<<

181

European Journal of -19-0184 are beneficialtoskeletalhealthsincetheyenhance factor (IGF-I)( elevated circulating levelsofGHandinsulin-likegrowth adenoma resultingin (GH) generallycausedbyapituitary characterized byexcessivesecretionofgrowthhormone is a chronic and disabling disease Introduction pathophysiological andclinicalinformation. associated withacromegalyandprovidesaperspectiveofpossibletherapeuticapproachesbasedonemerging of acromegalyandtheeffectivenessbone-activedrugsisunknown.Thisreviewanupdateonbonedisorders islow,thepredictionoffractureriskdifficulttoascertain,fracturesremainsaftercontrol and IGF-Iexcess.Themanagementofskeletalfragilityinacromegalyisachallenge,sincetheawarenessthis causes skeletalfragility,andvertebralfracturesarereportedinaremarkablenumberofsubjectsexposedtoGH enhanced leadingtodeteriorationofbonemicrostructureandimpairmentstrength.Indeed,acromegaly the maintenanceofskeletalarchitectureinadults.WhenGHandIGF-Iaresecretedexcess,boneremodeling is life, bystimulatinglongitudinalbonegrowthinchildren,theacquisitionofmassduringadolescenceand Growth (GH)andinsulin-likegrowthfactor-I(IGF-I)exertphysiologicalactionsontheskeletonthroughout Abstract The UConnMusculoskeletalInstitute,Health,Farmington,Connecticut,USA Clinical andResearchCenter,IRCCS,Rozzano,Milan,Italy, 1 Gherardo Mazziotti mechanisms andtreatment disordersassociatedwithacromegaly: MANAGEMENT OFENDOCRINEDISEASE Department ofBiomedicalSciences,HumanitasUniversity, https://doi.org/ https://eje.bioscientifica.com Review growth hormoneinbonemetabolism. ,particularly has madeseveralcontributions totheunderstandingofrolepituitary main field of interest is the neuroendocrinology of bone and during the last 15 years, Dr Mazziotti TumorPituitary CenterofExcellence of HumanitasResearch Center ofRozzano(MI),Italy. His of Milan,HeadMetabolicBoneDiseasesandOsteoporosis Sectionandbonespecialistinthe Gherardo Mazziotti Invited Author’s profile Under physiological conditions, GHandIGF-I 10.1530/EJE 1 ). -19-0184 1 , 2 , Andrea G A Lania , MD,PhDisanAssociateProfessorofEndocrinologyatHumanitas University 2 © 2019EuropeanSociety ofEndocrinology G Mazziottiandothers Printed inGreatBritain 1 , 2 and 2 Endocrine, DiabetesandAndrologyUnit,Humanitas 3 Departments ofOrthopaedicSurgeryandMedicine, Ernesto Canalis because offindingsdemonstratingthatGHandIGF-I in fractures ( overlooked asariskfactorforskeletalfragilityand characteristically enlargedbones,acromegalyhasbeen effects andthefactthatsubjectswithacromegalyhave and remodeling( longitudinal bonegrowth,aswellmodeling Bone andacromegaly Published byBioscientifica Ltd. 3 3 , 4 ). Recently, thisparadigmwasrevisited 2 ). Basedonthesephysiological Downloaded fromBioscientifica.com at09/26/202110:40:08AM (2019) Endocrinology European Journalof hunimed.eu gherardo.mazziotti@ Email to GMazziotti should be addressed Correspondence 181 181 :2 , R45–R56

R45 –R56 via freeaccess European Journal of Endocrinology https://eje.bioscientifica.com multinucleated cellsarisingfrommononuclearprecursors and ( basic multicellularunits(BMUs)bytheactivityof micro-damaged bonethroughoutlife. maintain and to remove potentially to of coupledboneresorptionandformation,necessary GH andIGF-Ialsostimulateboneremodeling,aprocess development or after growth and throughout life ( osteoclasts. Bonemodelingoccurseitherduringskeletal independent and uncoupledaction of osteoblastsand a processwherebybonesareshapedorreshapedbythe the actionsofGHandIGF-Ionbonemodeling( These effectsontheepiphysealplateareparalleledby stimulating chondrocyteproliferationanddifferentiation. a centralroleinendochondralboneformationby During the first two decades oflife, GH andIGF-I play the Physiology oftheGH-IGF-Iaxisin pathophysiological andclinicalinformation. of possibletherapeuticapproachesbasedonemerging associated withacromegalyandprovidesaperspective drugs inacromegalyareunknown( disease ( in subjectsfollowingthesuccessfultreatmentof bone mineraldensity(BMD)( is challengingsinceVFsarenotpredictedbychangesin increased riskofvertebralfractures(VFs)( bone architecture leadingtodecreasedbonestrengthand excess maycauseabnormalitiesintrabecularandcortical GH/IGF-I Review This reviewisanupdateonbonedisorders The managementofskeletalfragilityinacromegaly Bone remodelingiscarriedoutinmicroscopic 7 , 8 ) andtheefficacysafetyofbone-active OC OB CD OPG/RANKL Boneresorption Bone modeling/ Boneformation Endochond Ph r emodeling y 6 siolog 11 ), thefractureriskpersists G Mazziottiandothers , ra y l 5 12 ). ). Osteoclasts are 5 Conncectivecellfunction Chondrocytefunction ). impair Gr and peri Bone lossand o Ac Boneformation Boneresorption wth ofcart stru ed bonequality r omegaly ct ar ur Fig. 1 ticular es 9 ilag , 10 e ). ), and resorption In vitro ligand (RANKL)( are asignificantsource ofreceptoractivatorNFkappaB responsible for skeletal responses to mechanical load and and structuralstrengthofbone( that playsaroleinmaintainingthematerialproperties bone environmenttoformacommunicatingnetwork connect themamongthemselvesortoothercellsinthe ( into liningcellsorosteocytescandiebyapoptosis in thebonemarrowandtheycandifferentiatefurther Osteoblasts derivefrommesenchymalcellsthatreside months. with newmatrix,inaprocessthattakes3–5 the resorbedsurfaceattractsosteoblaststhatfillBMU weeks.Thereafter, resorption, aprocessthattakes3–5 of thehematopoieticlineageandareresponsibleforbone of IGF-I,synthesizedintheliverunderGHcontrol( and bone formation are mediated by the systemic form the osteoblastlineage,mostofeffectsinosteoblasts osteoblastic function( carboxylation ofosteocalcin,whichisamarker osteoblastogenesis ( proteins, whichalongwithWntplayaroleinenhancing also stimulatestheexpressionofbonemorphogenetic like-1, knowntosuppressfatandbonemass( expression offetalantigen1,thesolubleformdelta- indirectly ( ( control of IGF-I ( osteoblasts ( The GHreceptorisexpressedbychondrocytesand Bone andacromegaly 13 23 ? , , Although GHmayhavedirecteffectsoncellsof ARTHROPATHY OSTEOPATHY 14 24 , ). GHstimulates osteoblastogenesis directly or effectsofGHandIGF-Ionboneformation 15 ). Osteocyteshavecytoplasmicprocessesthat 25 18 , , 26 19 22 17 , , factor kappa- RANKL, Receptoractivatorofnuclear OC, ;OPG,osteoprotegerin; disease. CD,chondrocyte;OB, ; cells andcartilageinphysiology and -like growthfactor-I(IGF-I)onbone Effects ofgrowthhormone(GH)and Figure 1 ) and of IGF-binding proteins (IGFBPs) ). 27 20 28 ). Forexample,GHsuppressesthe , 31 21 , Downloaded fromBioscientifica.com at09/26/202110:40:08AM ). ) and its expression is under the 29 , Β 30 ligand. ). GHstimulatesthe 16 181 ). Osteocytesare :2 27 ). GH R46 32 via freeaccess ).

