The Use of Antimicrobial and Antiviral Drugs in Alzheimer's Disease

Total Page:16

File Type:pdf, Size:1020Kb

The Use of Antimicrobial and Antiviral Drugs in Alzheimer's Disease International Journal of Molecular Sciences Review The Use of Antimicrobial and Antiviral Drugs in Alzheimer’s Disease Umar H. Iqbal, Emma Zeng and Giulio M. Pasinetti * Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; umar.iqbal@mssm.edu (U.H.I.); emma.zeng@mssm.edu (E.Z.) * Correspondence: giulio.pasinetti@mssm.edu; Tel.: +1-212-241-7938 Received: 29 May 2020; Accepted: 10 July 2020; Published: 12 July 2020 Abstract: The aggregation and accumulation of amyloid-β plaques and tau proteins in the brain have been central characteristics in the pathophysiology of Alzheimer’s disease (AD), making them the focus of most of the research exploring potential therapeutics for this neurodegenerative disease. With success in interventions aimed at depleting amyloid-β peptides being limited at best, a greater understanding of the physiological role of amyloid-β peptides is needed. The development of amyloid-β plaques has been determined to occur 10–20 years prior to AD symptom manifestation, hence earlier interventions might be necessary to address presymptomatic AD. Furthermore, recent studies have suggested that amyloid-β peptides may play a role in innate immunity as an antimicrobial peptide. These findings, coupled with the evidence of pathogens such as viruses and bacteria in AD brains, suggests that the buildup of amyloid-β plaques could be a response to the presence of viruses and bacteria. This has led to the foundation of the antimicrobial hypothesis for AD. The present review will highlight the current understanding of amyloid-β, and the role of bacteria and viruses in AD, and will also explore the therapeutic potential of antimicrobial and antiviral drugs in Alzheimer’s disease. Keywords: Alzheimer’s disease; amyloid-β; antimicrobial; antiviral; antimicrobial peptide 1. Alzheimer’s Epidemiology Alzheimer’s disease (AD) is a progressive neurological disorder that accounts for the greatest number of dementia cases. As of 2019, 5.8 million people were living with AD, with its prevalence predicted to increase to 13.8 million by 2050 [1]. The vast majority of cases are concentrated in ages over 65, impacting 10% of people in this age group. In addition, the economic toll of AD on the United States economy is significant, estimated to be roughly USD 290 billion in 2019 [1]. As the number of cases is only expected to rise over the coming decades, research in this field is critical in order to understand the pathology of this disease, as well as potential therapeutics. 2. Timeline/Characterization of Alzheimer’s Disease The understanding and characterization of AD can be traced back over 100 years to Alois Alzheimer, from whom the disease takes its name. After completing an autopsy of a patient with progressive dementia, Alzheimer noticed a severe amount of cortical degeneration and an accumulation of protein deposits, specifically extraneuronal plaques and intraneural tangles [2]. By 1991, the buildup of extraneuronal amyloid-β (Aβ) plaques became the hallmark trait of the pathogenesis of Alzheimer’s disease [3], initiating the development of the amyloid cascade hypothesis [4]. In parallel to Aβ plaques formation, the accumulation of other naturally unfolded proteins is central to AD and other cerebral proteopathies [5]. The intracellular aggregation of tau proteins in the form of neurofibrillary tangles (NFTs) is also an essential trait in the pathogenesis of Alzheimer’s disease [3,6]. A recent 2020 study Int. J. Mol. Sci. 2020, 21, 4920; doi:10.3390/ijms21144920 www.mdpi.com/journal/ijms Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 2 of 20 Int. J. Mol. Sci. 2020, 21, 4920 2 of 19 Alzheimer’s disease [3,6]. A recent 2020 study found that neuroinflammation could play a role in the aggregation of tau, as DNA extracted from various bacterial species promoted tau misfolding [7]. foundWhereas that A neuroinflammationβ plaques are more could critical