Computer Based Design and Synthesis of Some Novel Thiazole

Total Page:16

File Type:pdf, Size:1020Kb

Computer Based Design and Synthesis of Some Novel Thiazole Computer Based Design and Synthesis of Some Novel Thiazole Derivatives Bearing a Sulfonamide Moiety and Studying Their Potential Synergistic Anticancer Effect With γ-Irradiation Thesis presented by Aiten Mahmoud Mohamed Soliman Bachelor Degree in Pharmaceutical Sciences Faculty of Pharmacy Ain Shams University (2006) Submitted for the partial fulfillment of M.Sc. Degree in Pharmaceutical Sciences (Pharmaceutical Chemistry) Prof. Dr. Dalal Abdel-Rahman Prof. Dr. Mostafa Mohamed Ghorab Abou El Ella Professor of Pharmaceutical Chemistry Professor of Applied Organic Chemistry Head of Pharmaceutical Chemistry Department Drug Radiation Research Department, Faculty of Pharmacy National Centre for Radiation Research and Ain Shams University Technology, Atomic Energy Authority Prof. Dr. Helmy Ismail Heiba Assoc. Professor of Applied Organic Chemistry, Drug Radiation Research Department National Centre for Radiation Research and Technology Atomic Energy Authority Faculty of Pharmacy Ain Shams University (2011) Acknowledgement Firstly, I want to thank Allah who gave me the patience and support to achieve my goal. I wish to express my unlimited thanks and gratitude to Prof. Dr. Dalal Abdel-Rahman Abou El-Ella, Prof. of Pharmaceutical chemistry, Faculty of Pharmacy, Ain Shams University, for her support, kind supervision and encouragement throughout the work. I am also deeply grateful to Prof. Dr. Mostafa Mohamed Soliman Ghorab, Prof. of Applied Organic Chemistry, National Center for Radiation Research and Technology(NCRRT), for suggesting the research subject, kind supervision, valuable advices and continuous support and guidance which helped me to complete this work. I would like to express my deep thanks and appreciation to Dr. Helmy Ismail Heiba, Assist. Prof. of Applied Organic Chemistry(NCRRT), for his continuous support and supervision, valuable advices and fruitful opinions through the whole work. I would like to give my special thanks to my whole family for the patience and moral support they provided throughout my research work. Finally, my deep thanks to my colleagues in Drug Chemistry Lab (NCRRT), and to all who gave me help and support for the fulfillment of this work. Contents Abstract……………………………………...…………………... i - v 1. Introduction…………………………………………...……….. 1 1.1. Cancer ……………………………………………….…….…. 2 1.2. Rationale for combining chemotherapy and radiotherapy........ 6 1.3. Sulfonamides …..……………………………………………. 12 1.4. Thiazoles and fused thiazoles as anticancer agents …...….…. 24 1.5. Synthesis of thiazoles and fused thiazoles.…………..………. 31 2. Aim of the present investigation……………………...…......... 38 3. Theoretical Discussion……………………………...……........ 49 4. Experimental…………………………………………………... 68 5. Biological Activity………………………………...………….... 95 5.1. In-vitro anticancer activity………………………………….... 96 5.2. Radiosensitizing evaluation……………...…….…………...... 104 6. Molecular Modeling………………………………….....…..... 110 7. References…………………………………...……………......... 120 أ …………………..………………………………Arabic summary List of Figures Figure (1): Schematic representation of the catalytic mechanism for the α- CA catalysed CO2 hydration………………………………………………14 Figure (2): Zinc binding groups…………………………………….…….15 Figure (3): The cell cycle…………………………………………………20 Figure (4): Tiazofurin and its analogues………………………………….25 Figure (5): Chemical structure of six hybrid compounds (MSt)……….…26 Figure (6): Polar interactions of the inhibitor 45 docked into MMP-9-A16 model……………………………………………………………………....27 Figure (7): Structural elements of CA inhibitors in the CA enzymatic active site………………………………………………………………….………40 Figure (8): Survival curve for HEPG2 cell line for compound III………..98 Figure (9): Survival curve for HEPG2 cell line for compound IVa………98 Figure (10): Survival curve for HEPG2 cell line for compound IVb…….98 Figure (11): Survival curve for HEPG2 cell line for compound VI…...