Figurative Numbers

Total Page:16

File Type:pdf, Size:1020Kb

Figurative Numbers Figurative Numbers 1. Write down the first 10 square numbers. Why are they called square numbers? 2. If you build triangles out of dots and count the dots you get the triangular numbers. Here are the first two triangular numbers represented geometrically (the first is admittedly not much of a triangle): Find the first 10 triangular numbers. 3. Find a formula for the n-th triangular number. 4. What happens if you add two consecutive triangular numbers? Why does this happen? Can you prove your result geometrically? Can you prove your result algebraically? 5. Let T (n) represent the n-th triagular number. Write your previous results using this T (n) notation. (How do you write your general results for what you have discovered?) 6. If you add up triagular numbers you get the tetrahedral numbers. For example, the first several tetrahedral numbers are: 1; 3; 6;::: Find the first several tetrahedral numbers. Can you find a formula for the n-tetrahedral number? 1 Figurative Numbers Part 2 1. Write down the first 10 pentagonal numbers. To do this, draw pentagons with dots and increase the side length each time. Here are the first few: 2. Write down the first several hexagonal numbers. 3. Make a table for the first ten figurative numbers for the figures: Numbers 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th Triangular Square Pentagonal Hexagonal Heptagonal Octogonal Nonagonal Decagonal What patterns do you see? 2 Figurative Numbers Part 3 1. Can you find a formula for P (n) (the n-th pentagonal number)? 2. Can you find a formula for H(n) (hexagonal numbers)? 3. Explore centered figurative numbers. Here is a picture of what this means: 4. Given a triangular number, find a formula to find which triangular number it is. (This could be called the triangular root of a number, like a square root.) 5. (Fermat Polygonal Number Theorem) (a) For each number 1 through 50, write it as a sum of triangular numbers. Try to use as few numbers as possible. (b) Try to write numbers are sums of square numbers. How many squares do you need? (c) Sums of pentagonal numbers? How many pentagonal numbers do you need? 3.
Recommended publications
  • Integer Partitions
    12 PETER KOROTEEV Remark. Note that out n! fixed points of T acting on Xn only for single point q we 12 PETER KOROTEEV get a polynomial out of Vq.Othercoefficient functions Vp remain infinite series which we 12shall further ignore. PETER One KOROTEEV can verify by examining (2.25) that in the n limit these Remark. Note that out n! fixed points of T acting on Xn only for single point q we coefficient functions will be suppressed. A choice of fixed point q following!1 the large-n limits get a polynomial out of Vq.Othercoefficient functions Vp remain infinite series which we Remark. Note thatcorresponds out n! fixed to zooming points of intoT aacting certain on asymptoticXn only region for single in which pointa q we a shall further ignore. One can verify by examining (2.25) that in the n | Slimit(1)| these| S(2)| ··· get a polynomial out ofaVSq(n.Othercoe) ,whereS fficientSn is functionsa permutationVp remain corresponding infinite to series the choice!1 which of we fixed point q. shall furthercoe ignore.fficient functions One| can| will verify be suppressed. by2 examining A choice (2.25 of) that fixed in point theqnfollowinglimit the large- thesen limits corresponds to zooming into a certain asymptotic region in which a!1 a coefficient functions will be suppressed. A choice of fixed point q following| theS(1) large-| | nSlimits(2)| ··· aS(n) ,whereS Sn is a permutation corresponding to the choice of fixed point q. q<latexit sha1_base64="gqhkYh7MBm9GaiVNDBxVo5M1bBY=">AAAB8HicbVBNS8NAEN3Ur1q/qh69LBbBU0lEUG9FLx4rWFtsQ9lsJ+3SzSbuTsQS+i+8eFDx6s/x5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFpeWV1rbhe2tjc2t4p7+7dmTjVHBo8lrFuBcyAFAoaKFBCK9HAokBCMxheTfzmI2gjYnWLowT8iPWVCAVnaKX7DsITBmH2MO6WK27VnYIuEi8nFZKj3i1/dXoxTyNQyCUzpu25CfoZ0yi4hHGpkxpIGB+yPrQtVSwC42fTi8f0yCo9GsbalkI6VX9PZCwyZhQFtjNiODDz3kT8z2unGJ77mVBJiqD4bFGYSooxnbxPe0IDRzmyhHEt7K2UD5hmHG1IJRuCN//yImmcVC+q3s1ppXaZp1EkB+SQHBOPnJEauSZ10iCcKPJMXsmbY5wX5935mLUWnHxmn/yB8/kDhq2RBA==</latexit>
    [Show full text]
  • Induction for Tetrahedral Numbers
    Induction for Tetrahedral Numbers Teacher Notes and Answers 7 8 9 10 11 12 TI-84PlusCE™ Investigation Student 50 min Teacher Notes: “Inductive Tetrahedrals” is part two of this three-part series. [Refer to Inductive Whole Numbers for Part One]. Part two follows a similar format to part one but is slightly more challenging from an algebraic perspective. Teachers can use part two in this series as a more independent environment for students focusing on providing feedback rather than instruction. A set of Power Point slides is provided that can be used to enhance the visual aspect of this lesson, the ability to visualise solutions can give problems more meaning. “Cubes and Squares” is part three of this three-part series. This section is designed as an assessment tool, marks have been allocated to each question. The questions are more reflective of the types of questions that students might experience in the short answer section of an examination where calculators may be used to derive answers or to simply verify by-hand solutions. A set of Power Point slides is provided that can be used to introduce students to this task. Introduction The purpose of this activity is to use exploration and observation to establish a rule for the sum of the first n tetrahedral numbers then use proof by mathematical induction to show that the rule is true for all whole numbers. What are the Tetrahedral numbers? The prefix ‘tetra’ refers to the quantity four, so it is not surprising that a tetrahedron consists of four faces, each face is a triangle.