play to aAD role pathogen in the aggregationesis, the tau of protein tau, as DNAappears extracted to be frommore variousresponsible bacterial for subsequent species promoted cognitive tau impairment misfolding and [7]. Whereasdementia Asymptomsβ plaques as aresociated more critical with AD to AD[8]. pathogenesis,Indeed, tau hyperphosphorylation the tau protein appears and to NFT bemore levels responsible are closely forcorrelated subsequent with cognitivecognition, impairment and exhibit andpotential dementia as therapeutic symptoms targets associated for AD with treatment AD [8]. Indeed,[9]. Furthermore, tau hyperphosphorylation tau protein production and NFT has levels been areshown closely to have correlated a positive with correla cognition,tion andwith exhibit the production potential of as A therapeuticβ plaques [10], targets with for the AD formation treatment and [9]. Furthermore,lack of clearance tau proteinof Aβ plaques production also hasbeing been proposed shown to to have induce a positive tau protein correlation formation with into theproduction NFTs [11]. ofCoupling Aβ plaques this with [10], the with bi-directional the formation relationship and lack of between clearance Aβ of plaques Aβ plaques and neuroinflammation also being proposed [12] to inducewould taucement protein Aβ’s formation key role intoin driving NFTs [ 11AD]. Couplingpathology. this with the bi-directional relationship between Aβ plaques and neuroinflammation [12] would cement Aβ’s key role in driving AD pathology. 2.1. Amyloid-β Generation 2.1. Amyloid-β Generation Aβ formation begins with the breakdown of the amyloid precursor proteins (APP) embedded in the membranesAβ formation of beginscells, such with as the neurons, breakdown as a type of the 1 amyloidtransmembrane precursor glycoprotein proteins (APP) [13]. embedded Aβ peptides in theare membranesproduced through of cells, sucha two-step as neurons, cleavage as a type process, 1 transmembrane in which APP glycoprotein is metabolized [13]. Aβ intopeptides smaller are producedfragments. through In the afirst two-step step, cleavageAPP is cleaved process, by in β which-secretase APP is1 metabolizedinto a membrane-bound into smaller fragments. CTFβ fragment In the first(containing step, APP 99 is amino cleaved acids) by β and-secretase an extracellular 1 into a membrane-bound fragment sAPPβ CTF. CTFβ fragmentβ is then further (containing cleaved 99 amino by γ- acids)secretase and to an create extracellular the final fragment Aβ peptide sAPP [13–15],β. CTF asβ isillustrated then further in Figure cleaved 1. byTheγ -secretaselength of toAβ create peptides the finalis not A βfixed,peptide and [ 13can–15 consist], as illustrated of anywhere in Figure between1. The 37 length and of49 A aminoβ peptides acids, is depending not fixed, and on canwhere consist the ofcleavage anywhere was between done by 37 andβ-secretase 49 amino 1acids, and γ depending-secretaseon [16,17]. where The the cleavagemost abundant was done length by β-secretase is Aβ1–40 1, andrepresentingγ-secretase approximately [16,17]. The most 80–90% abundant of Aβ length peptides, is Aβ whereas1–40, representing the least approximatelysoluble of the 80–90%Aβ peptides, of Aβ peptides,Aβ1-42, represents whereas theroughly least soluble5–10% [13, of the15]. A Asβ peptides, a greater A numberβ1–42, represents of Aβ peptides roughly form, 5–10% they [13, 15begin]. As to a greateraggregate number into oligomers, of Aβ peptides which form, then theyform begin fibrils, to and aggregate eventually into the oligomers, insoluble which plaques then characteristic form fibrils, andof AD eventually [13]. Of the the insoluble different plaques isoforms characteristic of Aβ peptides, of AD[ 13Aβ].1–40 Of and the differentAβ1–42 are isoforms the most of Acommonβ peptides, in Aplaques.β1–40 and Regarding Aβ1–42 are the the comparative most common role of in A plaques.