European Journal of Endocrinology following ovariectomyandskeletal unloadinginrats( formation andprotectsagainst thebonelossobserved Interestingly, recombinant IGFBP-2 stimulates bone circulating IGF-I concentrations in femalemice ( reflecting theprotective effectsofpersistentlyhigh inmale but notinfemalemice,possibly are observed in mineralizingsurface/bone surface ( abnormalities in trabecularbonestructure and reduction ( effectsof IGFBP-2 onosteoblastogenesis direct stimulatory volume ( causes adecreaseinboneformationandtrabecular deletion oftheIGF1receptor( periosteal boneformation( toareductionin decrease incorticalvolume,secondary display amodestskeletalphenotype,characterizedby 46 by theGH-independentlocalproductionofIGF-I( but normaltrabecularboneandthismaybeaccountedfor mouse) or theGH receptor exhibit reduced cortical bone, mutations intheGH-releasinghormonereceptor(lit/lit the maintenanceofcancellousbone( skeletal IGF-Iappearstoplayamoresignificantrolein tomaintaincorticalbonestructure,whereas necessary Pre-clinical studieshaveindicatedthatsystemicIGF-Iis and resorption In vivo increase ofIGF-IbioavailabilityinducedbyIGFBP-4. 44 cells andthefunctionsofosteoblastsosteoclasts( whereas IGFBP-4inhibitsthedifferentiationofprogenitor and -4.IGFBP-2stimulatesosteoblastogenesis( of bonemarrowmacrophages( enhances theformationofosteoclast-likecellsincultures preosteoclasts andmatureosteoclasts( osteoclastogenesis ( the expressionofRANKLand,asaconsequence, levels ofbonematrixandmass.IGF-1stimulates protease ( of matrixmetalloproteinase13,acollagen-degrading type I collagen transcription and decreases the synthesis the functionofmatureosteoblasts( modest effectsonosteoblastdifferentiationandenhances control ofparathyroidhormone(PTH)( osteoblasts is not enhanced by GH and is under the It is important to note that the synthesis of IGF-I in 41 Review ). The latter effects may be counteracted by a concomitant ). Thelattereffectsmaybecounteractedbyaconcomitant ). Similarly, aliver-specific micecarrying , Consistent withthe The effects of IGF-I on bone are modulated by IGFBP-2 The effectsofIGF-IonbonearemodulatedbyIGFBP-2 42 effectsofGHandIGF-Ionboneformation ), 48 36 Igfbp2 ). ), ensuring the maintenance of appropriate -null micehavelowosteocalcinlevels, 37 ). TheIGF-Ireceptorispresentin in vitro 47 ). Incontrast,theconditional Igf1r 40 / G Mazziottiandothers ex vivo ). ) inmurineosteoblasts 35 ). IGF-Iupregulates 38 49 studiesreporting 2 33 ). Mice carrying ). Micecarrying , ). Theseeffects , 39 34 Igf1 ), andIGF-I ). IGF-Ihas deletion 41 , 2 , 51 50 42 45 43 ). ). ), ), , , diagnosis rangesbetween40 and50 yearsofage( sex ratioiscloseto1and the meanageattimeof implications oftheseeffectsremainunclear( pulsatility, butthephysiologicalandpathophysiological and IGF-Imayinfluencecircadian PTHsecretionand in the proximal renal tubule by IGF-1 ( an effectmediatedbythestimulationof1 IGFBP-4, like that of IGFBP-5, is an inhibition of osteoblast IGFBP-4, likethatofIGFBP-5,isaninhibitionosteoblast it seems thattheprevalenteffectof these observations, IGFBP-4 protease-dependentmechanism( possibly becauseofincreasedIGFbioavailabilityviaan recombinant IGFBP-4exhibitedenhancedboneformation and osteoblastnumber( significant reductioninosteoidvolume,surface rate andmineralappositionrate,associatedwitha expressing osteoblastscausedadecreaseinboneformation ( effectsofIGFBP-4onosteoblastogenesis direct inhibitory reasons ofthesesex-relatedfindingsareunclear( mice haveadecreaseintrabecularbonevolume.The increased trabecularbone,whereasfemale recombinant IGFBP-4( overexpression of evaluated inmicefollowingtheinactivation( approximately 3–4cases/100,000 inhabitants( prevalence of30–60cases/100,000 andanincidenceof Acromegaly isachronic disease withanestimated clinical aspects Acromegaly: epidemiologyand rate andisindependentoftheactionsPTH( increase inthemaximaltubularphosphatereabsorption ( renal calciumreabsorptioninthedistaltubule( to an increase in intestinal calcium absorption ( of vitaminDleadstoapositivecalciumbalancesecondary production inexperimentalanimals( of vitaminDbyGHandIGF-I.stimulatescalcitriol ( GH andIGF-1regulatecalciumphosphatemetabolism metabolism Effects ofGHandIGF-Ioncalcium–phosphate function andboneformation( Bone andacromegaly 43 55 55 , ). Theanti-phosphaturiceffectofGHisduetoan ). Theseeffectsaremainlymediatedbytheactivation GH hasphosphate-retainingactionsinthekidney Consistent withthe The effectsofIGFBP-4ontheskeleton 44 ), thetransgenicoverexpressionof Igfbp4 44 52 Downloaded fromBioscientifica.com at09/26/202110:40:08AM , aswelltheadministrationof in vitro ). In contrast, mice administered ). Incontrast,miceadministered ). Igfbp4- 53 https://eje.bioscientifica.com , / ex vivo 54 null malemicehave ). 181 56 58 :2 findings of the findingsofthe ) andmen( ). The activation Igfbp4 α -hydroxylase 52 62 in vivo Igfbp4 ). Despite ). Despite 43 ). 60 in 63 43 61 64 59 ) orthe ). ). The ). Bglap