…98 Figure (12): Survival curve for HEPG2 cell line for compound VII..……99 Figure (13): Survival curve for HEPG2 cell line for compound IXa….....99 Figure (14): Survival curve for HEPG2 cell line for compound IXb….....99 Figure (15): Survival curve for HEPG2 cell line for compound IXc…......99 Figure (16): Survival curve for HEPG2 cell line for compound IXd……..99 Figure (17): Survival curve for HEPG2 cell line for compound IXe……...99 Figure (18): Survival curve for HEPG2 cell line for compound IXf.........100 Figure (19): Survival curve for HEPG2 cell line for compound IXg…....100 Figure (20): Survival curve for HEPG2 cell line for compound IXh…....100 Figure (21): Survival curve for HEPG2 cell line for compound XIa…....100 Figure (22): Survival curve for HEPG2 cell line for compound XIb……100 Figure (23): Survival curve for HEPG2 cell line for compound XIc….....100 Figure (24): Survival curve for HEPG2 cell line for compound XId……101 Figure (25): Survival curve for HEPG2 cell line for compound XII…....101 Figure (26): Survival curve for HEPG2 cell line for compound XIIIa.…101 Figure (27): Survival curve for HEPG2 cell line for compound XIIIb….101 Figure (28): Survival curve for HEPG2 cell line for compound XIVa.....101 Figure (29): Survival curve for HEPG2 cell line for compound XIVb….101 Figure (30): Survival curve for HEPG2 cell line for compound XV…….102 Figure (31): Survival curve for HEPG2 cell line for compound XVI…...102 Figure (32): Survival curve for HEPG2 cell line for compound XVII…..102 Figure (33): Survival curve for HEPG2 cell line for compound XVIII....102 Figure (34): Survival curve for HEPG2 cell line for compound XIX…...102 Figure (35): Survival curve for HEPG2 cell line for compound XX…….102 Figure (36): Survival curve for HEPG2 cell line for compound III alone and in combination with γ-irradiation (8 Gy)…………………………………106 Figure (37): Survival curve for HEPG2 cell line for compound IVb alone and in combination with γ-irradiation (8Gy)….………………………….106 Figure (38): Survival curve for HEPG2 cell line for compound IXb alone and in combination with γ-irradiation (8Gy)…………………………..…107 Figure (39): Survival curve for HEPG2 cell line for compound XIIIa alone and in combination with γ-irradiation (8 Gy)…………………………….107 Figure (40): Survival curve for HEPG2 cell line for compound XIVb alone and in combination with γ-irradiation (8 Gy)……………….…………....108 Figure (41): Survival curve for HEPG2 cell line for compound XVII alone and in combination with γ-irradiation (8 Gy)……………………………108 Figure (42): Survival curve for HEPG2 cell line for compound XX alone and in combination with γ-irradiation (8 Gy)……………………………109 Figure (43): Superimposition of hCA II-inhibitor adducts………………111 Figure (44): CA inhibition mechanism by sulfonamides………………...112 Figure(45): Interaction map of N-(2,3,4,5,6-pentafluorobenzyl)-4 sulfamoylbenzamide with hCA II………………………………………...114 Figure (46): Interaction map of E7070 with the active site of hCA II…...115 Figure (47): 2D and 3D Interaction map of compound IVb with hCA II .116 Figure (48): 2D and 3D Interaction map of compound XIVb with hCA II……………..……………………………………………………………116 Figure (49): 2D and 3D Interaction map of compound XVII with hCA II……………………………………………………………………..……117 Figure (50): 2D and 3D Interaction map of compound XX with hCA II ..117 Figure (51): Superimposition of E7070 and compound XIVb in the active site of hCA II……………………………………………………..……….118 Figure (52): Superimposition of E7070 and compound XIc in the active site of hCA II……………………………………………………….…….…...119 List of Tables Table 1, Physico-chemical and analytical data for compounds IVa,b …....72 Table 2, Spectral data for compounds IVa,b………..………………..……73 Table 3, Physico-chemical and analytical data for compound VI……..…..75 Table 4, Spectral data for compound VI……………………………..