Topics in Geometric Group Theory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
On Abelian Subgroups of Finitely Generated Metabelian
J. Group Theory 16 (2013), 695–705 DOI 10.1515/jgt-2013-0011 © de Gruyter 2013 On abelian subgroups of finitely generated metabelian groups Vahagn H. Mikaelian and Alexander Y. Olshanskii Communicated by John S. Wilson To Professor Gilbert Baumslag to his 80th birthday Abstract. In this note we introduce the class of H-groups (or Hall groups) related to the class of B-groups defined by P. Hall in the 1950s. Establishing some basic properties of Hall groups we use them to obtain results concerning embeddings of abelian groups. In particular, we give an explicit classification of all abelian groups that can occur as subgroups in finitely generated metabelian groups. Hall groups allow us to give a negative answer to G. Baumslag’s conjecture of 1990 on the cardinality of the set of isomorphism classes for abelian subgroups in finitely generated metabelian groups. 1 Introduction The subject of our note goes back to the paper of P. Hall [7], which established the properties of abelian normal subgroups in finitely generated metabelian and abelian-by-polycyclic groups. Let B be the class of all abelian groups B, where B is an abelian normal subgroup of some finitely generated group G with polycyclic quotient G=B. It is proved in [7, Lemmas 8 and 5.2] that B H, where the class H of countable abelian groups can be defined as follows (in the present paper, we will call the groups from H Hall groups). By definition, H H if 2 (1) H is a (finite or) countable abelian group, (2) H T K; where T is a bounded torsion group (i.e., the orders of all ele- D ˚ ments in T are bounded), K is torsion-free, (3) K has a free abelian subgroup F such that K=F is a torsion group with trivial p-subgroups for all primes except for the members of a finite set .K/. -
Compression of Vertex Transitive Graphs
Compression of Vertex Transitive Graphs Bruce Litow, ¤ Narsingh Deo, y and Aurel Cami y Abstract We consider the lossless compression of vertex transitive graphs. An undirected graph G = (V; E) is called vertex transitive if for every pair of vertices x; y 2 V , there is an automorphism σ of G, such that σ(x) = y. A result due to Sabidussi, guarantees that for every vertex transitive graph G there exists a graph mG (m is a positive integer) which is a Cayley graph. We propose as the compressed form of G a ¯nite presentation (X; R) , where (X; R) presents the group ¡ corresponding to such a Cayley graph mG. On a conjecture, we demonstrate that for a large subfamily of vertex transitive graphs, the original graph G can be completely reconstructed from its compressed representation. 1 Introduction The complex networks that describe systems in nature and society are typ- ically very large, often with hundreds of thousands of vertices. Examples of such networks include the World Wide Web, the Internet, semantic net- works, social networks, energy transportation networks, the global economy etc., (see e.g., [16]). Given a graph that represents such a large network, an important problem is its lossless compression, i.e., obtaining a smaller size representation of the graph, such that the original graph can be fully restored from its compressed form. We note that, in general, graphs are incompressible, i.e., the vast majority of graphs with n vertices require (n2) bits in any representation. This can be seen by a simple counting argument. There are 2n¢(n¡1)=2 labelled, undirected graphs, and at least 2n¢(n¡1)=2=n! unlabelled, undirected graphs. -
Filling Functions Notes for an Advanced Course on the Geometry of the Word Problem for Finitely Generated Groups Centre De Recer