    [Show full text]
  • Tetrahedral Numbers
    Tetrahedral Numbers Student Worksheet TI-30XPlus Activity Student 50 min 7 8 9 10 11 12 MathPrint™ Finding Patterns What are the Tetrahedral numbers? The prefix ‘tetra’ refers to the quantity four, so it is not surprising that a tetrahedron consists of four faces, each face is a triangle. This triangular formation can sometimes be found in stacks of objects. The series of diagrams below shows the progression from one layer to the next for a stack of spheres. Row Number 1 2 3 4 5 Items Added Complete Stack Question: 1. Create a table of values for the row number and the corresponding quantity of items in a complete stack. Question: 2. Create a table of values for the row number and the corresponding quantity of items that are added to the stack. Question: 3. The calculator screen shown here illustrates how to determine the fifth tetrahedral number. The same command could be used to determine any of the tetrahedral numbers. Explain how this command is working. Question: 4. Verify that the calculation shown opposite is the same as the one generated in Question 3. Question: 5. Enter the numbers 1, 2 … 10 in List 1 on the calculator. Enter the first 10 tetrahedral numbers in List 2. Once the values have been entered try the following: a) Quadratic regression using List 1 and List 2. Check the validity of the result via substitution. b) Cubic regression using List 1 and List 2. Check the validity of the result via substitution. Texas Instruments 2021. You may copy, communicate and modify this material for non-commercial educational purposes Author: P.
    [Show full text]
  • 1 + 4 + 7 + 10 = 22;... the Nth Pentagonal Number Is Therefore
    CHAPTER 6 1. The pentagonal numbers are 1; 1 + 4 = 5; 1 + 4 + 7 = 12; 1 + 4 + 7 + 10 = 22;... The nth pentagonal number is therefore n 1 2 − n(n 1) 3n n (3i +1) = n + 3 − = − . i 2 ! 2 X=0 Similarly, since the hexagonal numbers are 1; 1+5 = 6; 1+5+9 = 15; 1+5+9+13 = 28;... it follows that the nth hexagonal number is n 1 − n(n 1) (4i +1) = n + 4 − = 2n2 n. i 2 ! − X=0 2. The pyramidal numbers with triangular base are 1; 1+3 = 4; 1+3+6 = 10; 1+3+6+10 = 20; ... Therefore the nth pyramidal number with triangular base is n n k(k + 1) 1 1 n(n + 1)(2n + 1) n(n + 1) = (k2 + k)= + k 2 2 k 2 " 6 2 # X=1 X=1 . n(n + 1) 2n + 1 1 n(n + 1)(n + 2) = + = 2 6 2 6 The pyramidal numbers with square base are 1; 1+4 = 5; 1+4+9 = 14; 1+4+9+16= 30;... Thus the nth pyramidal number with square base is given by the sum of the squares from 1 to n, namely, n(n + 1)(2n + 1) . 6 3. In a harmonic proportion, c : a =(c b):(b a). It follows that ac ab = bc ac or that b(a + c) = 2ac. Thus the sum of− the extremes− multiplied by the mean− equals− twice the product of the extremes. 4. Since 6:3=(5 3) : (6 5), the numbers 3, 5, 6 are in subcontrary proportion.