…....75 Table 5, Physico-chemical and analytical data for compound VII………..76 Table 6, Spectral data for compound VII…………………….…………....76 Table 7, Physico-chemical and analytical data for compounds IX(a-h).….78 Table 8, Spectral data for compounds IX(a-h)……………………….……79 Table 9, Physico-chemical and analytical data for compounds XI(a-d)…..82 Table 10, Spectral data for compounds XI(a-d)…………………….….…83 Table 11, Physico-chemical and analytical data for compound XII...….…84 Table 12, Spectral data for compound XII……………..……………….....84 Table 13, Physico-chemical and analytical data for compound XIIIa,b….85 Table 14, Spectral data for compound XIIIa,b……………………….…...86 Table 15, Physico-chemical and analytical data for compound XIVa,b….87 Table 16, Spectral data for compound XIVa,b…………….……………..88 Table 17, Physico-chemical and analytical data for compound XV……...89 Table 18, Spectral data for compound XV……..…………………………89 Table 19, Physico-chemical and analytical data for compound XVI…......90 Table 20, Spectral data for compound XVI…………………………….…90 Table 21, Physico-chemical and analytical data for compound XVII…….91 Table 22, Spectral data for compound XVII…………………………….. 91 Table 23, Physico-chemical and analytical data for compound XVIII…... 92 Table 24, Spectral data for compound XVIII…………..………………... 92 Table 25, Physico-chemical and analytical data for compound XIX.….... 93 Table 26, Spectral data for compound XIX……….……………….…….. 93 Table 27, Physico-chemical and analytical data for compound XX…...….94 Table 28, Spectral data for compound XX………………...…………..….94 Table 29, In vitro anticancer screening of the synthesized compounds against (HEPG2)………………………………………………………….103 Table 30, In vitro anticancer screening of compounds against (HEPG2) in combination with radiation……………………………………………….105 Abbreviations AMP: Ammonium salt of heteropoly acid. ANOVA:
Recommended publications
  • Study of Antibacterial Effect of Novel Thiazole, Imidazole, and Tetrahydropyrimidine Derivatives Against Listeria Monocytogenes
    ORIGINAL ARTICLE Study of Antibacterial Effect of Novel Thiazole, Imidazole, and Tetrahydropyrimidine Derivatives against Listeria Monocytogenes Behzad Ghasemi,1* Hamid Beyzaei,2 Hadi Hashemi3 1Department of Pathobiology, Faculty of Veterinary, University of Zabol, Zabol, Iran. 2Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran. 3Department of Clinical Sciences, Faculty of Veterinary, University of Zabol, Zabol, Iran. ABSTRACT Purpose: In this study, we have focused on antibacterial effect of newly synthesized thiazole, imidazole, and tetrahydropyrimidine derivatives in Iran on listeria monocytogenes. Materials and Methods: For evaluation of antibacterial effect, the disk diffusion method was applied to measure the growth inhibition zone diameter and broth micro dilution was performed to determine the minimum inhibitory concentration. Results: Assessing the antibacterial effect showed that only thiazole derivative 6d had inhibitory effect on listeria monocytogenes and the other thiazole, imidazole and tetrahydropyrimidine derivatives lacked any inhibitory clue on this organism. The inhibitory effect of thiazole derivative 6d was shown by minimum inhibitory concentration = 64 and growth inhibition zone diameter = 23 ± 0.1. In antibiogram test, also the most susceptibility was recorded for gentamicin and penicillin with minimum inhibitory concentration = 1 µg/mL. Conclusion: The antibacterial effect of thiazole, imidazole and tetrahydropyrimidine derivatives differs from each other and cross connections such as linkage of oxygen to thiazole ring in derivative 6d, could reinforce this effect. By proving the in vitro antibacterial effect of the novel thiazole derivative on listeria monocytogenes, to more recognize this compound, next step is determining the toxicity and therapeutic effects in laboratory animals. Keywords: listeriosis; drug therapy; treatment outcome; antifungal agents; chemistry; pharmacology.