). GH R47 were , ) and -null 65 57 via freeaccess ). ), - European Journal of Endocrinology https://eje.bioscientifica.com concominant and ( mechanisms ( and arthropathysharecommon pathophsyiological ( one occurringduringnormalendochondralossification and osteoclastfunctiondirectlyinawaysimilartothe growth induced by GH excess may influence osteoblast osteoblasts ( toward cartilageoradipocytesinsteadofmature excess mayinducemesenchymalstemcellcommitment subjects withacromegaly, Belaya gene expression in sphenoid bone tissue samples of to enhancedosteoclastogenesis( to theactionsofIGF-IoninductionRANKLleading and IGF-I( turnover isdirectlyrelatedtothelevelsofcirculating GH markers ofboneturnover( were reportedinseveralstudiesevaluatingbiochemical The predominanteffects of GH excesson increase in bone resorption than in bone formation ( In acromegaly, boneturnoverisenhancedwithagreater and resorption Effects ofGHexcessonboneformation Bone disordersinuntreatedacromegaly with elevatedorequivocalserumIGF1levels( acromegaly andthistestshouldbeperformedinsubjects an oralglucosetolerancetestconfirmsthediagnosisof acromegaly ( < sample documentingthecoexistenceofaserumGHlevel GH secretionispulsatile;however, arandomserum not recommended in the diagnosisof acromegaly because levels ofIGF1( upon the identification of persistently elevated serum considered acomplicationofacromegaly. frank diabetesmellitus( , sleepapnea,impairedglucosetoleranceor atthetimeofdiagnosisarearterial frequently observed disease at the time of diagnosis ( of affectedindividualspresentwithcomplicationsthe followingtheonsetofdisease,majority 10 years the diagnosisofacromegalyisoftenmadeapproximately tumormasseffects.Because excess andtolocalizedpituitary symptoms andsignsattributabletobothGHIGF-1 74 0.4 Review ). Onemayspeculatethat acromegalicosteopathy The biochemical diagnosis of acromegaly is based The biochemicaldiagnosisofacromegalyisbased Acromegaly ischaracterizedbythepresenceof μ g/L and a normal IGF1 level excludes the diagnosis of g/L andanormalIGF1levelexcludesthediagnosisof 40 68 74 ). Theincreasedboneremodelingislikelydue i. 1 Fig. ). The lack of serum GH suppression during ). The lack of serum GH suppression during 67 ). Itwashypothesizedthatthecartilage ). The random sampling of serum GH is ). TherandomsamplingofserumGHis ), asproposedinindividuals with 66 69 ). Skeletalfragilityisoftennot , 70 , G Mazziottiandothers 64 et al 71 40 ). Comorbidities most ). Theincreasedbone , . suggestedthatGH 72 , 73 ). Analyzing 67 75 ). , 76 ). 6 ). trabecular thicknessandincreasedseparation et al structural changes inacromegaly( understanding ofthetrabecularandcorticalbone and histomorphometricanalysishasallowedabetter ( activity ofosteoclastsandosteoblastsatthetissuelevel an increaseintrabecularandcorticalbonemasshigh human studiesusinghistomorphometricanalysisrevealed are foundinsubjectswithacromegaly. Indeed,seminal competence ( trabecular andcorticalbonearchitecture andmechanical exhibit markedly increased bone resorption and impaired element a metallothionein1transcriptionalregulatory mouse modelsoverexpressingGHunderthecontrolof bone lossandabnormalitiesinstructure.Transgenic The increaseinboneturnoveracromegalymayleadto and architecture Effects ofGHexcessonbonehistomorphometry which isaffectedinadistinct mannerbyGH,possibly is mainlyrelatedtothe properties ofcorticalbone, ( but donotseemtobeacause offragilityfracturesinlong with acromegalyexplaintheincreasedincidenceofVFs The structuralabnormalitiesincancellousboneofsubjects Effects ofGHexcessonfracturerisk decreased corticaldensity( increased corticalporosity/porevolume( compartment isaffected,andGHexcessassociatedwith to these changes in cancellous bone, the cortical bone gonadal functionwasnormal( strength inactiveacromegalicpatientsevenwhen abnormalities intrabecularbonemicrostructureand studied ( closely correlatedwiththegonadalfunctionofsubjects subjects withacromegaly. Thesestructuralalterations and trabecularnumber in thedistaltibiaand radius of trabecular density, trabecularbonevolume/tissuevolume tomography (HR-pQCT),Madeira high-resolution-peripheral quantitativecomputerized with active acromegaly ( and alteredbiomechanicalcompetenceinsubjects with previousdatareportingabnormalbonearchitecture without acromegaly( in subjectswithacromegalyandVFscomparedto thickness was increased, but the cortical bone was porous demonstrating decreasedcancellousbone;cortical Bone andacromegaly 79 ). However, recentworkusingmicroarchitectural . recentlydescribedreducedtrabecularbonevolume, 3 , 83 4 , ). However, subsequent work demonstrated 66 77 ). Thefragilityoftheperipheral skeleton , 78 ). Abnormalitiesinbonestructurealso 81 Downloaded fromBioscientifica.com at09/26/202110:40:08AM ). Theseresultswereconsistent 85 82 ). ). Using the less invasive 84 et al , 80 85 181 . reporteddecreased ). DalleCarbonare , :2 86 81 ). Inaddition , 84 , 87 R48 ) and via freeaccess European Journal of Endocrinology publication ofX-rays. 40%, respectively( on aheightratiodecreaseof20–25%, 25–40%andmorethan approach, VFsweredefined mild, moderateandseverebased shape andheight.Accordingto aquantitativemorphometric the vertebralbodywithsixpointstodescribe fractures (arrows).Vertebralwereidentifiedmarking Vertebral X-raysoftwosubjectswithacromegalyandvertebral Figure 2 risk offractureswascorrelatedwiththedurationactive of theskeletalexposuretoGHandIGF-Iexcess,since provided suggestiveevidencethatVFsareaconsequence slightly greaterinmenthanwomen( control subjects( risk whichisthree-toeight-foldgreatercompared prevalence ofVFsinacromegalyisabout40%,afracture with acromegaly( of VFsinpre-menopausalwomenandmalesubjects consistently anddemonstratedanincreasedincidence In addition,cross-sectionalstudiesconfirmedthisfinding of VFs in post-menopausal women with acromegaly ( described forthefirsttimeanincreaseinprevalence morphometric approach ( mainly incancellousbone.Applyingaradiologicaland to highboneremodeling,anactivitythattakesplace stress risers on trabeculae. These effects are closely related fragility, whichisrelatedtofocalareasoferosioncreating model ofacromegaly( of inertia the femoral bone is high in an experimental lead toaporouscorticalbone.Interestingly, themoment potential negative effects of high bone remodeling that in corticalbonemass,whichmaypartcounteractthe periosteal boneformationwithaconsequentincrease trabecular bone.Moreover, GHhypersecretioninduces because boneremodelingislessactiveincorticalthan Review 89 6 91 ). Interestingly, theprevalenceofVFsis ). Thetwosubjectsconsentedto the , 92 88 , 93 ). GHexcesscausesvertebral 89 , ) ( 94 i. 2 Fig. , G Mazziottiandothers 95 ). Theoverallmedian ), Bonadonna 5 ). Arecentstudy t al et 90 ). . and thecontrolofclinical manifestationsofthe of thehormonalexcess, the removaloftumor The therapeuticgoalsinacromegaly arethenormalization Bone disordersintreated acromegaly effects areunclear. mass ( with prolongation of pulse duration and increase in pulse protein ( because of an increase in serum levels of -binding peripheral bioavailabilityofvitaminDinacromegaly consistently ( hypovitaminosis Disfoundinpatientswithacromegaly have backpain,impairedqualityoflifeandapossible VFs ( individuals withfractureshaveeithermultipleorsevere with acromegaly( ( thoracic spineandtheyareoftenanteriorwedgefractures radius ( peripheral HR-QCTofthebonestructureatdistal (DXA)oftheproximalfemurand absorptiometry histomorphometry, tridimensionaldual-energyX-ray of bonesamplesfromindividualswithacromegalyby bone microstructurewasfoundfollowingtheanalysis an associationbetweenfracturesandabnormalitiesin should beconsideredamarkerofskeletalfragility, since receptor thathasincreasedaffinityforGH( found inindividualsharboringanexon-3deficientGH disease ( and IGF-IonvitaminDactivationbythekidney( bone turnoverinducedbyGHexcess( part, amarkerofskeletalfragilityreflectingtheincreased IGF-I ( in thegutandtodirectantiphosphaturicactionof calcitriol-stimulated phosphateandcalciumabsorption and hypercalciuria ( andatendencytowardhypercalcemia Active acromegalyisassociatedwithmild phosphate metabolism Effects ofGHexcessoncalciumand acromegaly ( complicationsin worse outcomeofcardiopulmonary Bone andacromegaly 91 ), possiblycontributingtothekyphosisofsubjects Noteworthy, VFsdevelopmorefrequentlyinthe VFs arenota simple radiological finding butthey Notwithstanding the stimulatory effectsofGH Notwithstanding thestimulatory 95 55 104 81 7 ), maypredisposesubjectswithfracturesto 102 ). Hypercalciuria maybe considered,atleastin ). Moreover, ahigher incidence of fractures was , ); however, the skeletal implications of these 85 , 98 100 , 103 87 , 99 , ). ). GHexcessinfluencesPTHpulsatility 101 97 ). 55 ). Thefactthatmorethan50%of ). Thereisevidencesuggestinglower , Downloaded fromBioscientifica.com at09/26/202110:40:08AM 72 ), closely related to increased https://eje.bioscientifica.com 181 55 :2 ). 96 ). R49 55 via freeaccess ), European Journal of Endocrinology https://eje.bioscientifica.com bone remodeling. alterations inbonestructure orpersistentlyincreased ( microindentation in individuals with treated acromegaly level propertiesofcorticalboneasmeasuredbyimpact trabecular bonescore(TBS)( microstructure as assessedby DXA measurementof control ofacromegalyaretheimpairmenttrabecular skeletal fragilitypersistsnotwithstandingbiochemical VFs ( uncertain sinceallsubjectsincludedinthestudyhad these histomorphometricfindingsonfracturerisk was compared tothosewithactivedisease,buttheimpact of bone samples from patients with controlled acromegaly number and function and reduced number in Dalle Carbonare function isalteredintheseindividuals( do not offer a direct proof that osteoblast number or in subjectswithcontrolledacromegaly, butthestudies hypothesized thatosteoblastogenesismaybeimpaired structure, and a reduction in fracture risk. Recent studies turnover isaccompaniedbyanimprovementinbone ( turnover followingthebiochemicalcontrolofacromegaly a decreaseinserumlevelsofbiochemicalmarkersbone Cross-sectional and prospective studies have demonstrated phosphate metabolism bone structureandcalcium- Effects ofacromegalytherapyonboneturnover, in thosewhoarenotsurgicalcandidates( therapy in subjects with inoperable or residual disease or maybeusedasadjuvantoralternative radiosurgery any significant effect ontumor mass ( the GRApegvisomantnormalizesIGF-Ilevelswithout in controllingGHsecretionandtumorsize,whereas and second-generation()SSAsareeffective generation (i.e.octreotideLARandlanreotideautogel) selected casesasafirstlineoftreatment( or in in patientswith persistent disease after receptor antagonists(GRAs).Theseareusuallyprescribed of eitherlong-actingsomatostatinanalogs(SSAs)orGH ( tumors orthosewithneurologicalcomplications,suchas treatment, especiallyinsubjectsharboringfullyresectable Transsphenoidal isconsideredthefirstlineof surgery disease. Altogether, theseleadtoadecreaseinmortality. 109 5 ). However, itisunclearwhetherthedecreaseinbone Review Medical treatmentisbasedupontheadministration ). Thesemaybetheresultof permanent orirreversible 81 ). Furtherfindingstosupporttheconceptthat t al et 67 ). . reporteddecreasedosteoblast 108 G Mazziottiandothers ) andalteredtissue- 105 67 74 ). Stereotactic ). , 106 67 ). First- , 107 ). pre-existing (i.e.,prevalent)VFsareidentified( present ( acromegaly ( why fractureriskpersistsinsomepatientswithcured The persistentabnormalitiesinbonestructureexplain Effects ofacromegalytherapyonfracturerisk phosphate metabolismonskeletalfunctionisunknown. D excretion andinhibitsrenalsynthesisofdihydroxyvitamin a phosphaturicfactorthatpromotesrenalphosphate risk ( for the diagnosis of osteoporosis and prediction of fracture spine, totalhipandfemoralneckbyDXAisthemainstay In clinicalpractice,measurementofBMDatthelumbar Diagnosis ofosteopathyinacromegaly acromegaly-induced skeletalfragility Proposed approachtosubjectswith underlying disease. effects ofthedrugsfromthoseonactivity since thedesigndidnotallowtodiscriminateskeletal However, the results of these studies were inconclusive onfractureriskinacromegaly( some studiesinvestigatedthepossibleeffectsofSSAsand to changesinserumfibroblastgrowthfactor-23( the biochemicalcontrolofacromegalywasnotrelated ( of hypercalciuria increaseinserumPTH andsecondary serum calciumandphosphoruswiththenormalization accompanied by a significant and rapid decrease in of subjectsexposed to GHexcess have decreased BMD, excess ( be influencedbythebone enlargementcausedbyGH measured atthelumbarspine ( hypertrophy mayleadtoanoverestimationofBMD characterized byosteophyteformationandfacet-joint are notcapturedbyBMD.Degenerativejointalterations, microarchitecture associatedwithGHhypersecretion validated inacromegaly, whereabnormalities of bone the biochemical control of the disease ( have directeffectsonperipheraltargetsindependent of on thehypothesisthatdrugsusedinacromegalymay marker ofskeletalfragilityinacromegaly( latter findingisconsistentwiththeconceptthatVFsarea Bone andacromegaly 72 3 ( , The biochemicalcontrolofacromegalyisusually 113 110 122 123 ). Theimpactofthealterationsincalciumand , 7 ). Unfortunatly, thisapproachhasnotbeen , 111 114 ). Becauseofthesereasons, a limitednumber 7 ). Thedecreaseinserumphosphateafter , ), diabetesmellituscoexists( 8 ), particularly, whenhypogonadismis Downloaded fromBioscientifica.com at09/26/202110:40:08AM 5 ). Moreover, BMDcould 181 :2 116 118 115 , , 117 119 114 ) orwhen 7 , ). Based 8 , , ). The R50 121 120 112 via freeaccess ). ), ), European Journal of Endocrinology describing theshapeand heights ofvertebralbodies. ( applied toimagesofthespine acquiredeitherbyDXA ( isperformedonspinalX-rayimages morphometry depending on the risk profile at baseline. Quantitative months) 18 and duringtheirfollow-up(i.e.,every all subjectswithacromegalyatthetimeofdiagnosis the presenceofVFsbyamorphometricapproach in are all compelling reasons for a direct evaluation for mellitus( hypersecretion ( with acromegalicosteopathy. valuable intheassessmentandmanagementofindividuals non-invasive 3D-SHAPERandTBSassessmentscouldbe with acromegaly and VFs ( to fractures( low TBSvalueindicatesimpairedstructurethatisproned value reflectsbettertrabecularbonestructure,whereasa pixel gray-levelvariationsintheDXAimage.AhighTBS lumbar spineDXAimage.TBScapturesthemeanrateof level texturalmetricthatcanbeextractedfromthe2D using DXAimagesisthemeasurementofTBS,agray- simple andfeasibleapproachtoassessbonestructure VFs comparedtothosewithoutfractures( BMD at the proximal femur in acromegalic subjects with approach demonstratedadecreaseincorticalvolumetric proximal femur( layer independentofthetrabecularmacrostructureat 3D-SHAPER wasdevelopedtoanalyzethecorticalbone bone structureassessmentusingDXAimagestermed skeletal fragilityandpredisposedtoVFs.Anon-invasive the clinicianinidentification ofacromegalicswith are morefeasiblediagnostictechniquesthatmayassist dose limit their use in clinical practice. However, there HR-QCT ( with GHhypersecretionandVFsmaybeprovidedby evaluation ofbonemicrostructuralalterationsassociated identifying individuals withosteoporosis. A moreaccurate part duetoalackofspecificandstandardizedcut-offsfor value ofthisfindinginpredictingVFriskisunknown, reported tobedecreasedinacromegaly( by changesinthesizeofbones.Volumetric BMDwas independent fromthecorticalboneandisnotinfluenced determine thebonedensityoftrabecularcompartment VFs eveninthepresenceofnormalBMD( in acromegaly( and bone densityisnot a reliable predictor of fracture risk 130 129 Review The highincidenceoffracturesrelatedtoGH Volumetric BMDmeasuredbyQCTisusedto ) orbychestX-rays( ), althoughaquantitative approachmayalsobe 83 , 87 128 6 ), butthehighcostandincreasedradiation ). Subjectswithacromegalymaydevelop ). LowTBSvaluesarefoundinsubjects 126 6 ), untreatedhypogonadism( 115 ) andlumbarvertebrae( ) andpre-existingVFs( 99 85 , ). Based on this knowledge, 131 G Mazziottiandothers ). VFsareidentifiedby 124 90 , 85 125 , 91 ). Another 127 ), butthe , 95 ). This 7 ). , 7 8 ), ), ) However, somerecommendationsbasedontheexperience of acromegalic osteopathy cannotbeevidencebased. specific guidelineshavebeendeveloped.Thetreatment safety ofbone-activedrugsinacromegaly;therefore, no No studieshavebeenperformedontheeffectivenessand Treatment ofosteopathyinacromegaly bearing joints( of acromegaly, affectingbothweight-andnon-weight- of the most prevalent and invalidating complications bodies causedbyarthropathy( the presenceofosteophytesanddeformitiesvertebral when theyinvolvetheupperthoracicvertebrae,dueto mild VFsinacromegalymaybechallengingparticularly 40%, respectively( a height ratio decrease of 20–25%, 25–40% and over VFs aredefinedasmild,moderateandseverebasedon According toaquantitativemorphometricapproach, by summing the score of each individual fracture ( is ancompositemeasureofthegradeVFscalculated subjects withahigherspinedeformityindex( acromegaly with two ormore prevalent VFs ( inindividualswithcontrolled/cured has beenobserved of theunderlyingacromegaly. Infact,progressionofVFs or moderate-severepre-existingVFs,regardlessofthestate therapy may be considered in subjects with either multiple a few longitudinal studies on VFs ( subsequent therapeuticapproach.Basedontheresultsof of individuals with VFs may offer guidance on the treatment with bone-active drugs? The earlyidentification studies canbeconsidered. of onetheco-authors(GM)andresultsrecentclinical longitudinal studies ( skeletal exposuretoGHexcess. Basedontheresultsfrom tothe continued an effort to preventfractures secondary without VFsbutwithpersistently activeacromegalyin targeted therapy may also be considered in individuals ( coexistent riskfactorsforfractures,suchasuntreated therapeutic decision making, particularly in males with with skeletalfragility( in theidentificationofvertebraldeformitiesassociated tools, suchasTBSor3D-SHAPERDXAmayassistclinicians the analysis of bone structure by non-invasive diagnostic fractures in thepresence of arthropathy. Inthese cases, value andthepotentialpitfallsindiagnosisofthese VFs ismoreuncertain,becauseoftheirlowerpredictive The managementofacromegalicsubjectswithsinglemild Bone andacromegaly The fundamental question is who may benefit from a 132 7 ) anddiabetesmellitus( ). 89 7 , 85 ). Noteworthy, thediagnosisof 121 Downloaded fromBioscientifica.com at09/26/202110:40:08AM ). This could serve asaguidefor ). Thiscouldserve ), it may be reasonable to start Fig. 2 https://eje.bioscientifica.com 7 , ). Arthropathyisone 181 8 ), anti-osteoporotic :2 8 ) and in those 115 7 ). Bone- ), which R51 133 via freeaccess ). European Journal of Endocrinology https://eje.bioscientifica.com The authorthanksMaryYurczakfor secretarialassistance. Acknowledgements the public,commercialornot-for-profit sector. This research did not receive any specific grant from any funding agency in Funding nothing todeclare. has C E Pharma; and SPA, Ipsen from honoraria speaker speaker honorariafromEliLilly;AGLreceivedresearchgrantsand G M received consultant fees from Ipsen SPA and Novartis Farmaand Declaration ofinterest bone-active drugsinthisclinicalsetting. acromegaly andtoevaluatetheeffectivenesssafety of determinants ofskeletalfragilityinactiveandcontrolled risk of mortality. Studies are needed to identify the functionaswellanincreased life andcardio-respiratory due tothepotentialnegativeimpactofVFsonquality awareness ofthiscomplicationacromegalyisnecessary subjects withcontrolled/curedacromegaly. Clinical architecture andtherisk ofVFspersistseveninselected of acromegalyimprovesbutdoesnotrestoreskeletal toward hypercalcemia and hypercalciuria. Treatment accompanied bymildhyperphosphatemiaandatendency risk ofVFs.Theseskeletalabnormalitiesareusually abnormalities intrabecularbonestructureandhigh characterized byincreasedboneturnover, profound Osteopathy isanemergingcomplicationofacromegaly, Conclusions additional fractures. restore the trabecular bone microstructure and prevent enhanced ( control ofacromegalyandwhenboneremodelingisnot However, whenVFsprogressdespitethebiochemical remodeling andonthesynthesisofIGF-Ibyskeleton. effects on bone not be effective, due to their stimulatory Anabolic therapywithteriparatideorabaloparatidemight the effects of GH and IGF-I excess on bone remodeling. such asdenosumabandbisphosphonates,maycounteract inhibitors of osteoclastogenesis and bone resorption, setting. Basedonpathophysiologicalconsiderations, performed totesttheirefficacyandsafetyinthisclinical is anotherchallenge,sincenostudieshavebeen multimodal therapyforoneyearorlonger. factures whenacromegalyispersistentlyactivedespite anti-osteoporotic drugsinpatientswithoutprevalent Review The choiceofbone-activedrugstouseinacromegaly 6 , 72 ), anabolictherapymaybeconsideredto G Mazziottiandothers