    [Show full text]
  • PENTAGONAL NUMBERS in the PELL SEQUENCE and DIOPHANTINE EQUATIONS 2X2 = Y2(3Y -1) 2 ± 2 Ve Siva Rama Prasad and B
    PENTAGONAL NUMBERS IN THE PELL SEQUENCE AND DIOPHANTINE EQUATIONS 2x2 = y2(3y -1) 2 ± 2 Ve Siva Rama Prasad and B. Srlnivasa Rao Department of Mathematics, Osmania University, Hyderabad - 500 007 A.P., India (Submitted March 2000-Final Revision August 2000) 1. INTRODUCTION It is well known that a positive integer N is called a pentagonal (generalized pentagonal) number if N = m(3m ~ 1) 12 for some integer m > 0 (for any integer m). Ming Leo [1] has proved that 1 and 5 are the only pentagonal numbers in the Fibonacci sequence {Fn}. Later, he showed (in [2]) that 2, 1, and 7 are the only generalized pentagonal numbers in the Lucas sequence {Ln}. In [3] we have proved that 1 and 7 are the only generalized pentagonal numbers in the associated Pell sequence {Qn} delned by Q0 = Qx = 1 and Qn+2 = 2Qn+l + Q„ for n > 0. (1) In this paper, we consider the Pell sequence {PJ defined by P 0 =0,P 1 = 1, and Pn+2=2Pn+l+Pn for«>0 (2) and prove that P±l, P^, P4, and P6 are the only pentagonal numbers. Also we show that P0, P±1, P2, P^, P4, and P6 are the only generalized pentagonal numbers. Further, we use this to solve the Diophantine equations of the title. 2. PRELIMINARY RESULTS We have the following well-known properties of {Pn} and {Qn}: for all integers m and n, a a + pn = "-P" a n d Q = " P" w herea = 1 + V2 and p = 1-V2, (3) l P_„ = {-\r Pn and Q_„ = (-l)"Qn, (4) a2 = 2P„2+(-iy, (5) 2 2 e3„=a(e„ +6P„ ), (6> ^ + n = 2PmG„-(-l)"Pm_„.
    [Show full text]
  • The Frobenius Number for Sequences of Binomial Coefficients
    The Frobenius number for sequences of binomial coefficients Aureliano M. Robles-Perez´ Universidad de Granada A talk based on a joint work with Jose´ Carlos Rosales (J. Number Theory 186 (2018) 473–492.) INdAM meeting: International meeting on numerical semigroups - Cortona 2018 3-7th September 2018 A. M. Robles-Perez´ (UGR) Frobenius number and binomial sequences IMNS-2018 1 / 29 Frobenius coin problem I Given relatively prime positive integers a1;:::;an, n ≥ 2, find a formula to compute the largest integer that is not representable as a non-negative integer linear combination of a1;:::;an. I F(a1;:::;an) (the Frobenius number of the set fa1;:::;ang) denotes the solution of the previous problem. I F(a1;a2) = a1a2 − a1 − a2: I Frobenius problem is open for n ≥ 3. ∗ Curtis: it is impossible to find a polynomial formula that computes the Frobenius number if n = 3. ∗ Ram´ırez Alfons´ın: the problem is NP-hard for n variables. A. M. Robles-Perez´ (UGR) Frobenius number and binomial sequences IMNS-2018 2 / 29 Particular cases I Arithmetic and almost arithmetic sequences (A. Brauer; M. Lewin; J. B. Roberts; E. S. Selmer), I Fibonacci sequences (J. M. Mar´ın, J. L. Ram´ırez Alfons´ın and M. P. Revuelta), I geometric sequences (D. C. Ong and V. Ponomarenko), I Mersenne, repunit, and Thabit sequences (J. C. Rosales, M. B. Branco, D. Torrao),˜ I squares and cubes sequences (M. Lepilov, J. O’Rourke and I. Swanson; A. Moscariello), I ... A. M. Robles-Perez´ (UGR) Frobenius number and binomial sequences IMNS-2018 3 / 29 Particular cases: motivations (i) I Brauer: n − 2 F(n;n + 1;:::;n + k − 1) = + 1 n − 1: k − 1 I Baker (conjecture): If Tn is the nth triangular (or triangle) number, then 8 3 2 > 6n +18n +12n−8 if n is even; <> 8 F(Tn;Tn+1;Tn+2) = :> 6n3+12n2−6n−20 8 if n is odd.