    [Show full text]
  • Synthesis of New Thiazole and Thiazolyl Derivatives of Medicinal Significant-A Short Review
    MOJ Bioorganic & Organic Chemistry Mini Review Open Access Synthesis of new thiazole and thiazolyl derivatives of medicinal significant-a short review Abstract Volume 2 Issue 2 - 2018 In the field of therapeutic science, thiazoles are of extraordinary importance, because of their potent and significant biological activities. Likewise thiazole and their Weiam Hussein,1 Gülhan Turan- derivatives are found in various powerful naturally and biologically active compounds Zitouni2 which possess a broad spectrum of biological activity therefore, synthesis of this 1Department of Pharmaceutical Chemistry, Aden University, compound is of remarkable concern. This review primarily focuses on the updated Yemen research papers reported in literature for the synthesis of thiazole and thiazolyl 2Department of Pharmaceutical Chemistry, Anadolu University, compounds. Turkey Keywords: thiazoles, thiazolyl, synthetic procedures, biological activity Correspondence: Weiam Hussein, Anadolu University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Eskişehir, Turkey, Tel +905074929053, Email [email protected] Received: February 23, 2018| Published: March 12, 2018 Introduction Kaplancikli et al. 11 reported a simple and three steps-reaction procedure for the synthesis of new benzimidazole-thiazole derivatives. The synthesis of heterocyclic rings has been a fascinating field 4-(1H-benzimidazol-1-yl)benzaldehyde was prepared by reacting in therapeutic science. Various heterocyclic compounds containing 1H-benzimidazole and 4-fluorobenzaldehyde under microwave nitrogen and sulfur have flexible frameworks for drugs development irradiation, then, the reaction between 4-(1H-benzimidazol- and design.1 Thiazole is one of the most intensively studied classes of 1-yl)benzaldehyde and hydrazine carbothioamide gave as a aromatic five-membered heterocyclics. It was first defined by Hantzschresult 2-(4-(1H-benzimidazol-1-yl)benzylidene)hydrazine-1- and Weber in 1887.
    [Show full text]
  • Prospects for NK Cell Therapy of Sarcoma
    cancers Review Prospects for NK Cell Therapy of Sarcoma Mieszko Lachota 1 , Marianna Vincenti 2 , Magdalena Winiarska 3, Kjetil Boye 4 , Radosław Zago˙zd˙zon 5,* and Karl-Johan Malmberg 2,6,* 1 Department of Clinical Immunology, Doctoral School, Medical University of Warsaw, 02-006 Warsaw, Poland; [email protected] 2 Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, 0310 Oslo, Norway; [email protected] 3 Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; [email protected] 4 Department of Oncology, Oslo University Hospital, 0310 Oslo, Norway; [email protected] 5 Department of Clinical Immunology, Medical University of Warsaw, 02-006 Warsaw, Poland 6 Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, 141 86 Stockholm, Sweden * Correspondence: [email protected] (R.Z.); [email protected] (K.-J.M.) Received: 15 November 2020; Accepted: 9 December 2020; Published: 11 December 2020 Simple Summary: Sarcomas are a group of aggressive tumors originating from mesenchymal tissues. Patients with advanced disease have poor prognosis due to the ineffectiveness of current treatment protocols. A subset of lymphocytes called natural killer (NK) cells is capable of effective surveillance and clearance of sarcomas, constituting a promising tool for immunotherapeutic treatment. However, sarcomas can cause impairment in NK cell function, associated with enhanced tumor growth and dissemination. In this review, we discuss the molecular mechanisms of sarcoma-mediated suppression of NK cells and their implications for the design of novel NK cell-based immunotherapies against sarcoma.
    [Show full text]
  • The Emerging Role of Paclitaxel in Breast Cancer Therapy1
    Vol. 1, 247-256, March 1995 Clinical Cancer Research 247 Minireview The Emerging Role of Paclitaxel in Breast Cancer Therapy1 Andrew D. Seidman2 overexpressing subline of MCF-7 cells appears to result in the Breast and Gynecological Oncology Service, Memorial Sloan- development of 4.4-fold less resistance (6). Furthermore, in Kettering Cancer Center, New York, New York 10021 paclitaxel-resistant cells, the ratio of soluble to polymerized tubulin is greater than that observed in sensitive cells (7). Introduction Ongoing investigation should clarify the relationship between Multiple chemotherapeutic agents and regimens exist with tubulin alterations and resistance to taxanes. documented antitumor activity against breast cancer; however, In parallel with the development of clinical trials of paclitaxel- less than one in five patients with stage IV breast cancer are alive based combination regimens, in vivo and in vitro studies have 5 years from the first detection of distant metastases (1). Although examined combinations for cytotoxicity in several systems. In vitro improved response proportions have been observed, overall sur- studies in human MCF-7 breast carcinoma cells exposed to a LD vival for patients with metastatic breast cancer has not been sig- of paclitaxel for 24 h followed by a 1-h incubation with varying nificantly improved by the progress of the past three decades. Furthermore, despite the proven magnitude of benefit of adjuvant concentrations of doxorubicin showed less than additive cytotox- icity for the combination of paclitaxel and doxorubicin (8). On the systemic therapy in reducing the risk of recurrence (2), a significant fraction of patients with early stage breast cancer still will relapse other hand, when an AlT cell viability assay was used, others have and ultimately die of metastatic disease.
