design. Vector-based fractals are studied to determine if the modification of vector direction in either the generator or the initiator will develop alternate fractal forms. The Koch Snowflake is used as the demonstrating fractal. Introduction A fractal is an object or quantity that displays self-similarity on all scales. The object need not exhibit exactly the same structure at all scales, but the same “type” of structures must appear on all scales [7]. Fractals were first discussed by Mandelbrot in the 1970s [4], but the idea was identified as early as 1925. Fractals have been investigated for their visual qualities as art, their relationship to explain natural processes, music, medicine, and in mathematics [5]. Javier Barrallo classified fractals [2] into six main groups depending on their type: 1. Fractals derived from standard geometry by using iterative transformations on an initial common figure. 2. IFS (Iterated Function Systems), this is a type of fractal introduced by Michael Barnsley. 3. Strange attractors. 4. Plasma fractals. Created with techniques like fractional Brownian motion. 5. L-Systems, also called Lindenmayer systems, were not invented to create fractals but to model cellular growth and interactions. 6. Fractals created by the iteration of complex polynomials. From the mathematical point of view, we can classify fractals into three major categories.
    [Show full text]
  • Measuring Fractal Dimension
    MEASURING FRACTALFRACTAL DIMENSION:DIMENSION: MORPHOLOGICAL ESTIMATES AND ITERATIVE OPTIMIZATIONOPTIMIZATION Petros MaragosMaragos and FangFang-Kuo -Kuo Sun Division of Applied SciencesSciences The AnalyticAnalytic SciencesSciences Corp. Harvard UniversityUniversity 55 Walkers Brook Drive Cambridge, MAMA 0213802138 Reading, MAMA 0186701867 Abstract An important characteristiccharacteristic of fractal signals isis theirtheir fractal dimension. For arbitrary fractals, an efficient approachapproach to to evaluateevaluate theirtheir fractal dimension isis thethe covering method.method. In thisthis paperpaper wewe unifyunify many of thethe current implementations ofof covering methodsmethods by usingusing morphologicalmorphological operations operations withwith varyingvarying structuring elements. Further, in the casecase of parametric fractalsfractals dependingdepending on on a a parameterparameter thatthat is in oneone-to-one -to -one correspondence correspondence with with their their fractal fractal dimension,dimension, we we develop develop an an optimizationoptimization method,method, which starts fromfrom anan initialinitial estimateestimate andand by by iteratively iteratively minimizing minimizing aa distancedistance betweenbetween thethe originaloriginal functionfunction and the classclass of all suchsuch functions,functions, spanningspanning thethe quantizedquantized parameterparameter space,space, convergesconverges to to the the truetrue fractalfractal dimension. 1 Introduction Fractals are mathematical setssets withwith aa highhigh
    [Show full text]
  • Paul S. Addison
    Page 1 Chapter 1— Introduction 1.1— Introduction The twin subjects of fractal geometry and chaotic dynamics have been behind an enormous change in the way scientists and engineers perceive, and subsequently model, the world in which we live. Chemists, biologists, physicists, physiologists, geologists, economists, and engineers (mechanical, electrical, chemical, civil, aeronautical etc) have all used methods developed in both fractal geometry and chaotic dynamics to explain a multitude of diverse physical phenomena: from trees to turbulence, cities to cracks, music to moon craters, measles epidemics, and much more. Many of the ideas within fractal geometry and chaotic dynamics have been in existence for a long time, however, it took the arrival of the computer, with its capacity to accurately and quickly carry out large repetitive calculations, to provide the tool necessary for the in-depth exploration of these subject areas. In recent years, the explosion of interest in fractals and chaos has essentially ridden on the back of advances in computer development. The objective of this book is to provide an elementary introduction to both fractal geometry and chaotic dynamics. The book is split into approximately two halves: the first—chapters 2–4—deals with fractal geometry and its applications, while the second—chapters 5–7—deals with chaotic dynamics. Many of the methods developed in the first half of the book, where we cover fractal geometry, will be used in the characterization (and comprehension) of the chaotic dynamical systems encountered in the second half of the book. In the rest of this chapter brief introductions to fractal geometry and chaotic dynamics are given, providing an insight to the topics covered in subsequent chapters of the book.
