An Overview of the Synthesis and Antimicrobial, Antiprotozoal, and Antitumor Activity of Thiazole and Bisthiazole Derivatives

Total Page:16

File Type:pdf, Size:1020Kb

An Overview of the Synthesis and Antimicrobial, Antiprotozoal, and Antitumor Activity of Thiazole and Bisthiazole Derivatives molecules Review An Overview of the Synthesis and Antimicrobial, Antiprotozoal, and Antitumor Activity of Thiazole and Bisthiazole Derivatives 1,2 1, 3 1 Anca-Maria Borcea , Ioana Ionut, *, Ovidiu Cris, an and Ovidiu Oniga 1 Department of Pharmaceutical Chemistry, “Iuliu Hat, ieganu” University of Medicine and Pharmacy, 41 Victor Babes, Street, 400012 Cluj-Napoca, Romania; [email protected] (A.-M.B.); [email protected] (O.O.) 2 Preclinic Department, Pharmacy Specialization, Faculty of Medicine, Lucian Blaga University of Sibiu, 2A Lucian Blaga Street, 550169 Sibiu, Romania 3 Department of Organic Chemistry, “Iuliu Hat, ieganu” University of Medicine and Pharmacy, 41 Victor Babes, Street, 400012 Cluj-Napoca, Romania; [email protected] * Correspondence: [email protected]; Tel.: +40-747-507-629 Abstract: Thiazole, a five-membered heteroaromatic ring, is an important scaffold of a large number of synthetic compounds. Its diverse pharmacological activity is reflected in many clinically approved thiazole-containing molecules, with an extensive range of biological activities, such as antibacterial, antifungal, antiviral, antihelmintic, antitumor, and anti-inflammatory effects. Due to its significance in the field of medicinal chemistry, numerous biologically active thiazole and bisthiazole deriva- tives have been reported in the scientific literature. The current review provides an overview of different methods for the synthesis of thiazole and bisthiazole derivatives and describes various com- pounds bearing a thiazole and bisthiazole moiety possessing antibacterial, antifungal, antiprotozoal, and antitumor activity, encouraging further research on the discovery of thiazole-containing drugs. Citation: Borcea, A.-M.; Ionut,, I.; Cris, an, O.; Oniga, O. An Overview of the Synthesis and Antimicrobial, Keywords: thiazole; bisthiazole; synthesis; derivatives; biological activity Antiprotozoal, and Antitumor Activity of Thiazole and Bisthiazole Derivatives. Molecules 2021, 26, 624. https://doi.org/10.3390/ 1. Introduction molecules26030624 Nitrogen-containing heterocyclic compounds play an important role in the drug dis- covery process, as approximately 75% of FDA (Food and Drug Administration)-approved Academic Editor: Baoan Song small-molecule drugs contain one or more nitrogen-based heterocycles [1]. Thiazole, or 1,3- Received: 29 December 2020 thiazole, belongs to the class of azoles and contains one sulfur atom and one nitrogen atom Accepted: 22 January 2021 at positions 1 and 3. Its diverse biological activity is reflected in a large number of clinically Published: 25 January 2021 approved thiazole-containing compounds with an extensive range of pharmacological activities. Most of these compounds are 2,4-disubstituted thiazole derivatives, and only a Publisher’s Note: MDPI stays neutral few are 2,5-disubstituted or 2,4,5-trisubstituted thiazoles [2]. with regard to jurisdictional claims in Several drugs such as sulfathiazole; aztreonam; numerous cephems (ceftaroline, cefo- published maps and institutional affil- iations. tiam, ceftibuten, cefixime, ceftriaxone, cefotaxime, ceftazidime, cefmenoxime, ceftizoxime, cefepime, cefdinir) with antibacterial effects; pramipexole with antiparkinsonian activity; edoxaban with antithrombotic effects; isavuconazole with antifungal effects; famotidine and nizatidine with antiulcer activity; meloxicam with anti-inflammatory effects; tiazofu- rin, dabrafenib, dasatinib, ixabepilone, and epothilone with antitumor effects; mirabegron Copyright: © 2021 by the authors. as a β3-adrenergic