References

Bone andacromegaly 13 12 11 10 17 16 15 14 7 6 5 9 8 3 2 1 4 Mazziotti G, Bianchi A,Porcelli T, Mormando M,Maffezzoni F, Mazziotti G, Biagioli E,Maffezzoni F, Spinello M,Serra V, Maroldi R, diseasesandbone. Mazziotti G, Frara S&Giustina A.Pituitary Vestergaard P &Mosekilde L.Fractureriskisdecreasedinacromegaly–a Bianco P &GehronRobey P. Marrowstromalstemcells. Mazziotti G, Bilezikian J,Canalis E,Cocchi D&Giustina A.New Parfitt AM. Theboneremodelingcompartment:acirculatory Langdahl B, Ferrari S&Dempster DW. Bonemodelingand Kobayashi S, Takahashi HE, Ito A,Saito N,Nawata M,Horiuchi H, Claessen KM, Kroon HM,Pereira AM,Appelman-Dijkstra NM, Vestergaard P, Jorgensen JO,Hagen C, Hoeck HC,Laurberg P, Giustina A, Mazziotti G&Canalis E.Growthhormone,insulin-like Ben-Shlomo A &Melmed S.Acromegaly. O'Brien CA, Nakashima T&Takayanagi H. Osteocytecontrolof Seeman E &Delmas PD.Bonequality –thematerialandstructural Park D, Spencer JA,Koh BI,Kobayashi T, Fujisaki J,Clemens TL, Canalis E. Thefateofcirculating osteoblasts. org/10.1210/jc.2014-2937) Endocrinology andMetabolism fracture riskinacromegaly:ameta-analysis. Floriani I &Giustina A.Boneturnover, bonemineraldensity, and 00005) Endocrine Reviews 2004 potential beneficialeffectofgrowthhormone. 159–167. –acase-controlstudy. Fracture riskisincreasedinpatientswithGHdeficiencyoruntreated 58–69. understanding andtreatmentsforosteoporosis. 2001 function forboneliningcells. 225–235. osteoporosis. remodeling: potentialastherapeutictargetsforthetreatmentof org/10.1016/S8756-3282(02)00947-X) in humaniliacbone. Ohta H, Ito A,Iorio R,Yamamoto N doi.org/10.1210/jc.2013-2695) Clinical EndocrinologyandMetabolism control ofacromegaly:aprospectivefollow-upstudy. Progression ofvertebralfracturesdespitelong-termbiochemical Verstegen MJ, Kloppenburg M,Hamdy NA&Biermasz NR. (https://doi.org/10.1210/jc.2013-1460) ofClinicalEndocrinologyandMetabolism Journal fractures inpatientswithacromegaly:a3-yearprospectivestudy. Cristiano A, Giampietro A,DeMarinis L&Giustina A.Vertebral Rejnmark L, Brixen K,Weeke J, Andersen M,Conceicao FL (https://doi.org/10.1210/er.2007-0036) growth factors,andtheskeleton. org/10.1016/j.ecl.2007.10.002) America Metabolism ClinicsofNorth bone.2012.08.121) osteoclastogenesis. 2006 basis ofbonestrengthandfragility. org/10.1016/j.stem.2012.02.003) and regeneration. MSCs aredynamic,fate-restrictedparticipantsinbonemaintenance Lin CP, Kronenberg HM&Scadden DT. Endogenousbonemarrow NEJMe058080) of Medicine JCI10413) Clinical Investigation 15 16 354 (https://doi.org/10.1007/s12020-011-9570-2) 155–159. 1583–1585. 2250–2261. (https://doi.org/10.1046/j.0300-0664.2001.01464.x) (https://doi.org/10.1177/1759720X16670154) 2005 Therapeutic AdvancesinMusculoskeletalDisease 352 2018 (https://doi.org/10.1007/s00198-003-1531-z) Cell Stem Bone 2000 2014–2016. (https://doi.org/10.1359/jbmr.2001.16.9.1583) Bone (https://doi.org/10.1056/NEJMra053077) 39 2013 440–488. 105 2003 Downloaded fromBioscientifica.com at09/26/202110:40:08AM 2015 54 1663–1668. Journal ofBoneandMineralResearchJournal 2012 32 258–263. Endocrine Reviews (https://doi.org/10.1056/ 2008 100 163–169. New England Journal ofMedicine New EnglandJournal (https://doi.org/10.1210/er.2018- et al. 2013 10 Clinical Endocrinology 384–394. 259–272. 37 Trabecular minimodeling Endocrinology and 98 (https://doi.org/10.1172/ (https://doi.org/10.1016/j. 181 101–122. Journal ofClinical Journal Osteoporosis International New England Journal New EnglandJournal (https://doi. 4808–4815. 2013 :2 Endocrine (https://doi. 2008 (https://doi. 98 (https://doi. Journal of Journal 3402–3410. Journal of Journal 29 2012 (https:// 2002 et al. 2016 535–559. R52 41

