Human Cloning: Must We Sacrifice Medical Research in the Name of a Total Ban?

Total Page:16

File Type:pdf, Size:1020Kb

Human Cloning: Must We Sacrifice Medical Research in the Name of a Total Ban? S. HRG. 107–812 HUMAN CLONING: MUST WE SACRIFICE MEDICAL RESEARCH IN THE NAME OF A TOTAL BAN? HEARING BEFORE THE COMMITTEE ON THE JUDICIARY UNITED STATES SENATE ONE HUNDRED SEVENTH CONGRESS SECOND SESSION FEBRUARY 5, 2002 Serial No. J–107–55 Printed for the use of the Committee on the Judiciary ( U.S. GOVERNMENT PRINTING OFFICE 83–684 PDF WASHINGTON : 2002 For sale by the Superintendent of Documents, U.S. Government Printing Office Internet: bookstore.gpo.gov Phone: toll free (866) 512–1800; DC area (202) 512–1800 Fax: (202) 512–2250 Mail: Stop SSOP, Washington, DC 20402–0001 VerDate Feb 1 2002 09:13 Jan 16, 2003 Jkt 083684 PO 00000 Frm 00001 Fmt 5011 Sfmt 5011 C:\HEARINGS\83684.TXT SJUD4 PsN: CMORC COMMITTEE ON THE JUDICIARY PATRICK J. LEAHY, Vermont, Chairman EDWARD M. KENNEDY, Massachusetts ORRIN G. HATCH, Utah JOSEPH R. BIDEN, JR., Delaware STROM THURMOND, South Carolina HERBERT KOHL, Wisconsin CHARLES E. GRASSLEY, Iowa DIANNE FEINSTEIN, California ARLEN SPECTER, Pennsylvania RUSSELL D. FEINGOLD, Wisconsin JON KYL, Arizona CHARLES E. SCHUMER, New York MIKE DEWINE, Ohio RICHARD J. DURBIN, Illinois JEFF SESSIONS, Alabama MARIA CANTWELL, Washington SAM BROWNBACK, Kansas JOHN EDWARDS, North Carolina MITCH MCCONNELL, Kentucky BRUCE A. COHEN, Majority Chief Counsel and Staff Director SHARON PROST, Minority Chief Counsel MAKAN DELRAHIM, Minority Staff Director (II) VerDate Feb 1 2002 09:13 Jan 16, 2003 Jkt 083684 PO 00000 Frm 00002 Fmt 5904 Sfmt 5904 C:\HEARINGS\83684.TXT SJUD4 PsN: CMORC C O N T E N T S STATEMENTS OF COMMITTEE MEMBERS Page Brownback, Hon. Sam, a U.S. Senator from the State of Kansas ....................... 76 Cantwell, Hon. Maria, a U.S. Senator from the State of Washington ................ 77 Durbin, Hon. Richard J., a U.S. Senator from the State of Illinois .................... 85 Feinstein, Hon. Dianne, a U.S. Senator from the State of California ................. 1 Hatch, Hon. Orrin G., a U.S. Senator from the State of Utah ............................ 3 Kennedy, Hon. Edward M., a U.S. Senator from the State of Massachusetts ... 86 Leahy, Hon. Patrick J., a U.S. Senator from the State of Vermont .................... 86 Specter, Hon. Arlen, a U.S. Senator from the State of Pennsylvania ................. 15 WITNESSES Charo, R. Alta, Professor of Law and Medical Ethics, University of Wisconsin Law School, Madison, Wisconsin ........................................................................ 30 FitzGerald, Kevin, S.J., Georgetown University Medical Center, Washington, D.C. ........................................................................................................................ 44 Greely, Henry T., Professor of Law, and Director, Center for Law and the Biosciences, Stanford University, Stanford, California ..................................... 25 Greenwood, Hon. James C., a Representative in Congress from the State of Pennsylvania .................................................................................................... 12 Gulden, Kris, Coalition for the Advancement of Medical Research, Wash- ington, D.C. ........................................................................................................... 34 Kimbrell, Andrew, Executive Director, International Center for Technology Assessment, Washington, D.C. ........................................................................... 38 Weissman, Irving L., M.D., Chair, National Academies Panel on Scientific and Medical Aspects of Human Reproductive Cloning, and Professor, Stan- ford University School of Medicine, Stanford, California ................................. 20 Weldon, Hon. Dave, a Representative in Congress from the State of Florida .... 6 QUESTIONS AND ANSWERS Questions submitted by Senator Feinstein to the witnesses ............................... 65 Responses of Dr. Weissman to questions submitted by Senator Feinstein ........ 67 Responses of Mr. Greely to questions submitted by Senator Feinstein .............. 70 Responses of Ms. Charo to questions submitted by Senator Feinstein ............... 71 SUBMISSIONS FOR THE RECORD American Society for Cell Biology, Bethesda, Maryland, statement ................... 75 Citizens’ supporting legislation to prohibit cloning, joint statement .................. 