receptor agonist; nitazoxanide and thiabendazole with antiparasitic Licensee MDPI, Basel, Switzerland. effects; and febuxostat with antigout activity contain one thiazole moiety in the structure This article is an open access article (Figure1)[2–4]. distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). Molecules 2021, 26, 624. https://doi.org/10.3390/molecules26030624 https://www.mdpi.com/journal/molecules Molecules 2021, 26, 624 2 of 26 Molecules 2021, 26, x FOR PEER REVIEW 2 of 26 O O OH H2N S S N O N S H2N O N N N N HN H H O H O S N N O N S N O N S O HN O N O OH O N N O OH H O HN Cl O O N edoxaban aztreonam ceftriaxone F -O OH O N F N+ S S N S O NH N H OH N N NH N S N S OO N N N nizatidine meloxicam isavuconazole OH O H O N N S O + - O N S N O S H2N H N N N O N OH H O febuxostat mirabegron O nitazoxanide FigureFigure 1. 1.Clinical Clinical drugs drugs bearing bearing oneone thiazolethiazole ring. CompoundsCompounds bearing bearing twotwo thiazolethiazole rings, such such as as the the antitumor antitumor drug drug bleomycin, bleomycin, the the antiretroviralantiretroviral agent agent ritonavir, the the pharmacokinetic pharmacokinetic enhancer enhancer for HIV for drugs HIV drugs cobicistat, cobicistat, and andthe the antibacterial antibacterial agent agent cefditoren, cefditoren, have have been been authorized authorized on on the the pharmaceutical pharmaceutical market market (Figure(Figure2)[ 2)2 ,[2,5].5]. Figure 2. Clinical drugs bearing two thiazole rings. Figure 2. Clinical drugs bearing two thiazole rings. The high medicinal significance of this scaffold has attracted considerable attention fromThe many high researchers medicinal and significance encouraged of this the scaffolddesign and has synthesis attracted of considerable numerous thiazole attention‐ fromand many bisthiazole researchers‐containing and compounds encouraged with the designdiverse and pharmacological synthesis of numerousactivities, such thiazole- as andantibacterial bisthiazole-containing [6], antifungal compounds [7], antiprotozoal with diverse[8], antiviral pharmacological [9,10], anticancer activities, [11], anti such‐in‐ as antibacterialflammatory [[12–16],6], antifungal antioxidant [7], [17], antiprotozoal analgesic [18], [8], anticonvulsant antiviral [9,10 ],[19], anticancer antidiabetic [11 ],[20], anti- inflammatoryand antihypertensive [12–16], antioxidant[21] activities. [17 Furthermore,], analgesic [ 18thiazole], anticonvulsant compounds [ 19exhibiting], antidiabetic a prom [20‐ ], andising antihypertensive biological potential [21] activities. for the treatment Furthermore, of Alzheimer’s thiazole compounds disease [22,23] exhibiting and metabolic a promis- ingsyndrome biological [24] potential have been for reported the treatment in the scientific of Alzheimer’s literature. disease [22,23] and metabolic syndromeNowadays, [24] have research been reported in the field in theof antimicrobial scientific literature. drug design is focused on the dis‐ coveryNowadays, of novel researchtargets and in chemical the field entities of antimicrobial that possess drug antibacterial design is activity focused in on order the to dis- covery of novel targets and chemical entities that possess antibacterial activity in order to overcome the rapid development of drug resistance. The few antibiotics that have been recently approved are structurally related to older drugs, being susceptible to the same Molecules 2021, 26, x FOR PEER REVIEW 3 of 26 Molecules 2021, 26, 624 3 of 26 overcome the rapid development of drug resistance. The few antibiotics that have been recently approved are structurally related to older drugs, being susceptible to the same mechanismsmechanisms ofof resistanceresistance [[25].25]. TropicalTropical diseasesdiseases suchsuch asas ChagasChagas disease,disease, leishmaniasis,leishmaniasis, andand