Filling Functions Notes for an advanced course on The Geometry of the Word Problem for Finitely Generated Groups Centre de Recerca Mathematica` Barcelona T.R.Riley July 2005 Revised February 2006 Contents Notation vi 1Introduction 1 2Fillingfunctions 5 2.1 Van Kampen diagrams . 5 2.2 Filling functions via van Kampen diagrams . .... 6 2.3 Example: combable groups . 10 2.4 Filling functions interpreted algebraically . ......... 15 2.5 Filling functions interpreted computationally . ......... 16 2.6 Filling functions for Riemannian manifolds . ...... 21 2.7 Quasi-isometry invariance . .22 3Relationshipsbetweenfillingfunctions 25 3.1 The Double Exponential Theorem . 26 3.2 Filling length and duality of spanning trees in planar graphs . 31 3.3 Extrinsic diameter versus intrinsic diameter . ........ 35 3.4 Free filling length . 35 4Example:nilpotentgroups 39 4.1 The Dehn and filling length functions . .. 39 4.2 Open questions . 42 5Asymptoticcones 45 5.1 The definition . 45 5.2 Hyperbolic groups . 47 5.3 Groups with simply connected asymptotic cones . ...... 53 5.4 Higher dimensions . 57 Bibliography 68 v Notation f, g :[0, ∞) → [0, ∞)satisfy f ≼ g when there exists C > 0 such that f (n) ≤ Cg(Cn+ C) + Cn+ C for all n,satisfy f ≽ g ≼, ≽, ≃ when g ≼ f ,andsatisfy f ≃ g when f ≼ g and g ≼ f .These relations are extended to functions f : N → N by considering such f to be constant on the intervals [n, n + 1). ab, a−b,[a, b] b−1ab, b−1a−1b, a−1b−1ab Cay1(G, X) the Cayley graph of G with respect to a generating set X Cay2(P) the Cayley 2-complex of a -
Affine Springer Fibers and Affine Deligne-Lusztig Varieties
Affine Springer Fibers and Affine Deligne-Lusztig Varieties Ulrich G¨ortz Abstract. We give a survey on the notion of affine Grassmannian, on affine Springer fibers and the purity conjecture of Goresky, Kottwitz, and MacPher- son, and on affine Deligne-Lusztig varieties and results about their dimensions in the hyperspecial and Iwahori cases. Mathematics Subject Classification (2000). 22E67; 20G25; 14G35. Keywords. Affine Grassmannian; affine Springer fibers; affine Deligne-Lusztig varieties. 1. Introduction These notes are based on the lectures I gave at the Workshop on Affine Flag Man- ifolds and Principal Bundles which took place in Berlin in September 2008. There are three chapters, corresponding to the main topics of the course. The first one is the construction of the affine Grassmannian and the affine flag variety, which are the ambient spaces of the varieties considered afterwards. In the following chapter we look at affine Springer fibers. They were first investigated in 1988 by Kazhdan and Lusztig [41], and played a prominent role in the recent work about the “fun- damental lemma”, culminating in the proof of the latter by Ngˆo. See Section 3.8. Finally, we study affine Deligne-Lusztig varieties, a “σ-linear variant” of affine Springer fibers over fields of positive characteristic, σ denoting the Frobenius au- tomorphism. The term “affine Deligne-Lusztig variety” was coined by Rapoport who first considered the variety structure on these sets. The sets themselves appear implicitly already much earlier in the study of twisted orbital integrals. We remark that the term “affine” in both cases is not related to the varieties in question being affine, but rather refers to the fact that these are notions defined in the context of an affine root system. -
The Large-Scale Geometry of Right-Angled Coxeter Groups
THE LARGE-SCALE GEOMETRY OF RIGHT-ANGLED COXETER GROUPS PALLAVI DANI Abstract. This is a survey of some aspects of the large-scale geometry of right-angled Coxeter groups. The emphasis is on recent results on their nega- tive curvature properties, boundaries, and their quasi-isometry and commen- surability classification. 1. Introduction Coxeter groups touch upon a number of areas of mathematics, such as represen- tation theory, combinatorics, topology, and geometry. These groups are generated by involutions, and have presentations of a specific form. The connection to ge- ometry and topology arises from the fact that the involutions in the group can be thought of as reflection symmetries of certain complexes. Right-angled Coxeter groups are the simplest examples of Coxeter groups; in these, the only relations between distinct generators are commuting relations. These have emerged as groups of vital importance in geometric group theory. The class of right-angled Coxeter groups exhibits a surprising variety of geometric phenomena, and at the same time, their rather elementary definition makes them easy to work with. This combination makes them an excellent source for examples for building intuition about geometric properties, and for testing conjectures. The book [Dav08] by Davis is an excellent source for the classical theory of Coxeter groups in geometric group theory. This survey focusses primarily on de- velopments that have occurred after this book was published. Rather than giving detailed definitions and precise statements of theorems (which can often be quite technical), in many cases we have tried to adopt a more intuitive approach. Thus we often give the idea of a definition or the criteria in the statement of a theorem, and refer the reader to other sources for the precise details. -