β1–40 and RegardingAβ1–42 peptides the comparative in the pathogenesis role of Aofβ AD,1–40 Aandβ1– A42β peptides1–42 peptides have in been the pathogenesisfound in higher of AD, concentrations Aβ1–42 peptides in AD. have Furthermore, been found inAβ higher1–42 peptides concentrations have been in AD.found Furthermore, to be more Aproneβ1–42 topeptides forming have insoluble been found amyloid to be fibrils more than prone A toβ1–40 forming [18]. This insoluble is further amyloid supported fibrils thanby a Astudyβ1–40 using[18]. Thistransgenic is further mice supported that expressed by a study either using Aβ1–40 transgenic (BRI- A miceβ40) or that A expressedβ1–42 (BRI- eitherAβ42A). Aβ 1–40The (BRI-authors Aβ found40) or Athatβ1–42 the(BRI- mice A βthat42A). selectively The authors expressed found thatAβ1–40 the did mice not that develop selectively AD expressedpathology Aatβ 1–40any didage. not However, develop the AD same pathology did not at anyhold age. true However, for BRI- A theβ42A same mice, did notwhich hold had true developed for BRI- A Aββ42A deposits mice, which[19]. In had addition, developed another Aβ deposits study found [19]. In A addition,β1–42 peptides another to promote study found Aβ Aplaquesβ1–42 peptides formation, to promote and Aβ A1–40β plaquesto decrease formation, Aβ deposition and Aβ1–40 [20].to These decrease findings Aβ deposition would indicate [20]. These the findingskey role wouldAβ1–42 peptides indicate the play key in role the Apathogenesisβ1–42 peptides of playAD. in the pathogenesis of AD. FigureFigure 1.1. GenerationGeneration ofof AAββ plaques. Int. J. Mol. Sci. 2020, 21, 4920 3 of 19 2.2. Current Interventions and Limitations Even with the tremendous effort that has been put into developing potential therapies for AD over the past few decades, there has been little success in reaching an effective therapy, with no new drug being approved in over a decade. While cholinesterase inhibitors and memantine are FDA-approved drugs for AD, and do address some of its symptoms, they lack the ability to attenuate disease progression. Over the past 20 years, a majority of the therapies have been based on the amyloid cascade hypothesis, and hence have focused on depleting Aβ peptides.
Recommended publications
  • Highlights of Prescribing Information
    HIGHLIGHTS OF PRESCRIBING INFORMATION --------------------------WARNINGS AND PRECAUTIONS--------------------­ These highlights do not include all the information needed to use • New onset or worsening renal impairment: Can include acute VIREAD safely and effectively. See full prescribing information renal failure and Fanconi syndrome. Assess creatinine clearance for VIREAD. (CrCl) before initiating treatment with VIREAD. Monitor CrCl and ® serum phosphorus in patients at risk. Avoid administering VIREAD (tenofovir disoproxil fumarate) tablets, for oral use VIREAD with concurrent or recent use of nephrotoxic drugs. (5.3) VIREAD® (tenofovir disoproxil fumarate) powder, for oral use • Coadministration with Other Products: Do not use with other Initial U.S. Approval: 2001 tenofovir-containing products (e.g., ATRIPLA, COMPLERA, and TRUVADA). Do not administer in combination with HEPSERA. WARNING: LACTIC ACIDOSIS/SEVERE HEPATOMEGALY WITH (5.4) STEATOSIS and POST TREATMENT EXACERBATION OF HEPATITIS • HIV testing: HIV antibody testing should be offered to all HBV- infected patients before initiating therapy with VIREAD. VIREAD See full prescribing information for complete boxed warning. should only be used as part of an appropriate antiretroviral • Lactic acidosis and severe hepatomegaly with steatosis, combination regimen in HIV-infected patients with or without HBV including fatal cases, have been reported with the use of coinfection. (5.5) nucleoside analogs, including VIREAD. (5.1) • Decreases in bone mineral density (BMD): Consider assessment • Severe acute exacerbations of hepatitis have been reported of BMD in patients with a history of pathologic fracture or other in HBV-infected patients who have discontinued anti- risk factors for osteoporosis or bone loss. (5.6) hepatitis B therapy, including VIREAD. Hepatic function • Redistribution/accumulation of body fat: Observed in HIV-infected should be monitored closely in these patients.