    [Show full text]
  • Thiazole Cores As Organic Fluorophore Units
    116 T HIAZOLE CORE S AS ORGANIC FLUOROPHORE UNITS: SYNTHESIS AND FLUORESCENCE DOI: http://dx.medra.org/ 10.17374/targets.2020.23.116 Nataliya P. Belskaya * a,b , Irena Kostova c , Zhijin Fan d a Ural Federal University, Mira str. 19, 620002 Ekaterinburg, Russia b Institut e of Organic Synthesis, Ural Branch of Academy of Science , 620219 E katerinburg, Russia c Department of Chemistry, Faculty of Pharmacy, Medical University , Dunav s tr. 2, 1000 Sofia, Bulgaria d State Key Laboratory of Elemento - Organic Chemistry, College of Chemis try, Nankai University, 30 0 071 Tianjin, PR China , Collaborative Innovation Center of Chemical Science and Engineering ( Tianjin ) , Nankai University, 300071 Tianjin , P . R . China (e - mail: [email protected] ) Abstract. M ethods for the synthesis of thiazole s , which display ph otoph y sical properties, are present ed and analy z ed . T he scope and limitation s of well - known pathways used to construct th is heterocyclic core , and the introduction of funct ional groups, substituents , and linear linkers to tune the fluorescence , are described . R elationships between structure and photoph y sical properties , and applications as photoswitches and in i on recognition, are also discussed . Contents 1. Introduction 2. Synthesis of fluorescent thiazoles 2.1 . M ain approaches to thiazole core construction 2.1.1. Erlenmeyer method for thiazole ring construction 2.1.2. Different methods for thiazole ring construction 2.2 . Modification of the thiazole core 2.2.1. Aryl/heteroarylation of the thiazole ring 2.2.2. Alkylation of hydroxythiazoles 2.2.3. Introduction of substituents containing C=C, С=N, and N=N bonds 2.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,062,029 B2 Schadt Et Al
    USOO9062O29B2 (12) United States Patent (10) Patent No.: US 9,062,029 B2 Schadt et al. (45) Date of Patent: *Jun. 23, 2015 (54) PYRIMIDINYL PYRIDAZINONE 417/10 (2013.01); C07D 417/14 (2013.01); DERVATIVES C07D 451/06 (2013.01); C07D 453/02 (2013.01); A61 K3I/501 (2013.01); A61 K (71) Applicant: Merck Patent GmbH, Darmstadt (DE) 3 1/506 (2013.01); A61 K3I/5355 (2013.01): (72) Inventors: Oliver Schadt, Rodenbach (DE); Dieter A6IK3I/5377 (2013.01); A61K3I/55 Dorsch, Ober-Ramstadt (DE); Frank (2013.01); A61K 45/06 (2013.01) Stieber, Heidelberg (DE); Andree (58) Field of Classification Search Blaukat, Schriesheim (DE) CPC C07D 403/14: A61K31/506; A61K31/5377 USPC ................... 514/236.5, 252.02:544/123, 298 (73) Assignee: Merck Patent GmbH, Darmstadt (DE) See application file for complete search history. (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 (56) References Cited U.S.C. 154(b) by 0 days. This patent is Subject to a terminal dis U.S. PATENT DOCUMENTS claimer. 6,242.461 Bl 6/2001 Goldstein 6,403,586 B1 6/2002 Ohkuchi et al. (21) Appl. No.: 14/149,110 8,071,593 B2 12/2011 Schadt et al. 8,173,653 B2 5, 2012 Dorsch et al. (22) Filed: Jan. 7, 2014 8,329,692 B2 12/2012 Schadt et al. 8,580,781 B2 * 1 1/2013 Dorsch et al. ............ 514,217.06 (65) Prior Publication Data 8,658,643 B2 * 2/2014 Schadt et al. .............. 514,236.5 2004/O152739 A1 8, 2004 Hanau US 2014/O128396 A1 May 8, 2014 2004/0259863 A1 12/2004 Eggenweiler et al.