    [Show full text]
  • Ontologia De Domínio Fractal
    MÉTODOS COMPUTACIONAIS PARA A CONSTRUÇÃO DA ONTOLOGIA DE DOMÍNIO FRACTAL Ivo Wolff Gersberg Dissertação de Mestrado apresentada ao Programa de Pós-graduação em Engenharia Civil, COPPE, da Universidade Federal do Rio de Janeiro, como parte dos requisitos necessários à obtenção do título de Mestre em Engenharia Civil. Orientadores: Nelson Francisco Favilla Ebecken Luiz Bevilacqua Rio de Janeiro Agosto de 2011 MÉTODOS COMPUTACIONAIS PARA CONSTRUÇÃO DA ONTOLOGIA DE DOMÍNIO FRACTAL Ivo Wolff Gersberg DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA (COPPE) DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE MESTRE EM CIÊNCIAS EM ENGENHARIA CIVIL. Examinada por: ________________________________________________ Prof. Nelson Francisco Favilla Ebecken, D.Sc. ________________________________________________ Prof. Luiz Bevilacqua, Ph.D. ________________________________________________ Prof. Marta Lima de Queirós Mattoso, D.Sc. ________________________________________________ Prof. Fernanda Araújo Baião, D.Sc. RIO DE JANEIRO, RJ - BRASIL AGOSTO DE 2011 Gersberg, Ivo Wolff Métodos computacionais para a construção da Ontologia de Domínio Fractal/ Ivo Wolff Gersberg. – Rio de Janeiro: UFRJ/COPPE, 2011. XIII, 144 p.: il.; 29,7 cm. Orientador: Nelson Francisco Favilla Ebecken Luiz Bevilacqua Dissertação (mestrado) – UFRJ/ COPPE/ Programa de Engenharia Civil, 2011. Referências Bibliográficas: p. 130-133. 1. Ontologias. 2. Mineração de Textos. 3. Fractal. 4. Metodologia para Construção de Ontologias de Domínio. I. Ebecken, Nelson Francisco Favilla et al . II. Universidade Federal do Rio de Janeiro, COPPE, Programa de Engenharia Civil. III. Titulo. iii À minha mãe e meu pai, Basia e Jayme Gersberg. iv AGRADECIMENTOS Agradeço aos meus orientadores, professores Nelson Ebecken e Luiz Bevilacqua, pelo incentivo e paciência.
    [Show full text]
  • Exploring the Effect of Direction on Vector-Based Fractals
    BRIDGES Mathematical Connections in Art, Music, and Science Exploring the Effect of Direction on Vector-Based Fractals Magdy Ibrahim and Robert J. Krawczyk College of Architecture Dlinois Institute of Technology 3360 S. State St. Chicago, lL, 60616, USA Email: [email protected], [email protected] Abstract This paper investigates an approach to begin the study of fractals in architectural design. Vector-based fractals are studied to determine if the modification of vector direction in either the generator or the initiator will develop alternate fractal forms. The Koch Snowflake is used as the demonstrating fractal. Introduction A fractal is an object or quantity that displays self-similarity on all scales. The object need not exhibit exactly the same structure at all scales, but the same "type" of structures must appear on all scales [7]. Fractals were first discussed by Mandelbrot in the 1970s [4], but the idea was identified as early as 1925. Fractals have been investigated for their visual qualities as art, their relationship to explain natural processes, music, medicine, and in mathematics [5]. Javier Barrallo classified fractals [2] into six main groups depending on their type: 1. Fractals derived from standard geometry by using iterative transformations on an initial common figure. 2. IFS (Iterated Function Systems), this is a type of fractal introduced by Michael Barnsley. 3. Strange attractors. 4. Plasma fractals. Created with techniques like fractional Brownian motion. 5. L-Systems, also called Lindenmayer systems, were not invented to create fractals but to model cellular growth and interactions. 6. Fractals created by the iteration of complex polynomials. From the mathematical point of view, we can classify fractals into three major categories.