56

8 via freeaccess

European Journal of Endocrinology

33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 Review McCarthy TL, Centrella M&Canalis E. CyclicAMPinducesinsulin- Ohlsson C, Bengtsson BA,Isaksson OG,Andreassen TT& Hubina E, Lakatos P, Kovacs L,Szabolcs I,Racz K,Toth M, Szucs N& Krishnan V, &Macdougald OA.Regulationofbonemass Bryant HU Bennett CN, Longo KA,Wright WS, Suva LJ,Lane TF, Hankenson KD Canalis E, Economides AN&Gazzerro E.Bonemorphogenetic Abdallah BM, Ding M,Jensen CH,Ditzel N,Flyvbjerg A,Jensen TG, Abdallah BM, Boissy P, Tan Q, Dahlgaard J,Traustadottir GA, Gevers EF, Loveridge N&Robinson IC.Bonemarrow adipocytes:a Slootweg MC, Ohlsson C,vanElk EJ,Netelenbos JC&Andress DL. Slootweg MC, Ohlsson C,Salles JP, deVries CP &Netelenbos JC. Leung K, Rajkovic IA,Peters E,Markus I,Van Wyk JJ &Ho KK. Nilsson A, Swolin D,Enerback S&Ohlsson C.Expressionof Kassem M, Mosekilde L&Eriksen EF. Growthhormonestimulates Werther GA, Haynes K,Edmonson S,Oakes S,Buchanan CJ, Barnard R, Ng KW, Martin TJ&Waters MJ. Growthhormone(GH) of BiologicalChemistry like growthfactorIsynthesisinosteoblast-enriched cultures. 55–79. Slootweg MC. Growthhormoneand bone. (https://doi.org/10.1007/s00223-002-2149-4) in GH-deficientadults. on serumcarboxylatedandundercarboxylated osteocalcinlevels Goth MI. Effectsof24monthsgrowthhormone(GH)treatment 1202–1209. by Wntsignaling. pnas.0408742102) by Wnt10b. & MacDougald OA.Regulationofosteoblastogenesisandbonemass 24 proteins, theirantagonists,andtheskeleton. (https://doi.org/10.1210/en.2007-0171) modulated bygrowthhormone. endocrine regulatorofboneandfatmassitsserumlevelis Dagnaes-Hansen F, Gasser JA&Kassem M.Dlk1/FA1 isanovel 2007 and immuneresponse-relatedfactors. cells bymodulatinggeneexpressionofpro-inflammatory regulates thefunctionofhumanbonemarrowmesenchymalstem Kupisiewicz K, Laborda J,Delaisse JM&Kassem M.dlk1/FA1 4065–4073. neglected targettissueforgrowthhormone. Regulation growth factorbindingprotein5inratosteosarcoma cells. Growth hormonereceptoractivityisstimulatedbyinsulin-like endo.136.10.7545101) cells. hormone receptorbindingandmitogenesisinratosteosarcoma Insulin-like binding proteins-2 and -3 stimulate growth 2694–2702. feedback loopregulatingGHaction. hormone (GH)receptorsinratosteoblasts:evidenceforaperipheral Insulin-like growthfactorIandinsulindown-regulate 3483–3488. like cells. functional growthhormonereceptorsinculturedhumanosteoblast- precursor cellsinvitro. proliferation ofnormalhumanbonemarrowstromalosteoblast org/10.1111/j.1651-2227.1993.tb12929.x) Supplement receptors onhumangrowthplatechondrocytes. Herington AC &Waters MJ. Identificationofgrowthhormone endo-128-3-1459) to GH. receptors inclonalosteoblast-likecellsmediateamitogenicresponse 218–235. Endocrinology 282 (https://doi.org/10.1210/edrv.19.1.0324) Endocrinology 7339–7351. Journal ofClinicalEndocrinologyand Metabolism Journal 1996 1993 (https://doi.org/10.1210/en.2002-220428) (https://doi.org/10.1172/JCI28551) (https://doi.org/10.1210/endo.137.7.8770888) (https://doi.org/10.1210/jcem.80.12.8530587) PNAS (https://doi.org/10.1210/er.2002-0023) 6 82 238–246. 2005 Journal ofClinicalInvestigation Journal 1995 (Supplement391)50–53. 1991 1990 (https://doi.org/10.1074/jbc.M607530200) Calcified Tissue International Growth Regulation 102 136 128 265 3324–3329. 4210–4217. 1459–1464. 15353–15356. Endocrinology Endocrinology G Mazziottiandothers Journal ofBiologicalChemistry Journal (https://doi.org/10.1073/ 1994 (https://doi.org/10.1210/ (https://doi.org/10.1210/ Endocrine Reviews Endocrinology Endocrine Reviews 2007 (https://doi. 4 2006 131–135. Acta Paediatrica 1996 2004 148 116 137 3111–3121. 1995 74 2002 Growth

55–59.

1998 Journal Journal 80 2003 143

19

Bone andacromegaly 48 47 40 39 38 37 36 35 34 46 45 44 43 42 41 Zhang M, Xuan S,Bouxsein ML,von Stechow D,Akeno N, Sjogren K, Sheng M,Moverare S,Liu JL,Wallenius K, Tornell J, Ueland T. GH/IGF-Iandboneresorptioninvivovitro. Fiorelli G, Formigli L,ZecchiOrlandini S,Gori F, Falchetti A, Hou P, Sato T, Hofstetter W&Foged NT. Identificationand Mochizuki H, Hakeda Y, Wakatsuki N, Usui N,Akashi S,Sato T, Canalis E, Rydziel S,Delany AM,Varghese S &Jeffrey JJ.Insulin- Canalis E. EffectofinsulinlikegrowthfactorIonDNAandprotein Ohlsson C, Nilsson A,Isaksson O&Lindahl A.Growthhormone Sims NA, Clement-Lacroix P, DaPonte F, Bouali Y, Binart N, Zhou Y, Xu BC,Maheshwari HG,He L,Reed M,Lozykowski M, Zhang M, Faugere MC,Malluche H,Rosen CJ,Chernausek SD& Maridas DE, DeMambro VE,Le PT, Nagano K,Baron R,Mohan S& Xi G, Wai C, DeMambro V, Rosen CJ&Clemmons DR.IGFBP-2 DeMambro VE, Le PT, Guntur AR,Maridas DE,Canalis E, receptor generevealsanessentialrole ofIGFsignalinginbone Osteoblast-specific knockoutofthe insulin-likegrowthfactor(IGF) Faugere MC, Malluche H,Zhao G,Rosen CJ, Efstratiadis A org/10.1359/jbmr.2002.17.11.1977) ofBoneandMineralResearchJournal derived insulin-likegrowthfactorIonbonemetabolisminmice. Isaksson O, Jansson JO,Mohan S&Ohlsson C.Effectsofliver- 2000 by IGF-IbutindependentofStat5. Bone homeostasisingrowthhormonereceptor-nullmiceisrestored European Journal ofEndocrinology European Journal 3282(95)00485-8) cells. and functionofthereceptorforIGF-Iinhumanpreosteoclastic Morelli A, Tanini A, Benvenuti S&Brandi ML.Characterization 534–540. rabbit osteoclasts. characterization oftheinsulin-likegrowthfactorIreceptorinmature 1075–1080. formation andactivationofosteoclasts. Tanaka K &Kumegawa M.Insulin-likegrowthfactor-Isupports org/10.1210/endo.136.4.7895645) bone cellcultures. like growthfactorsinhibitinterstitialcollagenasesynthesisin 66 synthesis inculturedratcalvaria. org/10.1073/pnas.89.20.9826) rat tibialgrowthplate. induces multiplicationoftheslowlycyclinggerminalcells Moriggl R, Goffin V, Coschigano K,Gaillard-Kelly M,Kopchick J pnas.94.24.13215) mouse). mouse growthhormonereceptor/bindingproteingene(theLaron model forLaronsyndromeproducedbytargeteddisruptionofthe Okada S, Cataldo L,Coschigamo K,Wagner TE (https://doi.org/10.1359/jbmr.2003.18.5.836) retardation. transgenic micedecreasesboneturnoverandcausesglobalgrowth Clemens TL. ParacrineoverexpressionofIGFBP-4inosteoblasts org/10.1530/JOE-16-0673) manner. Rosen CJ. IGFBP-4regulatesadultskeletalgrowthinasex-specific jbmr.2282) Mineral Research directly stimulatesosteoblastdifferentiation. org/10.1210/en.2014-1452) bone loss. ovariectomized miceenhancesenergyexpenditurebutaccelerates Nagano K, Baron R,Clemmons DR&Rosen CJ.Igfbp2deletionin org/10.1530/eje.1.01874) 709–719. Bone 106 PNAS Journal ofEndocrinology Journal 1095–1103. (https://doi.org/10.1359/jbmr.1997.12.4.534) 1996 Endocrinology (https://doi.org/10.1210/endo.131.3.1505451) Journal ofBoneandMineralResearchJournal (https://doi.org/10.1172/JCI109908) 1997 2014 18 Journal ofBoneandMineralResearchJournal Endocrinology 269–276. 94 29 (https://doi.org/10.1172/JCI10753) 13215–13220. PNAS 2015 2427–2438. Downloaded fromBioscientifica.com at09/26/202110:40:08AM 1992 (https://doi.org/10.1016/8756- 156 2017 1995 2005 Journal ofClinicalInvestigation Journal 4129–4140. 89 2002 Journal ofClinicalInvestigation Journal https://eje.bioscientifica.com 9826–9830. (https://doi.org/10.1002/ 233 136 (https://doi.org/10.1073/ 152 Endocrinology 17 131–144. 1348–1354. 327–332. 181 1977–1987. Journal ofBoneand Journal (https://doi. :2 2003 et al. (https://doi. Amammalian (https://doi. (https://doi. 1992 1997 18 (https://doi. 836–843. (https://doi. et al. 131 12