malaria malaria occur occur especially especially in in underdeveloped underdeveloped countries, countries, around around 266 266 million million cases cases being being reportedreported globallyglobally [[26].26]. At At the the present present time, time, only only a asmall small number number of of drugs drugs are are available available on onthe the pharmaceutical pharmaceutical market market for forthe thetreatment treatment of protozoan of protozoan infections infections [27]. [Cancer27]. Cancer remains re- mainsone of one the ofleading the leading causes causes of mortality of mortality worldwide. worldwide. The lack The of lack selectivity of selectivity and target and target speci‐ specificity,ficity, as well as well as the as thepresence presence of toxicity of toxicity and and resistance, resistance, is an is inadequate an inadequate feature feature of the of thecurrently currently available available anticancer anticancer drug drug therapy therapy [3]. [ 3Considering]. Considering all the all the above, above, there there is an is anur‐ urgentgent need need for for continuous continuous progress progress in in the the design design and development ofof anti-infectiveanti‐infective andand antitumorantitumor agents. agents. TheThe current review systematically systematically presents presents different different methods methods for for the the synthesis synthesis of thi of‐ thiazoleazole and and bisthiazole bisthiazole derivatives. derivatives. Moreover, Moreover, various various reports reports on the antimicrobial, on the antimicrobial, antipro‐ antiprotozoal,tozoal, and antitumor and antitumor activities activities of thiazoles of thiazoles and bisthiazoles, and bisthiazoles, mostly published mostly published within the withinpast 10 the years, past are 10 discussed, years, are discussed, providing providingreference for reference further for research further regarding research regarding the devel‐ theopment development of new biologically of new biologically active chemical active chemical entities. entities. 2.2. ChemistryChemistry
Recommended publications
  • Chapter 12 Antimicrobial Therapy Antibiotics
    Chapter 12 Antimicrobial Therapy Topics: • Ideal drug - Antimicrobial Therapy - Selective Toxicity • Terminology - Survey of Antimicrobial Drug • Antibiotics - Microbial Drug Resistance - Drug and Host Interaction An ideal antimicrobic: Chemotherapy is the use of any chemical - soluble in body fluids, agent in the treatment of disease. - selectively toxic , - nonallergenic, A chemotherapeutic agent or drug is any - reasonable half life (maintained at a chemical agent used in medical practice. constant therapeutic concentration) An antibiotic agent is usually considered to - unlikely to elicit resistance, be a chemical substance made by a - has a long shelf life, microorganism that can inhibit the growth or - reasonably priced. kill microorganisms. There is no ideal antimicrobic An antimicrobic or antimicrobial agent is Selective Toxicity - Drugs that specifically target a chemical substance similar to an microbial processes, and not the human host’s. antibiotic, but may be synthetic. Antibiotics Spectrum of antibiotics and targets • Naturally occurring antimicrobials – Metabolic products of bacteria and fungi – Reduce competition for nutrients and space • Bacteria – Streptomyces, Bacillus, • Molds – Penicillium, Cephalosporium * * 1 The mechanism of action for different 5 General Mechanisms of Action for antimicrobial drug targets in bacterial cells Antibiotics - Inhibition of Cell Wall Synthesis - Disruption of Cell Membrane Function - Inhibition of Protein Synthesis - Inhibition of Nucleic Acid Synthesis - Anti-metabolic activity Antibiotics
    [Show full text]
  • Folic Acid Antagonists: Antimicrobial and Immunomodulating Mechanisms and Applications