79 CNN.com, article ...................................................................................................... 83 Coalition for the Advancement of Medical Research, Washington, D.C., state- ment ...................................................................................................................... 84 NewScientist.com, article ........................................................................................ 87 New York Times: editorial, January 19, 2002 .............................................................................. 88 Jack M. Balkin, article, January 30, 2002 ..................................................... 89 St. Louis Post-Dispatch, editorial, December 3, 2001 ........................................... 90 United Network for Organ Sharing, Richmond, Virginia, list ............................. 92 Verfaillie, Catherine, M.D., Professor of Medicine, and Director, Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota ........................... 96 Washington Post, editorial, January 22, 2002 ...................................................... 96 (III) VerDate Feb 1 2002 09:13 Jan 16, 2003 Jkt 083684 PO 00000 Frm 00003 Fmt 5904 Sfmt 5904 C:\HEARINGS\83684.TXT SJUD4 PsN: CMORC VerDate Feb 1 2002 09:13 Jan 16, 2003 Jkt 083684 PO 00000 Frm 00004 Fmt 5904 Sfmt 5904 C:\HEARINGS\83684.TXT SJUD4 PsN: CMORC HUMAN CLONING: MUST WE SACRIFICE MED- ICAL RESEARCH IN THE NAME OF A TOTAL BAN? TUESDAY, FEBRUARY 5, 2002 U.S. SENATE, COMMITTEE ON THE JUDICIARY, Washington, DC. The committee met, pursuant to notice, at 2:10 p.m., in room SD–226, Dirksen Senate Office Building, Hon. Dianne Feinstein presiding. Present: Senators Feinstein, Kennedy, Durbin, Hatch, Specter, DeWine, and Brownback. OPENING STATEMENT OF HON. DIANNE FEINSTEIN, A U.S. SENATOR FROM THE STATE OF CALIFORNIA Chairperson FEINSTEIN. I would like to begin by calling the hear- ing together and welcoming the two distinguished Members of Con- gress. I would like to begin by making a brief statement and then the Ranking Member, who will be for this hearing Senator Hatch, will be on his way over and he will make a brief statement. Do you gentlemen have a time problem, because if you do, I will accommodate you now. Mr. WELDON. I am fine. Mr. GREENWOOD. I am not leaving until he leaves. [Laughter.] Chairperson FEINSTEIN. Cloning seems to be one of those words and concepts that seems to inspire a lot of dread in people, visions of an apocalyptic world marching lockstep. However, as is the case with many medical technologies, it is not cloning that is the prob- lem, but some of its potential applications. For example, we are all concerned about the sale of human organs or the transplant of or- gans from executed prisoners, but few people argue that the solu- tion to these potential problems is to ban organ transplantation. The truth is that there is bad cloning and good cloning, I believe. Bad cloning is human cloning, the creation of carbon copies of whole human beings. Good cloning is nuclear transplantation to produce stem cells. There is broad agreement across our society, in Congress and in the scientific, medical and religious communities, that we should ban human cloning. Such cloning is scientifically unsafe, morally unacceptable, and ethically flawed. (1) VerDate Feb 1 2002 09:13 Jan 16, 2003 Jkt 083684 PO 00000 Frm 00005 Fmt 6633 Sfmt 6633 C:\HEARINGS\83684.TXT SJUD4 PsN: CMORC 2 However, at least to me, it is also clear, and I think to the over- whelming majority of the scientific and medical community, that we should not ban nuclear transplantation to produce stem cells. Many doctors and scientists have argued that we must protect our ability to use cloning techniques to try to save and improve the lives of those ravaged by disease and other ailments. In fact, nuclear transplantation offers enormous potential for pro- viding cures to diseases such as cancer, diabetes, cystic fibrosis, and heart disease, as well as conditions such as spinal cord inju- ries, liver damage, arthritis, and burns. This technique could allow the creation of bone marrow for trans- plants to leukemia victims, islet cells for the pancreas of a diabetic, heart or liver tissue to repair the damage caused by heart attacks or hepatitis, healthy skin for grafts for burn victims, and many other potential cures and treatments for a variety of diseases and ailments. Let me make a few points. First, nuclear transplantation