R53

1980

et al. via freeaccess

European Journal of Endocrinology https://eje.bioscientifica.com

52 51 50 49 63 62 61 60 59 58 57 56 55 54 53 Review Miyakoshi N, Qin X,Kasukawa Y, Richman C,Srivastava AK, Conover CA, Johnstone EW, Turner RT, Evans GL,JohnBallard FJ, Xi G, Rosen CJ&Clemmons DR.IGF-IandIGFBP-2stimulate DeMambro VE, Clemmons DR,Horton LG,Bouxsein ML,Wood TL, Fernandez A, Karavitaki N&Wass JA. Prevalenceofpituitary Chiavistelli S, Giustina A&Mazziotti G. Parathyroidhormone &Abramow M.Effectofgrowthhormoneon tubular Corvilain J Kamenicky P, Blanchard A,Gauci C,Salenave S,Letierce A, Suzuki Y, Landowski CP&Hediger MA.Mechanismsandregulation Menaa C, Vrtovsnik F, &Garabedian M. Friedlander G,Corvol M hormones Brown DJ, Spanos E&MacIntyre I.Roleofpituitary Spanos E, Barrett D,MacIntyre I,Pike JW, Safilian EF&Haussler MR. Kamenicky P, Mazziotti G,Lombes M,Giustina A&Chanson P. Durant D, Pereira RM&Canalis E.Overexpressionofinsulin-like Devlin RD, Du Z,Buccilli V, Jorgetti V&Canalis E.Transgenic an IGFBP-4protease-dependentmechanism. formation parametersinmicebyincreasingIGFbioavailabilityvia growth factor(IGF)-bindingprotein-4(IGFBP-4)increasesbone Baylink DJ &Mohan S.Systemicadministrationofinsulin-like 12 model ofdisuseosteoporosis. bone formationandpreventslossofmineraldensityinarat growth factor(IGF)-II/IGFbindingprotein-2complexstimulates Doran PM &Khosla S.Subcutaneousadministrationofinsulin-like org/10.1210/en.2015-1690) differentiation. AMPK activationandautophagy, whicharerequiredforosteoblast 2008 turnover andskeletalarchitecture inigfbp-2-nullmice. Beamer WG, Canalis E&Rosen CJ.Gender-specificchangesinbone 44005–44012. matrix mineralization. adenomas: a community-based, cross-sectional study in Banbury adenomas: acommunity-based,cross-sectional studyinBanbury 14049. pulsatility: physiologicalandclinical aspects. org/10.1172/JCI105036) ofClinicalInvestigation Journal transport ofphosphateinnormalandparathyroidectomizeddogs. 3188) Metabolism lies behindhypercalciuria? Pathophysiology ofrenalcalciumhandlinginacromegaly:what Lombes M, Brailly-Tabard S, Azizi M,Prie D,Souberbielle JC physiol.69.031905.161003) of Physiology of epithelialCa2+absorptioninhealthanddisease. (https://doi.org/10.1074/jbc.270.43.25461) kidney cells. of 1,25-dihydroxyvitaminD3production.Studiesinculturedmouse Insulin-like growthfactorI,auniquecalcium-dependentstimulator 277–278. in regulatingrenalvitaminDmetabolismman. 273 Effect ofgrowthhormoneonvitaminDmetabolism. 35 pathophysiological andclinicalimplications. ,insulin-likegrowthfactor-1,andthekidney: bone.2004.08.011) in vitro. growth factorbindingprotein-5decreasesosteoblasticfunction en.2002-220129) Endocrinology display transientlydecreasedosteoblasticfunctionandosteopenia. mice overexpressinginsulin-likegrowthfactorbindingprotein-5 2641–2648. 234–281. 178–183. 246–247. 149 (https://doi.org/10.1038/boneres.2014.49) Bone 2051–2061. (https://doi.org/10.1136/bmj.280.6210.277) 2012 (https://doi.org/10.1210/endo.142.6.8192) 2008 Journal ofBiologicalChemistry Journal 2002 (https://doi.org/10.1210/er.2013-1071) (https://doi.org/10.1016/S1096-6374(02)00044-8) 2004 (https://doi.org/10.1038/273246a0) (https://doi.org/10.1074/jbc.M208265200) Endocrinology 97 70 143 35 2124–2133. 257–271. 1256–1262. (https://doi.org/10.1210/en.2007-1068) Journal ofBiologicalChemistry Journal 3955–3962. Journal ofClinicalEndocrinologyand Journal 2016 1964 Growth Hormone andIGFResearchGrowth Hormone (https://doi.org/10.1146/annurev. (https://doi.org/10.1210/jc.2011- (https://doi.org/10.1016/j. 157 43 (https://doi.org/10.1210/ G Mazziottiandothers 1608–1612. 268–281. 1995 Endocrinology Bone Research Endocrine Reviews 270 (https://doi. BMJ (https://doi. Annual Review 2002 25461–25467. Nature 1980 Endocrinology 2001 277 2015 1978 et al. 280

2014 2002 142

3

Bone andacromegaly 66 65 64 70 69 68 78 77 76 75 74 73 72 71 67 Petrossians P, Daly AF, Natchev E,Maione L,Blijdorp K,Sahnoun- Burton T, &Ludlam WH.Incidenceand LeNestour E,Neary M Reid TJ, Post KD,Bruce JN,NabiKanibir M,Reyes-Vidal CM & Scillitani A, Chiodini I,Carnevale V, Giannatempo GM,Frusciante V, Stepan J, Marek J,Havranek T, Dolezal V&Pacovsky V. Bone Giustina A, Barkan A,Casanueva FF, Cavagnini F, Frohman L,Ho K, Katznelson L, Laws ER,Jr, Melmed S,Molitch ME,Murad MH,Utz A, Lim SV, Marenzana M, Hopkinson M,List EO,Kopchick JJ,Pereira M, Tseng KF &Goldstein SA.Systemicover-secretionof growth Komori T. Runx2,aninducerofosteoblastandchondrocyte Maruotti N, Corrado A&Cantatore FP. Osteoblastrolein Belaya Z, Grebennikova T, Melnichenko G,Nikitin A, Ozer FF, Dagdelen S&Erbas T. RelationofRANKLandOPGlevels Constantin T, Tangpricha V, Shah R,Oyesiku NM,Ioachimescu OC, Ueland T, Bollerslev J,Godang K,Muller F, Froland SS&Aukrust P. Fathallah M, Auriemma R,Diallo AM,Hulting AL,Ferone D 2016 prevalence ofacromegalyinalargeUShealthplandatabase. 203–208. recognized andunder-diagnosed. did notchangefrom1981to2006:acromegalyremainsunder- Freda PU. Featuresatdiagnosisof324patientswithacromegaly doi.org/10.1111/j.1365-2265.2009.03667.x) (Oxfordshire, UK). growth hormoneexpressioninmale GHtransgenicmiceadversely Villella M, Pileri M,Guglielmi G,DiGiorgio A,Modoni S 355–363. isoenzyme ofserumalkalinephosphataseinacromegaly. jcem.85.2.6363) and Metabolism acromegaly: aconsensusstatement. Veldhuis J, Wass J, Von Werder K &Melmed S.Criteriaforcureof 99 practice guideline. Wass JA &EndocrineSociety. Acromegaly:anEndocrineSocietyclinical (https://doi.org/10.1530/ERC-17-0253) (LAS)Database. Survey Acromegaly atdiagnosisin3173patientsfromtheLiege Javaheri B, Roux JP, Chavassieux P, Korbonits M 13 modeling andadaptation. hormone intransgenicmiceresultsaspecificpatternofskeletal (https://doi.org/10.1007/s00418-018-1640-6) differentiation. 2957–2963. osteoarthritis pathogenesis. 178 microRNA expressionpatterns. & Dedov I.EffectsofactiveacromegalyonbonemRNAand Solodovnikov A, Brovkina O,Grigoriev A,Rozhinskaya L,Lutsenko A andMetabolicResearchHormone with boneresorptioninpatientsacromegalyandprolactinoma. org/10.1210/jc.2016-3693) Endocrinology andMetabolism in acromegaly:aprospective,controlledstudy. Ritchie J &Ioachimescu AG.Calciumandboneturnovermarkers 685–690. role inbonehomeostasis. persistent immuneactivationorglucocorticoidexcess–possible Increased serumosteoprotegerinindisorderscharacterizedby org/10.1359/jbmr.1997.12.10.1729) ofBoneandMineralResearchJournal growth hormoneexcessinamenorrhealandmenstruatingpatients. Skeletal involvementinfemaleacromegalicsubjects:theeffectsof ofClinicalChemistry Journal Chimica Acta:International 3933–3951. 706–715. 353–364. 19 262–267. (https://doi.org/10.1111/j.1365-2265.2009.03626.x) (https://doi.org/10.1016/0009-8981(79)90285-7) (https://doi.org/10.1530/eje.0.1450685) (https://doi.org/10.1002/jcp.25969) (https://doi.org/10.1359/jbmr.1998.13.4.706) (https://doi.org/10.1530/EJE-17-0772) (https://doi.org/10.1210/jc.2014-2700) 2000 Histochemistry andCellBiology Histochemistry Journal ofClinicalEndocrinologyand Metabolism Journal (https://doi.org/10.1007/s11102-015-0701-2) Clinical Endocrinology 85 Endocrine-Related Cancer 526–529. European Journal ofEndocrinology European Journal Journal ofBoneandMineralResearchJournal Downloaded fromBioscientifica.com at09/26/202110:40:08AM Journal ofCellularPhysiology Journal 2017 2018 European Journal ofEndocrinology European Journal Clinical Endocrinology (https://doi.org/10.1210/ 102 1997 Journal ofClinicalEndocrinology Journal 50 2416–2424. 562–567. 2010 12 181 1729–1736. 2018 72 2017 Journal ofClinical Journal :2 et al. 377–382. 149 (https://doi. Excessive 24 1979 2010 313–323. 2017 505–518. (https://doi. Clinica et al. 2001 (https:// 93 et al. 72 Pituitary 1998 232