    International Journal of Molecular Sciences Review Folic Acid Antagonists: Antimicrobial and Immunomodulating Mechanisms and Applications Daniel Fernández-Villa 1, Maria Rosa Aguilar 1,2 and Luis Rojo 1,2,* 1 Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas, CSIC, 28006 Madrid, Spain; [email protected] (D.F.-V.); [email protected] (M.R.A.) 2 Consorcio Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, 28029 Madrid, Spain * Correspondence: [email protected]; Tel.: +34-915-622-900 Received: 18 September 2019; Accepted: 7 October 2019; Published: 9 October 2019 Abstract: Bacterial, protozoan and other microbial infections share an accelerated metabolic rate. In order to ensure a proper functioning of cell replication and proteins and nucleic acids synthesis processes, folate metabolism rate is also increased in these cases. For this reason, folic acid antagonists have been used since their discovery to treat different kinds of microbial infections, taking advantage of this metabolic difference when compared with human cells. However, resistances to these compounds have emerged since then and only combined therapies are currently used in clinic. In addition, some of these compounds have been found to have an immunomodulatory behavior that allows clinicians using them as anti-inflammatory or immunosuppressive drugs. Therefore, the aim of this review is to provide an updated state-of-the-art on the use of antifolates as antibacterial and immunomodulating agents in the clinical setting, as well as to present their action mechanisms and currently investigated biomedical applications. Keywords: folic acid antagonists; antifolates; antibiotics; antibacterials; immunomodulation; sulfonamides; antimalarial 1.
    [Show full text]
  • Unexpected Induction of Resistant Pseudomonas Aeruginosa Biofilm to fluoroquinolones by Diltiazem: a New Perspective of Microbiological Drug—Drug Interactionଝ
    Journal of Infection and Public Health (2008) 1, 105—112 View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Unexpected induction of resistant Pseudomonas aeruginosa biofilm to fluoroquinolones by diltiazem: A new perspective of microbiological drug—drug interactionଝ Walid F. ElKhatib, Virginia L. Haynes, Ayman M. Noreddin ∗ University of Minnesota, Duluth, College of Pharmacy, Pharmacy Practice and Pharmaceutical Sciences, 1110 Kirby Dr. Life Sciences 232, Duluth, MN 55812, USA Received 15 August 2008; received in revised form 21 October 2008; accepted 22 October 2008 KEYWORDS Summary The increase of multi-drug resistant Pseudomonas aeruginosa infec- Diltiazem; tions is a worldwide dilemma. At the heart of the problem is the inability to treat Pseudomonas established P. aeruginosa biofilms with standard antibiotic therapy, including flu- aeruginosa; oroquinolones. We address a previously unstudied question as to the effect of a Biofilm; commonly prescribed calcium channel blocker (CCB) diltiazem on the biofilm growth. Resistance; Real-time monitoring of the overall growth and killing of P.aeruginosa biofilm during fluoroquinolones therapy in the presence and absence of diltiazem was performed. Fluoroquinolone In this study, we demonstrate that for P. aeruginosa biofilms, resistance to the first- line fluoroquinolones may be induced by the commonly prescribed calcium channel blocker diltiazem. Published by Elsevier Limited on behalf of King Saud Bin Abdulaziz University for Health Sciences. All rights reserved. Introduction approved for the treatment of angina, hyper- tension and cardiac arrhythmia [1]. It acts as Diltiazem is a class III calcium channel blocker a calcium antagonist that controls calcium ion (CCB) belonging to benzothiazepines and has been influx in cardiac and vascular smooth muscle cells through slow voltage-gated L-type channels in the ଝ This manuscript was presented in part at the Design of Med- cell membrane.