could be used to create embryonic stem cells which could be used to make tissues, and even organs, for transplant. This would help relieve the serious shortage of tissues and organs for transplant. Over 50,000 Americans today are waiting for organ transplants, while hundreds of thousands more need tissue transplants. Tragically, over 5,000 people die a year because they can’t get the organs or the tissues they need to be donated, and many of these are very young children. Second, the use of nuclear transplantation to produce a tissue or organ could virtually eliminate the danger that the patient’s body would reject it. Nuclear transplantation techniques could allow the implantation of new cells or tissues that exactly match those of the person to whom they are implanted, greatly reducing the likelihood that
Recommended publications
  • Stem Cells Cloning Prons & Cons
    & Trans g ge in n n e s o l i s C Cloning and Transgenesis Kalodimou, Clon Transgen 2014, 3:3 ISSN: 2168-9849 DOI: 10.4172/2168-9849.1000127 Short Communication Open Access Stem Cells Cloning Prons & Cons Vasiliki E Kalodimou* Research and Regenerative Medicine Department, IASO Maternity Hospital, Athens, Greece *Corresponding author: Vasiliki E Kalodimou, Head of Flow Cytometry-Research and Regenerative Medicine Department, IASO Maternity Hospital, Athens, Greece, Tel: 0030-210-618-5; E-mail: [email protected] Rec date: May 16, 2014; Acc date: Jun 30, 2014; Pub date: July 2, 2014 Copyright: © 2014 Kalodimou VE. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Stem Cell Cloning the target cell. In principle, this may be dangerous, because the gene therapy vector can potentially modify the activity of neighboring genes Over the last several decades, the ideas of both stem cell research (positively or negatively) in close proximity to the insertion site or and cloning have received significantly more attention than ever even inactivate host genes by integrating into them [6]. These before; currently there are 23 open/completed clinical trials, together phenomena may contribute to the malignant transformation of the with a great deal of controversy. This new advances in medical targeted cells, ultimately resulting in cancer. Another major limitation technology had provide scientific with a new view of potential to help of using adult stem cells is that it is relatively difficult to maintain the people suffering from various diseases as well as to help them recover stem cell state during ex vivo manipulations.
    [Show full text]
  • Multipotent Cell Types in Primary Fibroblast Cell Lines Used to Clone Pigs Using Somatic Cell Nuclear Transfer Sharon J
    & Trans Harrison et al., Clon Transgen 2015, 4:2 g ge in n n e DOI: 10.4172/2168-9849.1000136 s o l i s C Cloning & Transgenesis ISSN: 2168-9849 Research Article Open Access Multipotent Cell Types in Primary Fibroblast Cell Lines Used to Clone Pigs using Somatic Cell Nuclear Transfer Sharon J. Harrison, Luke F.S. Beebe, Ivan Vassiliev, Stephen M. McIlfatrick and Mark B. Nottle* Reproductive Biotechnology Group, Centre for Stem Cell Research, Robinson Institute School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, South Australia, 5005, Australia Abstract We have previously demonstrated that the use of porcine mesenchymal stem cells (MSCs) isolated from the bone marrow can increase the proportion of somatic cell nuclear transfer (SCNT) embryos that develop to the blastocyst stage compared with adult fibroblasts obtained from the same animal. The aim of the present study was to determine if MSCs are also present in primary cultures of adult fibroblasts which are commonly used for cloning live animals. To do this we chose a primary culture of adult fibroblasts that we had previously used to clone pigs. Single cell clones were isolated using low-density plating. After seven days of culture 63% of colonies displayed typical fibroblast morphology, while the remainder appeared cobblestone-like in appearance. Two of the 57 clones that displayed fibroblast morphology differentiated into adipocytes but not chondrocytes or osteocytes (uni-potent clones). Three of the 33 cobblestone-like clones differentiated into chondrocytes only, while 3 differentiated into adipocytes and chondrocytes but not osteocytes (bi-potent clones). One of the bi-potent cobblestone-like clones was then used for SCNT and in vitro development compared with a fibroblast-like clone which did not differentiate.