    [Show full text]
  • Pascal's Triangle
    PASCAL’S TRIANGLE Todd Cochrane 1 / 29 Robert’s Dream In his dream, Robert and the Number Devil build a giant pyramid of blocks. Being two-dimensional they agree to call it a triangle of blocks. Then they start marking the blocks with a felt pen, labeling the top block 1, the next two 1,1, and then each block thereafter the sum of the two values above it. Thus, the third row is 1,2,1, the fourth 1,3,3,1 and so on. 2 / 29 Pascal’s Triangle 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 ; 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 1 8 28 56 70 56 28 8 1 Rule: Each term in Pascal’s triangle is the sum of the two terms above it. Pascal’s triangle is named after Blaise Pascal, who put together many of its properties in 1653. 3 / 29 Triangle Numbers. Diagonal 3: 1; 3; 6; 10; 15; 21;::: Diagonal 4: 1; 4; 10; 20; 35; 56;::: Tetrahedral Numbers. Diagonal’s of Pascal’s Triangle 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 ; 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 1 8 28 56 70 56 28 8 1 Diagonals: Note, the Southwesterly and Southeasterly diagonals are the same. Diagonal 1: 1; 1; 1; 1;::: (yawn) Diagonal 2: 1; 2; 3; 4; 5; : : : ::: Natural Numbers .
    [Show full text]
  • The Personality of the Integers from One to One Gross
    ETY CI O O F S The Dozenal Society of America E 0 1 A L X 2 M A 9 3 E The Personality of the Integers N R E 8 4 I Z 7 5 C from One to One Gross A O 6 D Jay Schiffman S Introduction n his fascinating paperback entitled The Lore of integer that lends a special personality to them es- I Large Numbers,1 author Philip J. Davis devotes a pecially when one resorts to duodecimals. Finally, detailed chapter to The Personality of Numbers and my goal is to furnish number theoretic characteris- provides a list entitled Who’s Who Among The Inte- tics related to each of the integers that are perhaps gers from One to One Hundred in the decimal base. omitted from the average list. Our initial task is to The purpose of my paper is to expand his list to the present the reader with a dictionary which is termed first gross and present additional characteristics of A Glossary of Symbols and Terms. These symbols these integers. It is indeed the uniqueness of each and terms will be illustrated in this section. A Glossary of Symbols and Terms 1. n! The factorial of the positive integer n. We de- 6. Ln The nth Lucas Number. n is a Lucas Number fined n!, known as n factorial, recursively as if n satisfied the Lucas Sequence defined recur- follows: 0! = 1 and (n + 1)! = (n + 1)(n!). sively as follows: L1 = 1, L2 = 3, and Ln = Hence 1! = (0 + 1)(0!) = (1)(1) = 1 and Ln−2 + Ln−1 for n ≥ 3.
    [Show full text]
  • Math Ontological Basis of Quas
    Math Ontological Basis of Quasi Fine-Tuning in Ghc Cosmologies Mark Thomas To cite this version: Mark Thomas. Math Ontological Basis of Quasi Fine-Tuning in Ghc Cosmologies. 2015. hal- 01232022v5 HAL Id: hal-01232022 https://hal.archives-ouvertes.fr/hal-01232022v5 Preprint submitted on 23 Jul 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Math Ontological Basis of Quasi Fine-Tuning in Ghc Cosmologies 1 M. A. Thomas The subject of fine tuning in physics is a long contentious issue especially now as it has hitched a ride on the Multiverse bandwagon. The maths of quadratic forms are predominately featured and relate the physics parameters G h c, which in turn are weighted during the Planck Era(s) determined by relative Planck time clocking. This simplifies the search to these three values as being the important apparent fine-tuned parameters (quasi fine tuning) for determining the gravitational build structures restricted to SM-4D type Universes. Two gravitational coupling constants (dimensionless) are prescribed within the Ghc complex. Both describe the relative rigidity of gravitational physics in the low energy build of our Universe (General Relativity toward endpoint neutron star, black hole formation).
    [Show full text]
  • Painting a Pyramid.Pdf
    Delving deeper christopher M. Kribs-Zaleta Painting the Pyramid ne hallmark of a mathematician is the can measure or count about a cube: numbers of ver- instinct to extend and generalize. This article tices, edges, and faces, surface area, and volume. In Otakes a common high school problem relating particular, the unit cubes at the vertices of the large algebra, geometry, and patterns and extends it. The cube are those that have paint on 3 faces (for n > 1). extension seems simple enough at first glance but The remaining unit cubes along the edges of the large proves to have a number of interesting complications. cube are those that have paint on 2 faces, and the cor- Painting the Cube (NCTM 1989; Reys 1988) is a responding formula 12(n – 2) that emerges from the popular and mathematically rich problem used in mid- data is formed by measuring the length of one edge, dle and high school mathematics courses (as well as discounting the two corner cubes, and then multiply- some courses for preservice teachers). In that problem, ing by the number of edges. The remaining unit a large cube is assembled from small unit cubes, and cubes on the faces of the large cube are those with the exposed faces of the large cube are then painted one painted face, and they are counted by measuring (see fig. 1). The problem asks how many of the unit the area of a face, discounting the edges and corners, cubes will have paint on 0, 1, 2, . faces, as a func- and multiplying by the number of faces.