    [Show full text]
  • Study of Antibacterial Effect of Novel Thiazole, Imidazole, and Tetrahydropyrimidine Derivatives Against Listeria Monocytogenes
    ORIGINAL ARTICLE Study of Antibacterial Effect of Novel Thiazole, Imidazole, and Tetrahydropyrimidine Derivatives against Listeria Monocytogenes Behzad Ghasemi,1* Hamid Beyzaei,2 Hadi Hashemi3 1Department of Pathobiology, Faculty of Veterinary, University of Zabol, Zabol, Iran. 2Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran. 3Department of Clinical Sciences, Faculty of Veterinary, University of Zabol, Zabol, Iran. ABSTRACT Purpose: In this study, we have focused on antibacterial effect of newly synthesized thiazole, imidazole, and tetrahydropyrimidine derivatives in Iran on listeria monocytogenes. Materials and Methods: For evaluation of antibacterial effect, the disk diffusion method was applied to measure the growth inhibition zone diameter and broth micro dilution was performed to determine the minimum inhibitory concentration. Results: Assessing the antibacterial effect showed that only thiazole derivative 6d had inhibitory effect on listeria monocytogenes and the other thiazole, imidazole and tetrahydropyrimidine derivatives lacked any inhibitory clue on this organism. The inhibitory effect of thiazole derivative 6d was shown by minimum inhibitory concentration = 64 and growth inhibition zone diameter = 23 ± 0.1. In antibiogram test, also the most susceptibility was recorded for gentamicin and penicillin with minimum inhibitory concentration = 1 µg/mL. Conclusion: The antibacterial effect of thiazole, imidazole and tetrahydropyrimidine derivatives differs from each other and cross connections such as linkage of oxygen to thiazole ring in derivative 6d, could reinforce this effect. By proving the in vitro antibacterial effect of the novel thiazole derivative on listeria monocytogenes, to more recognize this compound, next step is determining the toxicity and therapeutic effects in laboratory animals. Keywords: listeriosis; drug therapy; treatment outcome; antifungal agents; chemistry; pharmacology.
    [Show full text]
  • Synthesis of New Thiazole and Thiazolyl Derivatives of Medicinal Significant-A Short Review
    MOJ Bioorganic & Organic Chemistry Mini Review Open Access Synthesis of new thiazole and thiazolyl derivatives of medicinal significant-a short review Abstract Volume 2 Issue 2 - 2018 In the field of therapeutic science, thiazoles are of extraordinary importance, because of their potent and significant biological activities. Likewise thiazole and their Weiam Hussein,1 Gülhan Turan- derivatives are found in various powerful naturally and biologically active compounds Zitouni2 which possess a broad spectrum of biological activity therefore, synthesis of this 1Department of Pharmaceutical Chemistry, Aden University, compound is of remarkable concern. This review primarily focuses on the updated Yemen research papers reported in literature for the synthesis of thiazole and thiazolyl 2Department of Pharmaceutical Chemistry, Anadolu University, compounds. Turkey Keywords: thiazoles, thiazolyl, synthetic procedures, biological activity Correspondence: Weiam Hussein, Anadolu University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Eskişehir, Turkey, Tel +905074929053, Email [email protected] Received: February 23, 2018| Published: March 12, 2018 Introduction Kaplancikli et al. 11 reported a simple and three steps-reaction procedure for the synthesis of new benzimidazole-thiazole derivatives. The synthesis of heterocyclic rings has been a fascinating field 4-(1H-benzimidazol-1-yl)benzaldehyde was prepared by reacting in therapeutic science. Various heterocyclic compounds containing 1H-benzimidazole and 4-fluorobenzaldehyde under microwave nitrogen and sulfur have flexible frameworks for drugs development irradiation, then, the reaction between 4-(1H-benzimidazol- and design.1 Thiazole is one of the most intensively studied classes of 1-yl)benzaldehyde and hydrazine carbothioamide gave as a aromatic five-membered heterocyclics. It was first defined by Hantzschresult 2-(4-(1H-benzimidazol-1-yl)benzylidene)hydrazine-1- and Weber in 1887.