    [Show full text]
  • COVID-19) Pandemic on National Antimicrobial Consumption in Jordan
    antibiotics Article An Assessment of the Impact of Coronavirus Disease (COVID-19) Pandemic on National Antimicrobial Consumption in Jordan Sayer Al-Azzam 1, Nizar Mahmoud Mhaidat 1, Hayaa A. Banat 2, Mohammad Alfaour 2, Dana Samih Ahmad 2, Arno Muller 3, Adi Al-Nuseirat 4 , Elizabeth A. Lattyak 5, Barbara R. Conway 6,7 and Mamoon A. Aldeyab 6,* 1 Clinical Pharmacy Department, Jordan University of Science and Technology, Irbid 22110, Jordan; salazzam@just.edu.jo (S.A.-A.); nizarm@just.edu.jo (N.M.M.) 2 Jordan Food and Drug Administration (JFDA), Amman 11181, Jordan; hayaa.banat@jfda.jo (H.A.B.); Mohammad.alfaour@jfda.jo (M.A.); danadawlah@gmail.com (D.S.A.) 3 Antimicrobial Resistance Division, World Health Organization, Avenue Appia 20, 1211 Geneva, Switzerland; amuller@who.int 4 World Health Organization Regional Office for the Eastern Mediterranean, Cairo 11371, Egypt; nuseirata@who.int 5 Scientific Computing Associates Corp., River Forest, IL 60305, USA; elizabeth.lattyak@sbcglobal.net 6 Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK; b.r.conway@hud.ac.uk 7 Institute of Skin Integrity and Infection Prevention, University of Huddersfield, Huddersfield HD1 3DH, UK * Correspondence: m.aldeyab@hud.ac.uk Citation: Al-Azzam, S.; Mhaidat, N.M.; Banat, H.A.; Alfaour, M.; Abstract: Coronavirus disease 2019 (COVID-19) has overlapping clinical characteristics with bacterial Ahmad, D.S.; Muller, A.; Al-Nuseirat, respiratory tract infection, leading to the prescription of potentially unnecessary antibiotics. This A.; Lattyak, E.A.; Conway, B.R.; study aimed at measuring changes and patterns of national antimicrobial use for one year preceding Aldeyab, M.A.
    [Show full text]
  • Chapter 12 Antimicrobial Therapy Antibiotics
    Chapter 12 Antimicrobial Therapy Topics: • Ideal drug - Antimicrobial Therapy - Selective Toxicity • Terminology - Survey of Antimicrobial Drug • Antibiotics - Microbial Drug Resistance - Drug and Host Interaction An ideal antimicrobic: Chemotherapy is the use of any chemical - soluble in body fluids, agent in the treatment of disease. - selectively toxic , - nonallergenic, A chemotherapeutic agent or drug is any - reasonable half life (maintained at a chemical agent used in medical practice. constant therapeutic concentration) An antibiotic agent is usually considered to - unlikely to elicit resistance, be a chemical substance made by a - has a long shelf life, microorganism that can inhibit the growth or - reasonably priced. kill microorganisms. There is no ideal antimicrobic An antimicrobic or antimicrobial agent is Selective Toxicity - Drugs that specifically target a chemical substance similar to an microbial processes, and not the human host’s. antibiotic, but may be synthetic. Antibiotics Spectrum of antibiotics and targets • Naturally occurring antimicrobials – Metabolic products of bacteria and fungi – Reduce competition for nutrients and space • Bacteria – Streptomyces, Bacillus, • Molds – Penicillium, Cephalosporium * * 1 The mechanism of action for different 5 General Mechanisms of Action for antimicrobial drug targets in bacterial cells Antibiotics - Inhibition of Cell Wall Synthesis - Disruption of Cell Membrane Function - Inhibition of Protein Synthesis - Inhibition of Nucleic Acid Synthesis - Anti-metabolic activity Antibiotics
    [Show full text]
  • Folic Acid Antagonists: Antimicrobial and Immunomodulating Mechanisms and Applications
    International Journal of Molecular Sciences Review Folic Acid Antagonists: Antimicrobial and Immunomodulating Mechanisms and Applications Daniel Fernández-Villa 1, Maria Rosa Aguilar 1,2 and Luis Rojo 1,2,* 1 Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas, CSIC, 28006 Madrid, Spain; dafer-vi@hotmail.com (D.F.-V.); mraguilar@ictp.csic.es (M.R.A.) 2 Consorcio Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, 28029 Madrid, Spain * Correspondence: rojodelolmo@ictp.csic.es; Tel.: +34-915-622-900 Received: 18 September 2019; Accepted: 7 October 2019; Published: 9 October 2019 Abstract: Bacterial, protozoan and other microbial infections share an accelerated metabolic rate. In order to ensure a proper functioning of cell replication and proteins and nucleic acids synthesis processes, folate metabolism rate is also increased in these cases. For this reason, folic acid antagonists have been used since their discovery to treat different kinds of microbial infections, taking advantage of this metabolic difference when compared with human cells. However, resistances to these compounds have emerged since then and only combined therapies are currently used in clinic. In addition, some of these compounds have been found to have an immunomodulatory behavior that allows clinicians using them as anti-inflammatory or immunosuppressive drugs. Therefore, the aim of this review is to provide an updated state-of-the-art on the use of antifolates as antibacterial and immunomodulating agents in the clinical setting, as well as to present their action mechanisms and currently investigated biomedical applications. Keywords: folic acid antagonists; antifolates; antibiotics; antibacterials; immunomodulation; sulfonamides; antimalarial 1.