    [Show full text]
  • Faster Diffusion Across an Irregular Boundary
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by HAL-Polytechnique Faster Diffusion across an Irregular Boundary Anna Rozanova-Pierrat, Denis Grebenkov, Bernard Sapoval To cite this version: Anna Rozanova-Pierrat, Denis Grebenkov, Bernard Sapoval. Faster Diffusion across an Irreg- ular Boundary. Physical Review Letters, American Physical Society, 2012, 108, pp.240602. <10.1103/PhysRevLett.108.240602>. <hal-00760296> HAL Id: hal-00760296 https://hal-ecp.archives-ouvertes.fr/hal-00760296 Submitted on 5 Dec 2012 HAL is a multi-disciplinary open access L'archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destin´eeau d´ep^otet `ala diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publi´esou non, lished or not. The documents may come from ´emanant des ´etablissements d'enseignement et de teaching and research institutions in France or recherche fran¸caisou ´etrangers,des laboratoires abroad, or from public or private research centers. publics ou priv´es. Faster Diffusion across an Irregular Boundary A. Rozanova-Pierrat∗ Laboratoire de Physique de la Mati`ere Condens´ee, C.N.R.S. – Ecole Polytechnique, 91128 Palaiseau, France and Laboratoire de Mathematiques Appliquees aux Systemes, Ecole Centrale Paris, 92295 Chatenay-Malabry, France D. S. Grebenkov† and B. Sapoval‡ Laboratoire de Physique de la Mati`ere Condens´ee, C.N.R.S. – Ecole Polytechnique, 91128 Palaiseau, France (Dated: December 5, 2012) We investigate how the shape of a heat source may enhance global heat transfer at short time. An experiment is described that allows to obtain a direct visualization of heat propagation from a prefractal radiator.
    [Show full text]
  • Characterization and Analysis of Fractal
    COMPUTER-GENERATED FRACTALS WITH MEDICAL APPLICATION IN TRABECULAR BONE STRUCTURE HIZMAWATI MADZIN FACULTYUniversity OF COMPUTER SCIENCE of &Malaya INFORMATION TECHNOLOGY UNIVERSITY OF MALAYA KUALA LUMPUR 2006 COMPUTER-GENERATED FRACTALS WITH MEDICAL APPLICATION IN TRABECULAR BONE STRUCTURE HIZMAWATI MADZIN WGC030035 This project is to submitted to Faculty of Computer Science and Information Technology University of Malaya UniversityIn partial fulfillment ofof requirement Malaya for Degree of Master of Software Engineering Session 2006/2007 ABSTRACT Fractal can be described as a self-similarity, irregular shape and scale independent object. The generation of each fractal is dependent on the algorithm used. The fractal is generated using a form of computer-generated process to create complex, repetitive, mathematically based geometric shapes. There are two main aims of this research, one of which is to develop a prototype known as Fractal Generation System (FGS) whereby each type of fractal is generated by practical implementations of the theories with some adaptation in the following algorithms: IFS Iteration, Formula Iteration and Generator Iteration. FGS also caters for the calculation of the fractal dimension (FD) parameter using Box Counting Method (BCM). This parameter enables the system to characterize the irregularity and self-similarity of fractal shapes. FGS generates four types of fractals, which are Julia set, Mandelbrot set, Sierpinski Triangle and Koch Snowflake based on the three iterations. The FD values computed and fractal patterns generated by FGS agree well with theoretical values and existing fractal shapes. The second main aim is in relation to the importance of fractal application in the real world whereby it focuses on analyzing trabecular bone structure.