    [Show full text]
  • Antimicrobial Chemotherapy and Sustainable Development: the Past, the Current Trend, and the Future
    African Journal of Biomedical Research, Vol. 11 (2008); 235 - 250 ISSN 1119 – 5096 © Ibadan Biomedical Communications Group Review Article Antimicrobial chemotherapy and Sustainable Development: The past, The Current Trend, and the future *1 2 3 3 Okonko I.O, Fajobi E.A, Ogunnusi T.A, Ogunjobi A.A. and 3Obiogbolu C.H. Full-text available at http://www.ajbrui.com 1Department of Virology, Faculty of Basic Medical Sciences, College of Medicine, http://www.bioline.br/md http://www.ajol.com University of Ibadan, University College Hospital (UCH), Ibadan, Nigeria 2 Department of Basic Sciences, Federal College of Wildlife Management, New Bussa, Niger State, Nigeria 4Microbiology Unit, Department of Botany and Microbiology, University of Ibadan, Ibadan ABSTRACT Antimicrobial chemotherapy is a highly valued medical science which has shaped modern humanity in a phenomenal fashion. Within the past half century, a wide variety of antimicrobial substances have been discovered, designed and synthesized; literally hundreds of drugs have been successfully used in some fashion over the years. Today, the world wide anti-infective market exceeds $20 billion dollars annually and overall antimicrobial agents comprise the bulk of this trade. A number of general classes of antimicrobial drugs have emerged as Received: mainstays in modern infectious disease chemotherapy. Regardless of a better August 2007 understanding of infectious disease pathogenesis and the importance of sanitation, most individuals will become infected with a microbial pathogen many times, Accepted (Revised): throughout their lives and in developed countries, anti-infective chemotherapy July 2008 will be periodically administered. Antibacterial amount for the majority of anti- infective agents in comparison to antifungals, antivirals and antiparasitic agents.
    [Show full text]
  • Thiazole Cores As Organic Fluorophore Units
    116 T HIAZOLE CORE S AS ORGANIC FLUOROPHORE UNITS: SYNTHESIS AND FLUORESCENCE DOI: http://dx.medra.org/ 10.17374/targets.2020.23.116 Nataliya P. Belskaya * a,b , Irena Kostova c , Zhijin Fan d a Ural Federal University, Mira str. 19, 620002 Ekaterinburg, Russia b Institut e of Organic Synthesis, Ural Branch of Academy of Science , 620219 E katerinburg, Russia c Department of Chemistry, Faculty of Pharmacy, Medical University , Dunav s tr. 2, 1000 Sofia, Bulgaria d State Key Laboratory of Elemento - Organic Chemistry, College of Chemis try, Nankai University, 30 0 071 Tianjin, PR China , Collaborative Innovation Center of Chemical Science and Engineering ( Tianjin ) , Nankai University, 300071 Tianjin , P . R . China (e - mail: [email protected] ) Abstract. M ethods for the synthesis of thiazole s , which display ph otoph y sical properties, are present ed and analy z ed . T he scope and limitation s of well - known pathways used to construct th is heterocyclic core , and the introduction of funct ional groups, substituents , and linear linkers to tune the fluorescence , are described . R elationships between structure and photoph y sical properties , and applications as photoswitches and in i on recognition, are also discussed . Contents 1. Introduction 2. Synthesis of fluorescent thiazoles 2.1 . M ain approaches to thiazole core construction 2.1.1. Erlenmeyer method for thiazole ring construction 2.1.2. Different methods for thiazole ring construction 2.2 . Modification of the thiazole core 2.2.1. Aryl/heteroarylation of the thiazole ring 2.2.2. Alkylation of hydroxythiazoles 2.2.3. Introduction of substituents containing C=C, С=N, and N=N bonds 2.