Arxiv:1006.1489V2 [Math.GT] 8 Aug 2010 Ril.Ias Rfie Rmraigtesre Rils[14 Articles Survey the Reading from Profited Also I Article
Pure and Applied Mathematics Quarterly Volume 8, Number 1 (Special Issue: In honor of F. Thomas Farrell and Lowell E. Jones, Part 1 of 2 ) 1—14, 2012 The Work of Tom Farrell and Lowell Jones in Topology and Geometry James F. Davis∗ Tom Farrell and Lowell Jones caused a paradigm shift in high-dimensional topology, away from the view that high-dimensional topology was, at its core, an algebraic subject, to the current view that geometry, dynamics, and analysis, as well as algebra, are key for classifying manifolds whose fundamental group is infinite. Their collaboration produced about fifty papers over a twenty-five year period. In this tribute for the special issue of Pure and Applied Mathematics Quarterly in their honor, I will survey some of the impact of their joint work and mention briefly their individual contributions – they have written about one hundred non-joint papers. 1 Setting the stage arXiv:1006.1489v2 [math.GT] 8 Aug 2010 In order to indicate the Farrell–Jones shift, it is necessary to describe the situation before the onset of their collaboration. This is intimidating – during the period of twenty-five years starting in the early fifties, manifold theory was perhaps the most active and dynamic area of mathematics. Any narrative will have omissions and be non-linear. Manifold theory deals with the classification of ∗I thank Shmuel Weinberger and Tom Farrell for their helpful comments on a draft of this article. I also profited from reading the survey articles [14] and [4]. 2 James F. Davis manifolds. There is an existence question – when is there a closed manifold within a particular homotopy type, and a uniqueness question, what is the classification of manifolds within a homotopy type? The fifties were the foundational decade of manifold theory. -
Pretty Theorems on Vertex Transitive Graphs
Pretty Theorems on Vertex Transitive Graphs Growth For a graph G a vertex x and a nonnegative integer n we let B(x; n) denote the ball of radius n around x (i.e. the set u V (G): dist(u; v) n . If G is a vertex transitive graph then f 2 ≤ g B(x; n) = B(y; n) for any two vertices x; y and we denote this number by f(n). j j j j Example: If G = Cayley(Z2; (0; 1); ( 1; 0) ) then f(n) = (n + 1)2 + n2. f ± ± g 0 f(3) = B(0, 3) = (1 + 3 + 5 + 7) + (5 + 3 + 1) = 42 + 32 | | Our first result shows a property of the function f which is a relative of log concavity. Theorem 1 (Gromov) If G is vertex transitive then f(n)f(5n) f(4n)2 ≤ Proof: Choose a maximal set Y of vertices in B(u; 3n) which are pairwise distance 2n + 1 ≥ and set y = Y . The balls of radius n around these points are disjoint and are contained in j j B(u; 4n) which gives us yf(n) f(4n). On the other hand, the balls of radius 2n around ≤ the points in Y cover B(u; 3n), so the balls of radius 4n around these points cover B(u; 5n), giving us yf(4n) f(5n). Combining our two inequalities yields the desired bound. ≥ Isoperimetric Properties Here is a classical problem: Given a small loop of string in the plane, arrange it to maximize the enclosed area. -
Dynamics for Discrete Subgroups of Sl 2(C)