    [Show full text]
  • Human Cloning and the Constitution
    Valparaiso University Law Review Volume 32 Number 2 Spring 1998 pp.469-542 Spring 1998 Human Cloning and the Constitution Clarke D. Forsythe Follow this and additional works at: https://scholar.valpo.edu/vulr Part of the Law Commons Recommended Citation Clarke D. Forsythe, Human Cloning and the Constitution, 32 Val. U. L. Rev. 469 (1998). Available at: https://scholar.valpo.edu/vulr/vol32/iss2/6 This Symposium is brought to you for free and open access by the Valparaiso University Law School at ValpoScholar. It has been accepted for inclusion in Valparaiso University Law Review by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. Forsythe: Human Cloning and the Constitution HUMAN CLONING AND THE CONSTITUTION CLARKE D. FoRSYTHE' The thing that has saved man from his limited visions in the past has been the difficulty of devising suitable means for reaching them.' I. INTRODUCTION The recent publicity given to the cloning of a sheep in Scotland and the January 1998 declaration by a Chicago physicist, Richard Seed, that he will attempt to clone a human being in the next few years have sparked public anxiety about real or imagined dangers of human cloning and spurred efforts in Congress and many states to prohibit human cloning. The scientific and public interest is not new; this is at least the third episode of intense publicity given to cloning over the past thirty years.2 This time, however, the technology apparently exists to make human cloning a reality in the near future.
    [Show full text]
  • Replication Study: Wnt Activity Defines Colon Cancer Stem Cells and Is
    REPLICATION STUDY Replication Study: Wnt activity defines colon cancer stem cells and is regulated by the microenvironment Anthony Essex1, Javier Pineda1, Grishma Acharya2, Hong Xin2, James Evans1, Reproducibility Project: Cancer Biology* 1PhenoVista Biosciences, San Diego, United States; 2Explora BioLabs Inc, San Diego, United States Abstract As part of the Reproducibility Project: Cancer Biology we published a Registered Report (Evans et al., 2015), that described how we intended to replicate selected experiments from the paper ‘Wnt activity defines colon cancer stem cells and is regulated by the microenvironment’ (Vermeulen et al., 2010). Here, we report the results. Using three independent primary spheroidal colon cancer cultures that expressed a Wnt reporter construct we observed high Wnt activity was associated with the cell surface markers CD133, CD166, and CD29, but not CD24 and CD44, while the original study found all five markers were correlated with high Wnt activity (Figure 2F; Vermeulen et al., 2010). Clonogenicity was highest in cells with high Wnt activity and clonogenic potential of cells with low Wnt activity were increased by myofibroblast-secreted factors, including HGF. While the effects were in the same direction as the original study (Figure 6D; Vermeulen et al., 2010) whether statistical significance was reached among the different conditions varied. When tested in vivo, we did not find a difference in tumorigenicity between high and low Wnt activity, while the original study found cells with high Wnt activity were more effective in inducing tumors (Figure 7E; Vermeulen et al., 2010). Tumorigenicity, however, was increased with *For correspondence: myofibroblast-secreted factors, which was in the same direction as the original study (Figure 7E; [email protected]; Vermeulen et al., 2010), but not statistically significant.