    [Show full text]
  • The Use of Antimicrobial and Antiviral Drugs in Alzheimer's Disease
    International Journal of Molecular Sciences Review The Use of Antimicrobial and Antiviral Drugs in Alzheimer’s Disease Umar H. Iqbal, Emma Zeng and Giulio M. Pasinetti * Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; [email protected] (U.H.I.); [email protected] (E.Z.) * Correspondence: [email protected]; Tel.: +1-212-241-7938 Received: 29 May 2020; Accepted: 10 July 2020; Published: 12 July 2020 Abstract: The aggregation and accumulation of amyloid-β plaques and tau proteins in the brain have been central characteristics in the pathophysiology of Alzheimer’s disease (AD), making them the focus of most of the research exploring potential therapeutics for this neurodegenerative disease. With success in interventions aimed at depleting amyloid-β peptides being limited at best, a greater understanding of the physiological role of amyloid-β peptides is needed. The development of amyloid-β plaques has been determined to occur 10–20 years prior to AD symptom manifestation, hence earlier interventions might be necessary to address presymptomatic AD. Furthermore, recent studies have suggested that amyloid-β peptides may play a role in innate immunity as an antimicrobial peptide. These findings, coupled with the evidence of pathogens such as viruses and bacteria in AD brains, suggests that the buildup of amyloid-β plaques could be a response to the presence of viruses and bacteria. This has led to the foundation of the antimicrobial hypothesis for AD. The present review will highlight the current understanding of amyloid-β, and the role of bacteria and viruses in AD, and will also explore the therapeutic potential of antimicrobial and antiviral drugs in Alzheimer’s disease.
    [Show full text]
  • In Vitroo and in Vivo Pharmacology of 4-Substituted
    IN VITROO AND IN VIVO PHARMACOLOGY OF 4-SUBSTITUTED METHOXYBENZOYL-ARYL-THIAZOLES (SMART) AND 2- ARYLTHIAZOLIDINE-4-CARBOXYLIC ACID AMIDES (ATCAA) Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Chien-Ming Li, M.S. Graduate Program in Pharmacy The Ohio State University 2010 Dissertation Committee: Dr. James T. Dalton, Advisor Dr. Robert W. Brueggemeier Dr. Thomas D. Schmittgen Dr. Mitch A. Phelps Copyright by Chien-Ming Li 2010 ABSTRACT Formation of microtubules is a dynamic process that involves polymerization and depolymerization of the αβ-tubulin heterodimers. Drugs that enhance or inhibit tubulin polymerization can destroy this dynamic process, arresting cells in the G2/M phase of the cell cycle. Although drugs that target tubulin generally demonstrate cytotoxic potency in sub-nanomolar range, resistance due to drug efflux is a common phenomenon among the antitubulin agents. We recently reported a class of 4-Substituted Methoxybenzoyl-Aryl- Thiazoles (SMART), which exhibited great in vitro and in vivo potency. SMART compounds effectively inhibited tubulin polymerization in dose dependent manner, suggesting that SMART compounds may bind to tubulin and subsequently hamper the polymerization. To date the only method to determine the binding of inhibitor to tubulin has been competitive radioligand binding assays. We developed a novel non-radioactive mass spectrometry (MS) binding assay to study the tubulin binding of colchicine, vinblastine and paclitaxel. The method involves a very simple step of separating the unbound ligand from macromolecules using ultrafiltration. The unbound ligand in the filtrate can be accurately determined using a highly sensitive and specific LC-MS/MS method.