    [Show full text]
  • In Vitroo and in Vivo Pharmacology of 4-Substituted
    IN VITROO AND IN VIVO PHARMACOLOGY OF 4-SUBSTITUTED METHOXYBENZOYL-ARYL-THIAZOLES (SMART) AND 2- ARYLTHIAZOLIDINE-4-CARBOXYLIC ACID AMIDES (ATCAA) Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Chien-Ming Li, M.S. Graduate Program in Pharmacy The Ohio State University 2010 Dissertation Committee: Dr. James T. Dalton, Advisor Dr. Robert W. Brueggemeier Dr. Thomas D. Schmittgen Dr. Mitch A. Phelps Copyright by Chien-Ming Li 2010 ABSTRACT Formation of microtubules is a dynamic process that involves polymerization and depolymerization of the αβ-tubulin heterodimers. Drugs that enhance or inhibit tubulin polymerization can destroy this dynamic process, arresting cells in the G2/M phase of the cell cycle. Although drugs that target tubulin generally demonstrate cytotoxic potency in sub-nanomolar range, resistance due to drug efflux is a common phenomenon among the antitubulin agents. We recently reported a class of 4-Substituted Methoxybenzoyl-Aryl- Thiazoles (SMART), which exhibited great in vitro and in vivo potency. SMART compounds effectively inhibited tubulin polymerization in dose dependent manner, suggesting that SMART compounds may bind to tubulin and subsequently hamper the polymerization. To date the only method to determine the binding of inhibitor to tubulin has been competitive radioligand binding assays. We developed a novel non-radioactive mass spectrometry (MS) binding assay to study the tubulin binding of colchicine, vinblastine and paclitaxel. The method involves a very simple step of separating the unbound ligand from macromolecules using ultrafiltration. The unbound ligand in the filtrate can be accurately determined using a highly sensitive and specific LC-MS/MS method.
    [Show full text]
  • Heterocyclic Chemistrychemistry
    HeterocyclicHeterocyclic ChemistryChemistry Professor J. Stephen Clark Room C4-04 Email: [email protected] 2011 –2012 1 http://www.chem.gla.ac.uk/staff/stephenc/UndergraduateTeaching.html Recommended Reading • Heterocyclic Chemistry – J. A. Joule, K. Mills and G. F. Smith • Heterocyclic Chemistry (Oxford Primer Series) – T. Gilchrist • Aromatic Heterocyclic Chemistry – D. T. Davies 2 Course Summary Introduction • Definition of terms and classification of heterocycles • Functional group chemistry: imines, enamines, acetals, enols, and sulfur-containing groups Intermediates used for the construction of aromatic heterocycles • Synthesis of aromatic heterocycles • Carbon–heteroatom bond formation and choice of oxidation state • Examples of commonly used strategies for heterocycle synthesis Pyridines • General properties, electronic structure • Synthesis of pyridines • Electrophilic substitution of pyridines • Nucleophilic substitution of pyridines • Metallation of pyridines Pyridine derivatives • Structure and reactivity of oxy-pyridines, alkyl pyridines, pyridinium salts, and pyridine N-oxides Quinolines and isoquinolines • General properties and reactivity compared to pyridine • Electrophilic and nucleophilic substitution quinolines and isoquinolines 3 • General methods used for the synthesis of quinolines and isoquinolines Course Summary (cont) Five-membered aromatic heterocycles • General properties, structure and reactivity of pyrroles, furans and thiophenes • Methods and strategies for the synthesis of five-membered heteroaromatics
    [Show full text]