R54

2014 2014 2018

145

via freeaccess

European Journal of Endocrinology

91 90 89 88 87 86 85 84 82 81 80 79 83 Review Wassenaar MJ, Biermasz NR,Hamdy NA,Zillikens MC,vanMeurs JB, Bonadonna S, Mazziotti G,Nuzzo M,Bianchi A,Fusco A,De Genant HK, Jergas M,Palermo L,Nevitt M,Valentin RS, Black D Morimoto I, Kai K,Okada Y, Okimoto N, Uriu K,Akino K, Maffezzoni F, Maddalo M,Frara S,Mezzone M,Zorza I, Baruffaldi F, Hong AR, Kim JH,Kim SW, Kim SY&Shin CS.Trabecular bone Kuzma M, Vanuga P, Sagova I,Pavai D,Jackuliak P, Killinger Z, Silva PPB, Amlashi FG,Yu EW, Pulaski-Liebert KJ,Gerweck AV, Madeira M, Neto LV, dePaulaParanhosNeto F, BarbosaLima IC, Ueland T, Ebbesen EN,Thomsen JS,Mosekilde L,Brixen K, Dalle Carbonare L,Micheletti V, Cosaro E,Valenti MT, Mottes M, Chappard D, Basle MF, tools Legrand E&Audran M.Newlaboratory Halse J, Melsen F&Mosekilde L.Iliaccrestbonemassand org/10.1530/EJE-10-1005) ofEndocrinology European Journal mineral densityinpatientswithlong-term controlledacromegaly. et al. Rivadeneira F, Hofman A, Uitterlinden AG,Stokkel MP, Roelfsema F 20 postmenopausal women. spinal deformitiesinactiveacromegaly:across-sectionalstudy Marinis L &Giustina A.Increasedprevalenceofradiological 11 Fractures Research Group. vertebral fracturesinosteoporosistheStudyofOsteoporotic quantitative morphometricassessmentofprevalentandincident & Cummings SR.Comparisonofsemiquantitativevisualand org/10.1016/S8756-3282(99)00274-4) with gonadaldysfunction. tumors:amodelofacromegaly mammosomatotrophic pituitary Yamashita S, Nakamura T&Eto S.Skeletalchangesinratsbearing 1078-3) Endocrine patients withacromegalyandradiologicalvertebralfractures. cone beamtomographyanalysisofbonemicroarchitecture in Doglietto F, Mazziotti G,Maroldi R&Giustina A.High-resolution- 015-3344-2) International score asaskeletalfragilityindexinacromegalypatients. 201–211. cross-sectional study. DXA-derived bonestructureassessmentofacromegalypatients:a Binkley NC, Winzenrieth R, Genant HK&Payer J.Non-invasive (https://doi.org/10.1530/EJE-17-0468) acromegaly. microarchitecture andestimated bonestrengthinmenwithactive Fazeli PK, Lawson E,Nachtigall LB,Biller BMK,Miller KK 2013 computed tomography. cortical bone,asassessedbyhigh-resolutionperipheralquantitative Acromegaly hasanegativeinfluenceontrabecularbone,butnot deMendonca LM,Gadelha MR&FleiussFarias ML. Carvalho 122–128. acromegaly. competence, apparentdensity, IGF-IIandIGFBP-5contentin Flyvbjerg A &Bollerslev J.Decreasedtrabecularbonebiomechanical (https://doi.org/10.1007/s11102-017-0847-1) patients withfragilityvertebralfractures. Francia G &Davi MV. inacromegaly Bonehistomorphometry 2225–2240. in theassessmentofbonequality. (https://doi.org/10.1530/acta.0.0970018) remodelling inacromegaly. 156 alters bonearchitecture andmechanicalstrength. 1837–1844. 984–996. 1362–1371. Highprevalenceofvertebralfractures despitenormalbone 98 1734–1741. 2016 (https://doi.org/10.1530/EJE-18-0881) (https://doi.org/10.1046/j.1365-2362.2002.00944.x) (https://doi.org/10.1007/s00198-011-1573-6) 2016 European Journal ofEndocrinology European Journal ofClinicalInvestigation European Journal 54 (https://doi.org/10.1359/JBMR.050603) (https://doi.org/10.1210/en.2014-1572) 532–542. 27 (https://doi.org/10.1210/jc.2012-4073) 1123–1129. European Journal ofEndocrinology European Journal Journal ofClinicalEndocrinologyandMetabolism Journal Journal ofBoneandMineralResearchJournal Journal ofBoneandMineralResearchJournal Bone Acta Endocrinologica (https://doi.org/10.1007/s12020-016- 2000 2011 (https://doi.org/10.1007/s00198- Osteoporosis International 26 G Mazziottiandothers 164 255–261. Pituitary 475–483. 2017 1981 2018 Endocrinology 177 (https://doi. 2002 (https://doi. 97 2019 409–420. 21 18–22. Osteoporosis et al. 32 56–64. 2011 180

2005 1996 Bone 2015

22

107 106 105 104 103 102 101 100 Bone andacromegaly 98 97 96 95 94 93 92 99 Ben-Shlomo A, Sheppard MC,Stephens JM,Pulgar S&Melmed S. de Herder WW. ofacromegaly. Thehistory Mormando M, Nasto LA,Bianchi A,Mazziotti G,Giampietro A, Mazziotti G, Bianchi A,Bonadonna S,Cimino V, Patelli I,Fusco A, Brzana J, Yedinak CG, Hameed N&Fleseriu M.FRAXscorein Madeira M, Neto LV, Torres CH, deMendonca LM,Gadelha MR& Siciliano G,Migliorino V,Padova G, Borzi G,Incorvaia L, Vetri M Valenti MT, Mottes M,Cheri S,Deiana M,Micheletti V, Cosaro E, Valassi E, Garcia-Giralt N, Malouf J,Crespo I,Llauger J,Diez-Perez A Leonart LP, Tonin FS, Ferreira VL,Fernandez-Llimos F&Pontarolo R. Mazziotti G, Cimino V, DeMenis E,Bonadonna S,Bugari G, Altinova AE, Ozkan C,Akturk M,Gulbahar O,Yalcin M, Cakir N Mazziotti G, Maffezzoni F&Giustina A.Vitamin D-bindingprotein: Halupczok-Zyla J, Jawiarczyk-Przybylowska A &Bolanowski M. Ajmal A, Haghshenas A,Attarian S,Barake M,Tritos NA, Klibanski A, Mazziotti G, Baracca M,Doga M,Porcelli T, Vescovi PP &Giustina A. control. Clinical, qualityoflife,andeconomicvalueacromegalydisease 103 0205) Endocrinology isoforms andskeletalfragilityinacromegaly. Giustina A&DeMarinis L.GHreceptor Pola E, Pontecorvi A, jc.2008-0791) and Metabolism fractures inmenwithacromegaly. DeMarinis L&Giustina A.Prevalenceofvertebral Pontecorvi A, 80 acromegaly: doesittellthewholestory? jocd.2012.06.002) Clinical Densitometry de Farias ML.Vertebral fractureassessmentinacromegaly. 2011 acromegalic patients. & Tita P. Prevalenceofosteoporosisandvertebralfracturesin Cancer compromises bonequalityinacromegalic patients. Davi MV, Francia G &DalleCarbonare L.Runx2overexpression 0482) Endocrine Connections with boneparametersinpatientscontrolledacromegaly. & Webb SM. Circulating miR-103a-3pandmiR-660-5pareassociated 63 longitudinalstudies. meta-analysis ofobservational Effectiveness andsafetyofpegvisomant:asystematicreview metabol.2006.01.009) and Experimental spontaneous parathyroidhormonepulsatility. Marinis L, Veldhuis JD &Giustina A.Activeacromegalyenhances doi.org/10.1007/s12020-015-0789-1) concentrations inacromegaly. & Toruner FB. Vitamin D-bindingproteinandfreevitaminD 2016 one morepieceinthepuzzleofacromegalicosteopathy? org/10.3389/fendo.2015.00089) D deficiency. Patients withactiveacromegalyareathighriskof25(OH) 0514-0) Pituitary vitamin Dandcalciumconcentrationsinpatientswithacromegaly. Miller KK &Nachtigall LB.Theeffectofsomatostatinanalogson 865–872. patients with . Prevalence ofthoracicvertebralfracturesinhospitalizedelderly 011-0310-7) 18–26. 614–616. 7–17. 8 52 2018 37–43. 2014 183–186. Pituitary (https://doi.org/10.1530/EJE-12-0566) (https://doi.org/10.1007/s12020-018-1729-7) (https://doi.org/10.1159/000371808) 25 2014 (https://doi.org/10.1111/cen.12262) Frontiers inEndocrinology 17 2008 269–277. 2006 2011 366–373. (https://doi.org/10.1007/s12020-016-0890-0) 171 2013 2019 93 Clinical CasesinMineralandBoneMetabolism 55 14 237–245. 4649–4655. 736–740. 284–294. (https://doi.org/10.1530/ERC-17-0523) 16 Downloaded fromBioscientifica.com at09/26/202110:40:08AM European Journal of Endocrinology European Journal (https://doi.org/10.1007/s11102-013- 8 39–49. 238–243. Endocrine (https://doi.org/10.1530/EJE-14- Journal ofClinicalEndocrinology Journal (https://doi.org/10.1016/j. (https://doi.org/10.1007/s11102- (https://doi.org/10.1530/EC-18- https://eje.bioscientifica.com (https://doi.org/10.1210/ 2015 (https://doi.org/10.1016/j. 2016 Clinical Endocrinology 181 Neuroendocrinology 6 89. European Journal of European Journal 52 Metabolism: Clinical :2 374–379. (https://doi. Endocrine-Related Endocrine Endocrine Journal of Journal (https:// 2012 2019 2016 2014 R55 167 via freeaccess