    [Show full text]
  • Unexpected Induction of Resistant Pseudomonas Aeruginosa Biofilm to fluoroquinolones by Diltiazem: a New Perspective of Microbiological Drug—Drug Interactionଝ
    Journal of Infection and Public Health (2008) 1, 105—112 View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Unexpected induction of resistant Pseudomonas aeruginosa biofilm to fluoroquinolones by diltiazem: A new perspective of microbiological drug—drug interactionଝ Walid F. ElKhatib, Virginia L. Haynes, Ayman M. Noreddin ∗ University of Minnesota, Duluth, College of Pharmacy, Pharmacy Practice and Pharmaceutical Sciences, 1110 Kirby Dr. Life Sciences 232, Duluth, MN 55812, USA Received 15 August 2008; received in revised form 21 October 2008; accepted 22 October 2008 KEYWORDS Summary The increase of multi-drug resistant Pseudomonas aeruginosa infec- Diltiazem; tions is a worldwide dilemma. At the heart of the problem is the inability to treat Pseudomonas established P. aeruginosa biofilms with standard antibiotic therapy, including flu- aeruginosa; oroquinolones. We address a previously unstudied question as to the effect of a Biofilm; commonly prescribed calcium channel blocker (CCB) diltiazem on the biofilm growth. Resistance; Real-time monitoring of the overall growth and killing of P.aeruginosa biofilm during fluoroquinolones therapy in the presence and absence of diltiazem was performed. Fluoroquinolone In this study, we demonstrate that for P. aeruginosa biofilms, resistance to the first- line fluoroquinolones may be induced by the commonly prescribed calcium channel blocker diltiazem. Published by Elsevier Limited on behalf of King Saud Bin Abdulaziz University for Health Sciences. All rights reserved. Introduction approved for the treatment of angina, hyper- tension and cardiac arrhythmia [1]. It acts as Diltiazem is a class III calcium channel blocker a calcium antagonist that controls calcium ion (CCB) belonging to benzothiazepines and has been influx in cardiac and vascular smooth muscle cells through slow voltage-gated L-type channels in the ଝ This manuscript was presented in part at the Design of Med- cell membrane.
    [Show full text]
  • 343747488.Pdf
    Washington University School of Medicine Digital Commons@Becker Open Access Publications 6-1-2020 Systematic validation of variants of unknown significance in APP, PSEN1 and PSEN2 Simon Hsu Anna A Pimenova Kimberly Hayes Juan A Villa Matthew J Rosene See next page for additional authors Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs Authors Simon Hsu, Anna A Pimenova, Kimberly Hayes, Juan A Villa, Matthew J Rosene, Madhavi Jere, Alison M Goate, and Celeste M Karch Neurobiology of Disease 139 (2020) 104817 Contents lists available at ScienceDirect Neurobiology of Disease journal homepage: www.elsevier.com/locate/ynbdi Systematic validation of variants of unknown significance in APP, PSEN1 T and PSEN2 Simon Hsua, Anna A. Pimenovab, Kimberly Hayesa, Juan A. Villaa, Matthew J. Rosenea, ⁎ Madhavi Jerea, Alison M. Goateb, Celeste M. Karcha, a Department of Psychiatry, Washington University School of Medicine, 425 S Euclid Avenue, St Louis, MO 63110, USA b Department of Neuroscience, Mount Sinai School of Medicine, New York, NY, USA ARTICLE INFO ABSTRACT Keywords: Alzheimer's disease (AD) is a neurodegenerative disease that is clinically characterized by progressive cognitive APP decline. More than 200 pathogenic mutations have been identified in amyloid-β precursor protein (APP), presenilin PSEN1 1 (PSEN1) and presenilin 2 (PSEN2). Additionally, common and rare variants occur within APP, PSEN1, and PSEN2 PSEN2 that may be risk factors, protective factors, or benign, non-pathogenic polymorphisms. Yet, to date, no Alzheimer's disease single study has carefully examined the effect of all of the variants of unknown significance reported in APP, Cell-based assays PSEN1 and PSEN2 on Aβ isoform levels in vitro.