    [Show full text]
  • PER, Vol. XV, No.3, Summer 2002
    ........................................................................ Professional Ethics Report Publication of the American Association for the Advancement of Science Scientific Freedom, Responsibility & Law Program in collaboration with Committee on Scientific Freedom & Responsibility Professional Society Ethics Group VOLUME XV NUMBER 3 SUMMER 2002 Intellectual Property and Traditional Ecological nity. It does not belong to any single individual within the commu- Knowledge: Institutionally Globalized Biopiracy? nity, and is transmitted through specific cultural and traditional information exchange mechanisms. Traditional knowledge is often By Stephen A. Hansen maintained and transmitted orally through elders or specialists (breeders, healers, etc.), and often to only a select few people within Stephen A. Hansen, M.A. is a Senior Program Associate with a community. the Science and Human Rights Program in the Directorate for Science and Policy Programs of the AAAS, and is the Project The knowledge of and uses of specific plants for medicinal pur- Director for the Traditional Ecological Knowledge Project. He poses is an important component of traditional knowledge systems. developed the Traditional Ecological Knowledge Prior Art Once, this knowledge was a major source of materials and informa- Database (T.E.K.*P.A.D.), an index and search engine of tion for the development of pharmaceuticals. But in the 20th century, existing Internet-based, public domain documentation concern- new sources for antibiotics derived from soil cultures and
    [Show full text]
  • Targeting Chemoresistant Colorectal Cancer Via Systemic Administration of a BMP7 Variant
    Oncogene (2020) 39:987–1003 https://doi.org/10.1038/s41388-019-1047-4 ARTICLE Targeting chemoresistant colorectal cancer via systemic administration of a BMP7 variant 1 1 1 1 1 Veronica Veschi ● Laura R. Mangiapane ● Annalisa Nicotra ● Simone Di Franco ● Emanuela Scavo ● 1 1 2 1 1 1 Tiziana Apuzzo ● Davide S. Sardina ● Micol Fiori ● Antonina Benfante ● Maria L. Colorito ● Gianfranco Cocorullo ● 3,4 1 5 5 6 Felice Giuliante ● Calogero Cipolla ● Giuseppe Pistone ● Maria Rita Bongiorno ● Aroldo Rizzo ● 7 7 7 7 5 3,4 Courtney M. Tate ● Xiaohua Wu ● Scott Rowlinson ● Louis F. Stancato ● Matilde Todaro ● Ruggero De Maria ● Giorgio Stassi1 Received: 10 April 2019 / Revised: 23 September 2019 / Accepted: 25 September 2019 / Published online: 7 October 2019 © The Author(s) 2019. This article is published with open access Abstract Despite intense research and clinical efforts, patients affected by advanced colorectal cancer (CRC) have still a poor prognosis. The discovery of colorectal (CR) cancer stem cell (CSC) as the cell compartment responsible for tumor initiation and propagation may provide new opportunities for the development of new therapeutic strategies. Given the reduced 1234567890();,: 1234567890();,: sensitivity of CR-CSCs to chemotherapy and the ability of bone morphogenetic proteins (BMP) to promote colonic stem cell differentiation, we aimed to investigate whether an enhanced variant of BMP7 (BMP7v) could sensitize to chemotherapy- resistant CRC cells and tumors. Thirty-five primary human cultures enriched in CR-CSCs, including four from chemoresistant metastatic lesions, were used for in vitro studies and to generate CR-CSC-based mouse avatars to evaluate tumor growth and progression upon treatment with BMP7v alone or in combination with standard therapy or PI3K inhibitors.
    [Show full text]
  • The Constitutional Implications of Human Cloning
    Florida International University College of Law eCollections Faculty Publications Faculty Scholarship 2000 The Constitutional Implications of Human Cloning Elizabeth Price Foley Florida International University College of Law Follow this and additional works at: https://ecollections.law.fiu.edu/faculty_publications Part of the Constitutional Law Commons Recommended Citation Elizabeth Price Foley, The Constitutional Implications of Human Cloning , 42 Ariz. L. Rev. 647 (2000). Available at: https://ecollections.law.fiu.edu/faculty_publications/413 This Article is brought to you for free and open access by the Faculty Scholarship at eCollections. It has been accepted for inclusion in Faculty Publications by an authorized administrator of eCollections. For more information, please contact [email protected]. DATE DOWNLOADED: Mon Jul 13 16:11:09 2020 SOURCE: Content Downloaded from HeinOnline Citations: Bluebook 20th ed. Elizabeth Price Foley, The Constitutional Implications of Human Cloning, 42 Ariz. L. Rev. 647 (2000). ALWD 6th ed. Elizabeth Price Foley, The Constitutional Implications of Human Cloning, 42 Ariz. L. Rev. 647 (2000). APA 7th ed. Foley, E. (2000). The constitutional implications of human cloning. Arizona Law Review, 42(3), 647-730. Chicago 7th ed. Elizabeth Price Foley, "The Constitutional Implications of Human Cloning," Arizona Law Review 42, no. 3 (2000): 647-730 McGill Guide 9th ed. Elizabeth Price Foley, "The Constitutional Implications of Human Cloning" (2000) 42:3 Ariz L Rev 647. MLA 8th ed. Foley, Elizabeth Price. "The Constitutional Implications of Human Cloning." Arizona Law Review, vol. 42, no. 3, 2000, p. 647-730. HeinOnline. OSCOLA 4th ed. Elizabeth Price Foley, 'The Constitutional Implications of Human Cloning' (2000) 42 Ariz L Rev 647 Provided by: FIU College of Law -- Your use of this HeinOnline PDF indicates your acceptance of HeinOnline's Terms and Conditions of the license agreement available at https://heinonline.org/HOL/License -- The search text of this PDF is generated from uncorrected OCR text.