  • Thiazole Analogues of the Marine Alkaloid Nortopsentin As Inhibitors of Bacterial Biofilm Formation
    molecules Article Thiazole Analogues of the Marine Alkaloid Nortopsentin as Inhibitors of Bacterial Biofilm Formation Anna Carbone †,‡, Stella Cascioferro † , Barbara Parrino, Daniela Carbone , Camilla Pecoraro, Domenico Schillaci , Maria Grazia Cusimano, Girolamo Cirrincione and Patrizia Diana * Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy; [email protected] (A.C.); [email protected] (S.C.); [email protected] (B.P.); [email protected] (D.C.); [email protected] (C.P.); [email protected] (D.S.); [email protected] (M.G.C.); [email protected] (G.C.) * Correspondence: [email protected] † Present address: Dipartimento di Farmacia, Università degli Studi di Genova, Viale Benedetto XV 3, 16132 Genova, Italy. ‡ These authors contributed equally to this work. Abstract: Anti-virulence strategy is currently considered a promising approach to overcome the global threat of the antibiotic resistance. Among different bacterial virulence factors, the biofilm formation is recognized as one of the most relevant. Considering the high and growing percentage of multi-drug resistant infections that are biofilm-mediated, new therapeutic agents capable of counteracting the formation of biofilms are urgently required. In this scenario, a new series of 18 thiazole derivatives was efficiently synthesized and evaluated for its ability to inhibit biofilm formation against the Gram-positive bacterial reference strains Staphylococcus aureus ATCC 25923 and S. aureus ATCC 6538 and the Gram-negative strain Pseudomonas aeruginosa ATCC 15442. Most of the new compounds showed a marked selectivity against the Gram-positive strains. Remarkably, Citation: Carbone, A.; Cascioferro, S.; five compounds exhibited BIC50 values against S.
    [Show full text]
  • Dissociation Constants of Organic Acids and Bases
    DISSOCIATION CONSTANTS OF ORGANIC ACIDS AND BASES This table lists the dissociation (ionization) constants of over pKa + pKb = pKwater = 14.00 (at 25°C) 1070 organic acids, bases, and amphoteric compounds. All data apply to dilute aqueous solutions and are presented as values of Compounds are listed by molecular formula in Hill order. pKa, which is defined as the negative of the logarithm of the equi- librium constant K for the reaction a References HA H+ + A- 1. Perrin, D. D., Dissociation Constants of Organic Bases in Aqueous i.e., Solution, Butterworths, London, 1965; Supplement, 1972. 2. Serjeant, E. P., and Dempsey, B., Ionization Constants of Organic Acids + - Ka = [H ][A ]/[HA] in Aqueous Solution, Pergamon, Oxford, 1979. 3. Albert, A., “Ionization Constants of Heterocyclic Substances”, in where [H+], etc. represent the concentrations of the respective Katritzky, A. R., Ed., Physical Methods in Heterocyclic Chemistry, - species in mol/L. It follows that pKa = pH + log[HA] – log[A ], so Academic Press, New York, 1963. 4. Sober, H.A., Ed., CRC Handbook of Biochemistry, CRC Press, Boca that a solution with 50% dissociation has pH equal to the pKa of the acid. Raton, FL, 1968. 5. Perrin, D. D., Dempsey, B., and Serjeant, E. P., pK Prediction for Data for bases are presented as pK values for the conjugate acid, a a Organic Acids and Bases, Chapman and Hall, London, 1981. i.e., for the reaction 6. Albert, A., and Serjeant, E. P., The Determination of Ionization + + Constants, Third Edition, Chapman and Hall, London, 1984. BH H + B 7. Budavari, S., Ed., The Merck Index, Twelth Edition, Merck & Co., Whitehouse Station, NJ, 1996.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2009/0226431 A1 Habib (43) Pub