    [Show full text]
  • Fractals in Complexity and Geometry Xiaoyang Gu Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2009 Fractals in complexity and geometry Xiaoyang Gu Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Computer Sciences Commons Recommended Citation Gu, Xiaoyang, "Fractals in complexity and geometry" (2009). Graduate Theses and Dissertations. 11026. https://lib.dr.iastate.edu/etd/11026 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Fractals in complexity and geometry by Xiaoyang Gu A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Computer Science Program of Study Committee: Jack H. Lutz, Major Professor Pavan Aduri Soumendra N. Lahiri Roger D. Maddux Elvira Mayordomo Giora Slutzki Iowa State University Ames, Iowa 2009 Copyright c Xiaoyang Gu, 2009. All rights reserved. ⃝ ii TABLE OF CONTENTS LIST OF FIGURES .................................. iv 1 INTRODUCTION ................................. 1 1.1 Fractals in Complexity Classes ........................... 2 1.1.1 Dimensions of Polynomial-Size Circuits .................. 2 1.1.2 Fractals and Derandomization ....................... 4 1.2 Fractals in Individual Sequences and Saturated Sets ............... 6 1.2.1 Saturated Sets with Prescribed Limit Frequencies of Digits ....... 7 1.2.2 The Copeland-Erd˝os Sequences ....................... 8 1.3 Effective Fractals in Geometry ........................... 10 1.3.1 Points on Computable Curves .......................
    [Show full text]
  • International Journal for Scientific Research & Development
    IJSRD - International Journal for Scientific Research & Development| Vol. 4, Issue 01, 2016 | ISSN (online): 2321-0613 A Review Analysis of Different Geometries on Fractal Antenna with Various Feeding Techniques Aditi Parmar Department of Master Engineering in Communication System Engineering L. J. Institute of Engineering and Technology, Gujarat Technological University, Ahmedabad, Gujarat Abstract— Fractal antennas have the unique property of self- A. What Are Fractals? similarity, generated by iterations, which means that various copies of an object can be found in the original shape object This question is a simple with a very complicated (and very at smaller scale size. A fractal is a rough or fragmented long) answer. An accurate answer, doesn't help much geometric shape that can be divided into smaller parts, each because it uses other fractal speak jargon that few people of which is (approximately) a reduced size copy of the understand, so the simple answer of a fractal is a shape that, whole. Fractal antenna is capable of performing operation when you look at a small part of it, has a similar (but with good-to-excellent performance at many different necessarily not identical) appearance to the shape of basic frequencies simultaneously at the same time. Normally initiator. Take, for example, a rocky mountain. From a standard antennas that have to be "cut" for the frequency for distance, you can see that how rocky it is; up close, the which they are to be used and thus the standard antennas surface is very similar. Little rocks have a similar surface to only work only well at that the frequency they are given.
    [Show full text]
  • Chapter 1 Fractal Geometries
    CHAPTER 1 Fractal Geometries 1.1 Introduction The end of the 1970s saw the idea of fractal geometry spread into numerous areas of physics. Indeed, the concept of fractal geometry, introduced by B. Mandelbrot, provides a solid framework for the analysis of natural phenomena in various scientific domains. As Roger Pynn wrote in Nature, “If this opinion continues to spread, we won’t have to wait long before the study of fractals becomes an obligatory part of the university curriculum.” The fractal concept brings many earlier mathematical studies within a single framework. The objects concerned were invented at the end of the 19th century by such mathematicians as Cantor, Peano, etc. The term “fractal” was introduced by B. Mandelbrot (fractal, i.e., that which has been infinitely divided, from the Latin “fractus,” derived from the verb “frangere,” to break). It is difficult to give a precise yet general definition of a fractal object; we shall define it, following Mandelbrot, as a set which shows irregularities on all scales. Fundamentally it is its geometric character which gives it such great scope; fractal geometry forms the missing complement to Euclidean geometry and crystalline symmetry.1 As Mandelbrot has remarked, clouds are not spheres, nor mountains cones, nor islands circles and their description requires a different geometrization. As we shall show, the idea of fractal geometry is closely linked to properties invariant under change of scale: a fractal structure is the same “from near or from far.” The concepts of self-similarity and scale invariance appeared independently in several fields; among these, in particular, are critical phenomena and second order phase transitions.2 We also find fractal geometries in particle trajectories, hydrodynamic lines of flux, waves, landscapes, mountains, islands and rivers, rocks, metals, and composite materials, plants, polymers, and gels, etc.
    [Show full text]