    [Show full text]
  • Telomere Shortening and Apoptosis in Telomerase-Inhibited Human Tumor Cells
    Downloaded from genesdev.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press Telomere shortening and apoptosis in telomerase-inhibited human tumor cells Xiaoling Zhang,1 Vernon Mar,1 Wen Zhou,1 Lea Harrington,2 and Murray O. Robinson1,3 1Department of Cancer Biology, Amgen, Thousand Oaks, California 91320 USA; 2Amgen Institute/Ontario Cancer Institute, Toronto, Ontario M5G2C1 Canada Despite a strong correlation between telomerase activity and malignancy, the outcome of telomerase inhibition in human tumor cells has not been examined. Here, we have addressed the role of telomerase activity in the proliferation of human tumor and immortal cells by inhibiting TERT function. Inducible dominant-negative mutants of hTERT dramatically reduced the level of endogenous telomerase activity in tumor cell lines. Clones with short telomeres continued to divide, then exhibited an increase in abnormal mitoses followed by massive apoptosis leading to the loss of the entire population. This cell death was telomere-length dependent, as cells with long telomeres were viable but exhibited telomere shortening at a rate similar to that of mortal cells. It appears that telomerase inhibition in cells with short telomeres lead to chromosomal damage, which in turn trigger apoptotic cell death. These results provide the first direct evidence that telomerase is required for the maintenance of human tumor and immortal cell viability, and suggest that tumors with short telomeres may be effectively and rapidly killed following telomerase inhibition. [Key Words: TERT; telomere; dominant negative; proliferation; cancer] Received June 4, 1999; revised version accepted August 3, 1999. The termini of most eukaryotic chromosomes are com- TEP1 binds the telomerase RNA and associates with posed of terminal repeats called telomeres.
    [Show full text]
  • My Life As a Clone
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Many Voices Poetry Slam & Creative Writing Collection Libraries at University of Nebraska-Lincoln Summer 8-6-2010 My life as a clone Rajkrishna Paul University of Nebraska at Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/manyvoicespoetry Part of the Creative Writing Commons, and the English Language and Literature Commons Paul, Rajkrishna, "My life as a clone" (2010). Many Voices Poetry Slam & Creative Writing Collection. 2. https://digitalcommons.unl.edu/manyvoicespoetry/2 This Article is brought to you for free and open access by the Libraries at University of Nebraska-Lincoln at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Many Voices Poetry Slam & Creative Writing Collection by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. MY LIFE AS A CLONE I am what, which I don’t know, of course, I am a living creature, but what exactly I am and how am I born, I didn’t got an idea. Whats my age? All of these are a hidden mystery. You might be thinking then what exactly do I want to tell you. Well I am a clone of Zehar, a scientist, he is the person who himself, cultivated a reproductive cloning on himself, to produce an exactly identical friend of his. Due to the extreme hardship for two rigorous, years, I am created, wonderfully by him. But there is some emotional sentimental part is related along my birth. I couldn’t able to accomplish true dream of Zehar, completely.
    [Show full text]
  • Gene Cloningcloningcloning
    GeneGeneGene CloningCloningCloning 20042004 SeungwookSeungwookKim Kim Chem.Chem. && Bio.Bio. Eng.Eng. Reference z T.A. Brown, Gene Cloning, Chapman and Hall z S.B. Primrose, Molecular Biotechnology, Blackwell 1 Why Gene Cloning is Important? z A century ago, Gregor Mendel : { Basic assumption (each heritable property of an organism) is controlled by a factor (gene). z In 1900, Mandel's law Æ the birth of genetics. z what these genes are and exactly how they work The Early Development of Genetics z In 1903, Sutton, W { Proposed that genes reside on chromosomes 2 z In 1910, Morgan, TH { Experimental backing on that --> development of the techniques for gene mapping (To establish the structure or structural details or location) { By 1922, a comprehensive analysis of the relative positions of over 2000 genes on the four chromosomes of the fruit fly. (Drosophilia melanogaster) z In 1944, Avery, MacLeod and McCarty z In 1952, Hershey and Chase { Experimental results were shown that DNA is the genetic material. { Conventional idea : genes were made of protein z In 1952-1966, Delbruck, Chargaff, Crick and Monod { The structure of DNA was elucidated. { The genetic code was cracked. { The process of transcription and translation were described. 3 The Advent of Gene Cloning z In the late 1960's ; The experimental techniques were not sophisticated. z In 1971 ~ 1973 ; A new experimental techniques were developed. { Recombinant DNA technology or Genetic engineering based on the process of gene cloning { This led to rapid and efficient DNA sequencing techniques that enabled the structures of individual genes to be determined. z In the 1990s ; started with massive genome sequencing projects including the human project.