    [Show full text]
  • Notations Used 1
    NOTATIONS USED 1 NOTATIONS ⎡ (n −1)(m − 2)⎤ Tm,n = n 1+ - Gonal number of rank n with sides m . ⎣⎢ 2 ⎦⎥ n(n +1) T = - Triangular number of rank n . n 2 1 Pen = (3n2 − n) - Pentagonal number of rank n . n 2 2 Hexn = 2n − n - Hexagonal number of rank n . 1 Hep = (5n2 − 3n) - Heptagonal number of rank n . n 2 2 Octn = 3n − 2n - Octagonal number of rank n . 1 Nan = (7n2 − 5n) - Nanogonal number of rank n . n 2 2 Decn = 4n − 3n - Decagonal number of rank n . 1 HD = (9n 2 − 7n) - Hendecagonal number of rank n . n 2 1 2 DDn = (10n − 8n) - Dodecagonal number of rank n . 2 1 TD = (11n2 − 9n) - Tridecagonal number of rank n . n 2 1 TED = (12n 2 −10n) - Tetra decagonal number of rank n . n 2 1 PD = (13n2 −11n) - Pentadecagonal number of rank n . n 2 1 HXD = (14n2 −12n) - Hexadecagonal number of rank n . n 2 1 HPD = (15n2 −13n) - Heptadecagonal number of rank n . n 2 NOTATIONS USED 2 1 OD = (16n 2 −14n) - Octadecagonal number of rank n . n 2 1 ND = (17n 2 −15n) - Nonadecagonal number of rank n . n 2 1 IC = (18n 2 −16n) - Icosagonal number of rank n . n 2 1 ICH = (19n2 −17n) - Icosihenagonal number of rank n . n 2 1 ID = (20n 2 −18n) - Icosidigonal number of rank n . n 2 1 IT = (21n2 −19n) - Icositriogonal number of rank n . n 2 1 ICT = (22n2 − 20n) - Icositetragonal number of rank n . n 2 1 IP = (23n 2 − 21n) - Icosipentagonal number of rank n .
    [Show full text]
  • Euler's Pentagonal Number Theorem
    Euler's Pentagonal Number Theorem Dan Cranston September 28, 2011 Triangular Numbers:1 ; 3; 6; 10; 15; 21; 28; 36; 45; 55; ::: Square Numbers:1 ; 4; 9; 16; 25; 36; 49; 64; 81; 100; ::: Pentagonal Numbers:1 ; 5; 12; 22; 35; 51; 70; 92; 117; 145; ::: Introduction Square Numbers:1 ; 4; 9; 16; 25; 36; 49; 64; 81; 100; ::: Pentagonal Numbers:1 ; 5; 12; 22; 35; 51; 70; 92; 117; 145; ::: Introduction Triangular Numbers:1 ; 3; 6; 10; 15; 21; 28; 36; 45; 55; ::: Pentagonal Numbers:1 ; 5; 12; 22; 35; 51; 70; 92; 117; 145; ::: Introduction Triangular Numbers:1 ; 3; 6; 10; 15; 21; 28; 36; 45; 55; ::: Square Numbers:1 ; 4; 9; 16; 25; 36; 49; 64; 81; 100; ::: Introduction Triangular Numbers:1 ; 3; 6; 10; 15; 21; 28; 36; 45; 55; ::: Square Numbers:1 ; 4; 9; 16; 25; 36; 49; 64; 81; 100; ::: Pentagonal Numbers:1 ; 5; 12; 22; 35; 51; 70; 92; 117; 145; ::: The kth pentagonal number, P(k), is the kth partial sum of the arithmetic sequence an = 1 + 3(n − 1) = 3n − 2. k X 3k2 − k P(k) = (3n − 2) = 2 n=1 I P(8) = 92, P(500) = 374; 750, etc. and P(0) = 0. I Extend domain, so P(−8) = 100, P(−500) = 375; 250, etc. I fP(0); P(1); P(−1); P(2); P(−2); :::g = f0; 1; 2; 5; 7; :::g is an increasing sequence. Generalized Pentagonal Numbers k X 3k2 − k P(k) = (3n − 2) = 2 n=1 I P(8) = 92, P(500) = 374; 750, etc.
    [Show full text]