European Journal of Endocrinology https://eje.bioscientifica.com 120 119 118 117 116 115 114 113 112 111 110 109 108 Review Giustina A, Mazziotti G,Torri V, Spinello M,Floriani I&Melmed S. Mazziotti G &Giustina A.EffectsoflanreotideSRandautogel De Marinis L,Bianchi A,Mazziotti G,Mettimano M,Milardi D, Lindsay R, Pack S&Li Z.Longitudinalprogressionoffracture Mazziotti G, Doga M,Frara S,Maffezzoni F, Porcelli T, Cerri L, Mazziotti G, Gola M,Bianchi A,Porcelli T, Giampietro A,Cimino V, Chiloiro S, Mormando M,Bianchi A,Giampietro A,Milardi D, Hu MC, Shiizaki K,Kuro-o M&Moe OW. Fibroblastgrowthfactor Ito N, Fukumoto S,Taguchi M, Takeshita A, Takeuchi Y, Yamada S Parkinson C, Kassem M,Heickendorff L,Flyvbjerg A&Trainer PJ. Legovini P, DeMenis E,Breda F, Billeci D,Carteri A,Pavan P Malgo F, Hamdy NAT, Rabelink TJ,Kroon HM,Claessen KMJA, Godang K, Olarescu NC,Bollerslev J&Heck A.Treatment of journal.pone.0036411) acromegaly. Meta-analysis ontheeffectsofoctreotidetumormassin Pituitary on tumormassinpatientswithacromegaly:asystematicreview. s11102-007-0062-6) in acromegaly. term cardiovascularoutcomeofdifferentGH-loweringtreatments Fusco A, Cimino V, &Giustina A.Thelong- Maira G,Pontecorvi A org/10.1007/s00198-004-1691-5) osteoporosis. prevalence throughapopulationofpostmenopausalwomenwith 2016 fractures inadultpatientswithgrowthhormonedeficiency. Maroldi R &Giustina A.Incidenceofmorphometricvertebral 9486-x) Endocrine diabetes mellitusonvertebralfracturesinmenwithacromegaly. Doga M, Gazzaruso C,DeMarinis L&Giustina A.Influenceof org/10.1007/s12020-017-1391-5) multimodal treatment. patients withacromegalydifferentbiochemicaloutcomesafter et al. Bima C, Grande G,Formenti AM,Mazziotti G,Pontecorvi A 503–533. network ofmineralmetabolism. 23 andklotho:physiologypathophysiologyofanendocrine org/10.1507/endocrj.K06-217) acromegaly. & Fujita T. Fibroblastgrowthfactor(FGF)23inpatientswith 030772) Metabolism of boneturnovertonormal. normalization inpatientswithacromegalyreturnselevatedmarkers Pegvisomant-induced seruminsulin-likegrowthfactor-I 1997 parathormone concentrations. bone metabolisminacromegaly:evidenceofincreasedserum & Conte N.Long-termeffectsofoctreotideonmarkers 339–347. patients withacromegaly. strength indexasmeasuredbyimpactmicroindentationisalteredin Pereira AM, Biermasz NR&Appelman-Dijkstra NM.Bonematerial 155–164. longitudinal study. acromegaly increasesBMDbutreducestrabecularbonescore:a Prevalenceofmorphometricvertebralfracturesin‘difficult’ 52 20 2010 103–110. 434–438. 2011 (https://doi.org/10.1146/annurev-physiol-030212-183727) (https://doi.org/10.1530/EJE-16-0808) (https://doi.org/10.1530/EJE-16-0340) 2003 PLoS ONE Endocrine Journal Osteoporosis International 13 Pituitary 40 60–67. 88 102–108. (https://doi.org/10.1007/s12020-015-0738-z) (https://doi.org/10.1007/BF03347998) European Journal ofEndocrinology European Journal 5650–5655. 2012 2008 Endocrine (https://doi.org/10.1007/s11102-009-0169-z) European Journal ofEndocrinology European Journal 7 (https://doi.org/10.1007/s12020-011- Journal ofClinicalEndocrinologyand Journal 2007 11 e36411. Journal ofEndocrinologicalInvestigation Journal 13–20. (https://doi.org/10.1210/jc.2003- 2018 Annual ReviewofPhysiology 54 481–484. G Mazziottiandothers 2005 (https://doi.org/10.1371/ 59 (https://doi.org/10.1007/ 449–453. 16 306–312. (https://doi. 2016 (https://doi. (https://doi. 175 2017 2013 Endocrine

176 75

Accepted 15May2019 Revised versionreceived1May2019 Received 13March2019 126 125 124 123 122 133 132 131 130 129 128 127 121 Bone andacromegaly Humbert L, Martelli Y, Fonolla R,Steghofer M,DiGregorio S, Valassi E, Crespo I,Malouf J,Vilades D, Leta R,Llauger J,Urgell E, Battista C, Chiodini I,Muscarella S,Guglielmi G,Mascia ML, Ueland T, Fougner SL,Godang K,Schreiner T&Bollerslev J.Serum Schousboe JT, Shepherd JA,Bilezikian JP&Baim S.Executive Crans GG, Genant HK&Krege JH.Prognosticutilityofa Claessen KM, Mazziotti G,Biermasz NR&Giustina A.Boneandjoint Torti C, Mazziotti G,Soldini PA, Foca E,Maroldi R,Gotti D,Carosi G Clark EM, Carter L,Gould VC,Morrison L&Tobias JH. Vertebral Mazziotti G, Maffezzoni F, Frara S&Giustina A.Acromegalic Ulivieri FM, Silva BC,Sardanelli F, Hans D,Bilezikian JP& Lopez Picazo M,MagallonBaro A,DelRioBarquero LM,Di Chiloiro S, Mazziotti G,Giampietro A,Bianchi A,Frara S, org/10.1007/s12020-016-0945-2) bone scoreinacromegaly. predictor ofspinevolumetricbonemineraldensityandtrabecular Aulinas A, Marin AM,Biagetti B 2265.2008.03322.x) Endocrinology mass inacromegalicpatients:alongitudinalstudy. Carnevale V &Scillitani A.Spinalvolumetrictrabecularbone 2006 more than70consecutivepatients. bone mineraldensityinactiveacromegaly:aprospectivestudyof GH andIGF-Iaresignificantdeterminantsofboneturnoverbutnot jocd.2013.08.004) Clinical Densitometry Position DevelopmentConferenceonbonedensitometry. ofthe2013InternationalSocietyforClinicalDensitometry summary 302–308. (https://doi.org/10.1016/j.bone.2005.04.003) semiquantitative spinaldeformityindex. doi.org/10.1159/000375450) disorders inacromegaly. org/10.1007/s12020-011-9586-7) in HIV-infected males. & Giustina A.Highprevalenceofradiologicalvertebralfractures org/10.1007/s00198-013-2567-3) screening. care orprimary effective whenusedaspartoffractureliaisonservices fracture assessment(VFA) bylateralDXAscanningmaybecost- s11102-016-0758-6) osteopathy. s12020-014-0280-4) osteoporosis. Caudarella R. Utilityofthetrabecularbonescore(TBS)insecondary TMI.2018.2845909) assessment ofcorticalandtrabecularbone. the lumbarspineFromasingleanteroposteriorDXAimageincluding & Humbert L.3-Dsubject-specificshapeanddensityestimationof Gregorio S, Martelli Y, Romera J,Steghofer M,GonzalezBallester MA doi.org/10.1109/TMI.2016.2593346) images. shape, thetrabecularmacrostructureandcortexin3DfromDXA Malouf J, Romera J&Barquero LM.3D-DXA:assessingthefemoral vertebral fracturesinpatientswithacromegaly. pegvisomant andsomatostatinreceptorligandsonincidenceof Giustina A&DeMarinis L.Effectsof Mormando M, Pontecorvi A, 155 IEEE Transactions onMedicalImaging 709–715. (https://doi.org/10.1007/s11102-018-0873-7) Osteoporosis International Pituitary 2009 Endocrine 2018 70 (https://doi.org/10.1530/eje.1.02285) 2017 2013 37 378–382. 2014 Endocrine 2651–2662. Neuroendocrinology 20 16 Endocrine Downloaded fromBioscientifica.com at09/26/202110:40:08AM 47 63–69. 455–466. 435–448. 2012 et al. (https://doi.org/10.1111/j.1365- 2014 2016 European Journal ofEndocrinology European Journal (https://doi.org/10.1007/ Epicardialfatisanegative (https://doi.org/10.1109/ 41 (https://doi.org/10.1016/j. 512–517. 25 Bone 53 (https://doi.org/10.1007/ 2016 181 IEEE Transactions on 953–964. 2017 860–864. 2005 :2 Pituitary 103 36 (https://doi. Clinical 37 27–39. 86–95. (https://doi. (https://doi. 175–179. 2018 Journal of Journal (https:// (https:// 21 R56 via freeaccess