DYNAMICS FOR DISCRETE SUBGROUPS OF SL2(C) HEE OH Dedicated to Gregory Margulis with affection and admiration Abstract. Margulis wrote in the preface of his book Discrete subgroups of semisimple Lie groups [30]: \A number of important topics have been omitted. The most significant of these is the theory of Kleinian groups and Thurston's theory of 3-dimensional manifolds: these two theories can be united under the common title Theory of discrete subgroups of SL2(C)". In this article, we will discuss a few recent advances regarding this missing topic from his book, which were influenced by his earlier works. Contents 1. Introduction 1 2. Kleinian groups 2 3. Mixing and classification of N-orbit closures 10 4. Almost all results on orbit closures 13 5. Unipotent blowup and renormalizations 18 6. Interior frames and boundary frames 25 7. Rigid acylindrical groups and circular slices of Λ 27 8. Geometrically finite acylindrical hyperbolic 3-manifolds 32 9. Unipotent flows in higher dimensional hyperbolic manifolds 35 References 44 1. Introduction A discrete subgroup of PSL2(C) is called a Kleinian group. In this article, we discuss dynamics of unipotent flows on the homogeneous space Γn PSL2(C) for a Kleinian group Γ which is not necessarily a lattice of PSL2(C). Unlike the lattice case, the geometry and topology of the associated hyperbolic 3-manifold M = ΓnH3 influence both topological and measure theoretic rigidity properties of unipotent flows. Around 1984-6, Margulis settled the Oppenheim conjecture by proving that every bounded SO(2; 1)-orbit in the space SL3(Z)n SL3(R) is compact ([28], [27]). -
An Overview of Topological Groups: Yesterday, Today, Tomorrow
axioms Editorial An Overview of Topological Groups: Yesterday, Today, Tomorrow Sidney A. Morris 1,2 1 Faculty of Science and Technology, Federation University Australia, Victoria 3353, Australia; [email protected]; Tel.: +61-41-7771178 2 Department of Mathematics and Statistics, La Trobe University, Bundoora, Victoria 3086, Australia Academic Editor: Humberto Bustince Received: 18 April 2016; Accepted: 20 April 2016; Published: 5 May 2016 It was in 1969 that I began my graduate studies on topological group theory and I often dived into one of the following five books. My favourite book “Abstract Harmonic Analysis” [1] by Ed Hewitt and Ken Ross contains both a proof of the Pontryagin-van Kampen Duality Theorem for locally compact abelian groups and the structure theory of locally compact abelian groups. Walter Rudin’s book “Fourier Analysis on Groups” [2] includes an elegant proof of the Pontryagin-van Kampen Duality Theorem. Much gentler than these is “Introduction to Topological Groups” [3] by Taqdir Husain which has an introduction to topological group theory, Haar measure, the Peter-Weyl Theorem and Duality Theory. Of course the book “Topological Groups” [4] by Lev Semyonovich Pontryagin himself was a tour de force for its time. P. S. Aleksandrov, V.G. Boltyanskii, R.V. Gamkrelidze and E.F. Mishchenko described this book in glowing terms: “This book belongs to that rare category of mathematical works that can truly be called classical - books which retain their significance for decades and exert a formative influence on the scientific outlook of whole generations of mathematicians”. The final book I mention from my graduate studies days is “Topological Transformation Groups” [5] by Deane Montgomery and Leo Zippin which contains a solution of Hilbert’s fifth problem as well as a structure theory for locally compact non-abelian groups. -
Lectures on Quasi-Isometric Rigidity Michael Kapovich 1 Lectures on Quasi-Isometric Rigidity 3 Introduction: What Is Geometric Group Theory? 3 Lecture 1
Contents Lectures on quasi-isometric rigidity Michael Kapovich 1 Lectures on quasi-isometric rigidity 3 Introduction: What is Geometric Group Theory? 3 Lecture 1. Groups and Spaces 5 1. Cayley graphs and other metric spaces 5 2. Quasi-isometries 6 3. Virtual isomorphisms and QI rigidity problem 9 4. Examples and non-examples of QI rigidity 10 Lecture 2. Ultralimits and Morse Lemma 13 1. Ultralimits of sequences in topological spaces. 