    [Show full text]
  • Inhibition of Human Telomerase Enhances the Effect of the Tyrosine Kinase Inhibitor, Imatinib, in BCR-ABL-Positive Leukemia Cells1
    Vol. 8, 3341–3347, November 2002 Clinical Cancer Research 3341 Advances in Brief Inhibition of Human Telomerase Enhances the Effect of the Tyrosine Kinase Inhibitor, Imatinib, in BCR-ABL-positive Leukemia Cells1 Tetsuzo Tauchi,2 Akihiro Nakajima, by only two amino acids, exhibited normal morphology. The Goro Sashida, Takashi Shimamoto, evidence of apoptosis in the telomerase-inhibited cells was Junko H. Ohyashiki, Kenji Abe, determined by flow cytometric analysis with APO2.7 mono- clonal antibody. We also observed enhanced induction of Kohtaro Yamamoto, and Kazuma Ohyashiki apoptosis by imatinib seen in DN-hTERT-expressing K562 First Department of Internal Medicine, Tokyo Medical University, cells, as compared with WT-hTERT-expressing cells. Tokyo, 160-0023 [T. T., A. N., G. S., T. S., K. O.]; Intractable Conclusions: These results demonstrate that disruption Disease Research Center, Tokyo Medical University, Shinjuku-ku, Tokyo 160-0023 [J. H. O.]; and Department of Virology, Medical of telomere maintenance limits the cellular life span of leu- Research Institute, Tokyo Medical and Dental University, Tokyo, kemia cells and show that the combined use of imatinib and 113-8519 [K. A., K. Y.], Japan telomere maintenance inhibition may be effective in the treatment of BCR-ABL-positive leukemia. Abstract Purpose: Telomerase is a ribonucleoprotein enzyme Introduction that maintains protective structures at the ends of eukary- BCR-ABL is a chimeric oncoprotein generated by recip- otic chromosomes. Earlier findings have supported an rocal translocation between chromosomes 9 and 22 and impli- association between progressive telomere shortening in cated in the pathogenesis of Ph3-positive leukemia (1). BCR- the chronic phase of chronic myelogenous leukemia and the ABL fusion proteins exhibit elevated tyrosine kinase activity up-regulation of telomerase activity occurring late in and transforming properties (2, 3).
    [Show full text]
  • Colon Cancer Stem Cells
    Colon Cancer Stem Cells UNIT 3.1 Antonija Kreso1 and Catherine Adell O’Brien2, 3 1Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario, Canada 2Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada 3Department of Surgery, Division of General Surgery, University Health Network, Toronto, Ontario, Canada ABSTRACT This unit describes protocols for working with colon cancer stem cells. To work with these cells one must start by generating single-cell suspensions from human colon cancer tissue. These cell suspensions are sorted using flow cytometry–assisted cell sorting to fractionate the cells into tumor-initiating and nontumor-initiating subsets. Once the cells have been fractionated, they must be functionally tested to determine tumor-forming capacity, the gold standard being the in vivo xenograft assay. Methods have also been developed to grow these cells in vitro in a sphere-forming assay. This unit will describe how to isolate and functionally test colon cancer stem cells, as well as provide advice on the potential challenges of the research. Curr. Protoc. Stem Cell Biol. 7:3.1.1-3.1.12. C 2008 by John Wiley & Sons, Inc. Keywords: human colon cancer r cancer stem cells r in vivo xenograft assay r in vitro sphere assay INTRODUCTION This unit describes protocols for working with colon cancer stem cells (CSC). The ability to successfully carry out this work is dependent on obtaining fresh colon cancer specimens at the time of surgical resection. Tissue fragments are processed to generate a single-cell suspension, which can then be fractionated utilizing flow cytometry to isolate subpopulations based on differential expression of cell surface markers, such as CD133 (O’Brien et al., 2007; Ricci-Vitiani et al., 2007; Todaro et al., 2007).
    [Show full text]