    [Show full text]
  • Heterocyclic Chemistrychemistry
    HeterocyclicHeterocyclic ChemistryChemistry Professor J. Stephen Clark Room C4-04 Email: [email protected] 2011 –2012 1 http://www.chem.gla.ac.uk/staff/stephenc/UndergraduateTeaching.html Recommended Reading • Heterocyclic Chemistry – J. A. Joule, K. Mills and G. F. Smith • Heterocyclic Chemistry (Oxford Primer Series) – T. Gilchrist • Aromatic Heterocyclic Chemistry – D. T. Davies 2 Course Summary Introduction • Definition of terms and classification of heterocycles • Functional group chemistry: imines, enamines, acetals, enols, and sulfur-containing groups Intermediates used for the construction of aromatic heterocycles • Synthesis of aromatic heterocycles • Carbon–heteroatom bond formation and choice of oxidation state • Examples of commonly used strategies for heterocycle synthesis Pyridines • General properties, electronic structure • Synthesis of pyridines • Electrophilic substitution of pyridines • Nucleophilic substitution of pyridines • Metallation of pyridines Pyridine derivatives • Structure and reactivity of oxy-pyridines, alkyl pyridines, pyridinium salts, and pyridine N-oxides Quinolines and isoquinolines • General properties and reactivity compared to pyridine • Electrophilic and nucleophilic substitution quinolines and isoquinolines 3 • General methods used for the synthesis of quinolines and isoquinolines Course Summary (cont) Five-membered aromatic heterocycles • General properties, structure and reactivity of pyrroles, furans and thiophenes • Methods and strategies for the synthesis of five-membered heteroaromatics
    [Show full text]
  • Antimicrobial Treatment Guidelines for Common Infections
    Antimicrobial Treatment Guidelines for Common Infections June 2016 Published by: The NB Provincial Health Authorities Anti-infective Stewardship Committee under the direction of the Drugs and Therapeutics Committee Introduction: These clinical guidelines have been developed or endorsed by the NB Provincial Health Authorities Anti-infective Stewardship Committee and its Working Group, a sub- committee of the New Brunswick Drugs and Therapeutics Committee. Local antibiotic resistance patterns and input from local infectious disease specialists, medical microbiologists, pharmacists and other physician specialists were considered in their development. These guidelines provide general recommendations for appropriate antibiotic use in specific infectious diseases and are not a substitute for clinical judgment. Website Links For Horizon Physicians and Staff: http://skyline/patientcare/antimicrobial For Vitalité Physicians and Staff: http://boulevard/FR/patientcare/antimicrobial To contact us: [email protected] When prescribing antimicrobials: Carefully consider if an antimicrobial is truly warranted in the given clinical situation Consult local antibiograms when selecting empiric therapy Include a documented indication, appropriate dose, route and the planned duration of therapy in all antimicrobial drug orders Obtain microbiological cultures before the administration of antibiotics (when possible) Reassess therapy after 24-72 hours to determine if antibiotic therapy is still warranted or effective for the given organism or
    [Show full text]
  • History of Antimicrobial Agents and Resistant Bacteria
    Research and Reviews History of Antimicrobial Agents and Resistant Bacteria JMAJ 52(2): 103–108, 2009 Tomoo SAGA,*1 Keizo YAMAGUCHI*2 Abstract Antimicrobial chemotherapy has conferred huge benefits on human health. A variety of microorganisms were elucidated to cause infectious diseases in the latter half of the 19th century. Thereafter, antimicrobial chemo- therapy made remarkable advances during the 20th century, resulting in the overly optimistic view that infectious diseases would be conquered in the near future. However, in response to the development of antimicrobial agents, microorganisms that have acquired resistance to drugs through a variety of mechanisms have emerged and continue to plague human beings. In Japan, as in other countries, infectious diseases caused by drug- resistant bacteria are one of the most important problems in daily clinical practice. In the current situation, where multidrug-resistant bacteria have spread widely, options for treatment with antimicrobial agents are limited, and the number of brand new drugs placed on the market is decreasing. Since drug-resistant bacteria have been selected by the use of antimicrobial drugs, the proper use of currently available antimicrobial drugs, as well as efforts to minimize the transmission and spread of resistant bacteria through appropriate infection control, would be the first step in resolving the issue of resistant organisms. Key words Antimicrobial agents, Resistant bacteria, History not achieve beneficial effect, and moreover, Introduction may lead to a worse prognosis. In addition, in a situation where multidrug-resistant organisms Antimicrobial drugs have caused a dramatic have spread widely, there may be quite a limited change not only of the treatment of infectious choice of agents for antimicrobial therapy.
    [Show full text]