13 2. Ultralimits of sequences of metric spaces 14 3. Ultralimits and CAT(0) metric spaces 14 4. Asymptotic Cones 15 5. Quasi-isometries and asymptotic cones 15 6. Morse Lemma 16 Lecture 3. Boundary extension and quasi-conformal maps 19 1. Boundary extension of QI maps of hyperbolic spaces 19 2. Quasi-actions 20 3. Conical limit points of quasi-actions 21 4. Quasiconformality of the boundary extension 21 Lecture 4. Quasiconformal groups and Tukia's rigidity theorem 27 1. Quasiconformal groups 27 2. Invariant measurable conformal structure for qc groups 28 3. Proof of Tukia's theorem 29 4. QI rigidity for surface groups 31 Lecture 5. Appendix 33 1. Appendix 1: Hyperbolic space 33 2. Appendix 2: Least volume ellipsoids 35 3. Appendix 3: Different measures of quasiconformality 35 Bibliography 37 i Lectures on quasi-isometric rigidity Michael Kapovich IAS/Park City Mathematics Series Volume XX, XXXX Lectures on quasi-isometric rigidity Michael Kapovich Introduction: What is Geometric Group Theory? Historically (in the 19th century), groups appeared as automorphism groups of some structures: • Polynomials (field extensions) | Galois groups. • Vector spaces, possibly equipped with a bilinear form| Matrix groups. -
3-Manifold Groups
3-Manifold Groups Matthias Aschenbrenner Stefan Friedl Henry Wilton University of California, Los Angeles, California, USA E-mail address: [email protected] Fakultat¨ fur¨ Mathematik, Universitat¨ Regensburg, Germany E-mail address: [email protected] Department of Pure Mathematics and Mathematical Statistics, Cam- bridge University, United Kingdom E-mail address: [email protected] Abstract. We summarize properties of 3-manifold groups, with a particular focus on the consequences of the recent results of Ian Agol, Jeremy Kahn, Vladimir Markovic and Dani Wise. Contents Introduction 1 Chapter 1. Decomposition Theorems 7 1.1. Topological and smooth 3-manifolds 7 1.2. The Prime Decomposition Theorem 8 1.3. The Loop Theorem and the Sphere Theorem 9 1.4. Preliminary observations about 3-manifold groups 10 1.5. Seifert fibered manifolds 11 1.6. The JSJ-Decomposition Theorem 14 1.7. The Geometrization Theorem 16 1.8. Geometric 3-manifolds 20 1.9. The Geometric Decomposition Theorem 21 1.10. The Geometrization Theorem for fibered 3-manifolds 24 1.11. 3-manifolds with (virtually) solvable fundamental group 26 Chapter 2. The Classification of 3-Manifolds by their Fundamental Groups 29 2.1. Closed 3-manifolds and fundamental groups 29 2.2. Peripheral structures and 3-manifolds with boundary 31 2.3. Submanifolds and subgroups 32 2.4. Properties of 3-manifolds and their fundamental groups 32 2.5. Centralizers 35 Chapter 3. 3-manifold groups after Geometrization 41 3.1. Definitions and conventions 42 3.2. Justifications 45 3.3. Additional results and implications 59 Chapter 4. The Work of Agol, Kahn{Markovic, and Wise 63 4.1. -
On the Dehn Functions of K\" Ahler Groups
ON THE DEHN FUNCTIONS OF KAHLER¨ GROUPS CLAUDIO LLOSA ISENRICH AND ROMAIN TESSERA Abstract. We address the problem of which functions can arise as Dehn functions of K¨ahler groups. We explain why there are examples of K¨ahler groups with linear, quadratic, and exponential Dehn function. We then proceed to show that there is an example of a K¨ahler group which has Dehn function bounded below by a cubic function 6 and above by n . As a consequence we obtain that for a compact K¨ahler manifold having non-positive holomorphic bisectional curvature does not imply having quadratic Dehn function. 1. Introduction A K¨ahler group is a group which can be realized as fundamental group of a compact K¨ahler manifold. K¨ahler groups form an intriguing class of groups. A fundamental problem in the field is Serre’s question of “which” finitely presented groups are K¨ahler. While on one side there is a variety of constraints on K¨ahler groups, many of them originating in Hodge theory and, more generally, the theory of harmonic maps on K¨ahler manifolds, examples have been constructed that show that the class is far from trivial. Filling the space between examples and constraints turns out to be a very hard problem. This is at least in part due to the fact that the range of known concrete examples and construction techniques are limited. For general background on K¨ahler groups see [2] (and also [13, 4] for more recent results). Known constructions have shown that K¨ahler groups can present the following group theoretic properties: they can ● be non-residually finite [50] (see also [18]); ● be nilpotent of class 2 [14, 47]; ● admit a classifying space with finite k-skeleton, but no classifying space with finitely many k + 1-cells [23] (see also [5, 38, 12]); and arXiv:1807.03677v2 [math.GT] 7 Jun 2019 ● be non-coherent [33] (also [45, 27]).