    US 20090226431A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2009/0226431 A1 Habib (43) Pub. Date: Sep. 10, 2009 (54) TREATMENT OF CANCER AND OTHER Publication Classification DISEASES (51) Int. Cl. A 6LX 3/575 (2006.01) (76)76) InventorInventor: Nabilabil Habib,Habib. Beirut (LB(LB) C07J 9/00 (2006.01) Correspondence Address: A 6LX 39/395 (2006.01) 101 FEDERAL STREET A6IP 29/00 (2006.01) A6IP35/00 (2006.01) (21) Appl. No.: 12/085,892 A6IP37/00 (2006.01) 1-1. (52) U.S. Cl. ...................... 424/133.1:552/551; 514/182: (22) PCT Filed: Nov.30, 2006 514/171 (86). PCT No.: PCT/US2O06/045665 (57) ABSTRACT .."St. Mar. 6, 2009 The present invention relates to a novel compound (e.g., 24-ethyl-cholestane-3B.5C,6C.-triol), its production, its use, and to methods of treating neoplasms and other tumors as Related U.S. Application Data well as other diseases including hypercholesterolemia, (60) Provisional application No. 60/741,725, filed on Dec. autoimmune diseases, viral diseases (e.g., hepatitis B, hepa 2, 2005. titis C, or HIV), and diabetes. F2: . - 2 . : F2z "..., . Cz: ".. .. 2. , tie - . 2 2. , "Sphagoshgelin , , re Cls Phosphatidiglethanolamine * - 2 .- . t - r y ... CBs .. A . - . Patent Application Publication Sep. 10, 2009 Sheet 1 of 16 US 2009/0226431 A1 E. e'' . Phosphatidylcholine. " . Ez'.. C.2 . Phosphatidylserias. * . - A. z' C. w E. a...2 .". is 2 - - " - B 2. Sphingoshgelin . Cls Phosphatidglethanglamine Figure 1 Patent Application Publication Sep. 10, 2009 Sheet 2 of 16 US 2009/0226431 A1 Chile Phosphater Glycerol Phosphatidylcholine E.
    [Show full text]
  • TOMMANNUUTTILIMINATIONUS009862693B2 (12 ) United States Patent ( 10 ) Patent No
    TOMMANNUUTTILIMINATIONUS009862693B2 (12 ) United States Patent ( 10 ) Patent No. : US 9 , 862, 693 B2 Pietras et al. (45 ) Date of Patent : Jan . 9 , 2018 ( 54 ) COMPOUNDS AND METHODS OF ( 56 ) References Cited TREATING CANCER U . S . PATENT DOCUMENTS (71 ) Applicant : The Regents of the University of 4 , 574 ,123 A * 3 / 1986 Edwards . .. .. C07C 279/ 28 California , Oakland , CA (US ) 162 / 161 4 , 861, 760 A 8 / 1989 Mazuel et al. ( 72 ) Inventors : Richard J . Pietras , Los Angeles , CA 4 ,911 , 920 A 3 / 1990 Jani et al . (US ) ; Michael E . Jung, Los Angeles , 5 ,212 , 162 A 5 / 1993 Missel et al. CA (US ) ; Diana C . Marquez -Garban , 5 , 403 , 841 A 4 / 1995 Lang et al . 6 ,699 ,989 B1 * 3 / 2004 Shetty CO7D 215 / 56 Los Angeles, CA (US ) ; Gang Deng, 540 /474 Los Angeles, CA (US ) 7 , 285 ,681 B2 * 10 /2007 Moinet .. .. .. CO7D 295/ 215 564 /233 ( 73 ) Assignee : The Regents of the University of 7 ,671 , 019 B2 * 3 /2010 Tobia A61K 8 /44 California , Oaklnad , CA (US ) 514 / 1 . 1 8 , 853, 259 B2 10 /2014 Mylari Subject to any disclaimer, the term of this 2010 / 0087544 A1 4 / 2010 Kim et al. ( * ) Notice : 2011 /0196015 A1 8 / 2011 Kim et al . patent is extended or adjusted under 35 2011 / 0207810 Al 8 / 2011 Kim et al . U . S . C . 154 (b ) by 40 days. 2015 /0126518 Al 5 /2015 Kim et al . ( 21) Appl . No. : 14 /566 ,055 FOREIGN PATENT DOCUMENTS ( 22 ) Filed : Dec . 10 , 2014 WO WO - 96 /05309 A2 2 / 1996 WO WO - 96 /05309 A3 2 / 1996 (65 ) Prior Publication Data WO WO - 2011 /083998 A2 7 / 2011 WO WO - 2011 /083998 A3 7 / 2011 US 2015 /0158832 A1 Jun .
    [Show full text]