    [Show full text]
  • Antimicrobial Chemotherapy and Sustainable Development: the Past, the Current Trend, and the Future
    African Journal of Biomedical Research, Vol. 11 (2008); 235 - 250 ISSN 1119 – 5096 © Ibadan Biomedical Communications Group Review Article Antimicrobial chemotherapy and Sustainable Development: The past, The Current Trend, and the future *1 2 3 3 Okonko I.O, Fajobi E.A, Ogunnusi T.A, Ogunjobi A.A. and 3Obiogbolu C.H. Full-text available at http://www.ajbrui.com 1Department of Virology, Faculty of Basic Medical Sciences, College of Medicine, http://www.bioline.br/md http://www.ajol.com University of Ibadan, University College Hospital (UCH), Ibadan, Nigeria 2 Department of Basic Sciences, Federal College of Wildlife Management, New Bussa, Niger State, Nigeria 4Microbiology Unit, Department of Botany and Microbiology, University of Ibadan, Ibadan ABSTRACT Antimicrobial chemotherapy is a highly valued medical science which has shaped modern humanity in a phenomenal fashion. Within the past half century, a wide variety of antimicrobial substances have been discovered, designed and synthesized; literally hundreds of drugs have been successfully used in some fashion over the years. Today, the world wide anti-infective market exceeds $20 billion dollars annually and overall antimicrobial agents comprise the bulk of this trade. A number of general classes of antimicrobial drugs have emerged as Received: mainstays in modern infectious disease chemotherapy. Regardless of a better August 2007 understanding of infectious disease pathogenesis and the importance of sanitation, most individuals will become infected with a microbial pathogen many times, Accepted (Revised): throughout their lives and in developed countries, anti-infective chemotherapy July 2008 will be periodically administered. Antibacterial amount for the majority of anti- infective agents in comparison to antifungals, antivirals and antiparasitic agents.
    [Show full text]
  • Genetic Testing for Familial Alzheimer's Disease
    Corporate Medical Policy Genetic Testing for Familial Alzheimer’s Disease AHS – M2038 File Name: genetic_testing_for_familial_alzheimers_disease Origination: 1/2019 Last CAP Review: 10/2020 Next CAP Review: 10/2021 Last Review: 10/2020 Description of Procedure or Service Alzheimer disease (AD) is a neurodegenerative disease defined by a gradual decline in memory, cognitive functions, gross atrophy of the brain, and an accumulation of extracellular amyloid plaques and intracellular neurofibrillary tangles (Karch, Cruchaga, & Goate, 2014). Familial Alzheimer disease (FAD) is a rare, inherited form of AD. FAD has a much earlier onset than other forms of Alzheimer disease with symptoms developing in individuals in their thirties or forties. Related Policies General Genetic Testing, Germline Disorders AHS – M2145 General Genetic Testing, Somatic Disorders AHS – M2146 ***Note: This Medical Policy is complex and technical. For questions concerning the technical language and/or specific clinical indications for its use, please consult your physician. Policy BCBSNC will provide coverage for genetic testing for familial Alzheimer disease when it is determined the medical criteria or reimbursement guidelines below are met. Benefits Application This medical policy relates only to the services or supplies described herein. Please refer to the Member's Benefit Booklet for availability of benefits. Member's benefits may vary according to benefit design; therefore member benefit language should be reviewed before applying the terms of this medical policy.
    [Show full text]
  • Antiviral Drug Resistance
    Points to Consider: Antiviral Drug Resistance Introduction Development of resistance to antimicrobial agents (including antivirals) is considered to be a natural consequence of rapid replication of microorganisms in the presence of a selective pressure. I.e. it is a natural evolutionary event and should be an expected outcome of the use of antimicrobial agents. The speed with which such resistant organisms develop, and their ability to persist in the population, will be influenced by several factors including the extent to which the antimicrobial agent is used, and the viability of the new (mutated) resistant organism. Microorganisms may also differ naturally in their sensitivity to antimicrobial agents, and the existence of such insensitivity can have an impact on emergence of resistance in two ways. (i) It provides evidence that drug resistant organisms are viable, and could therefore emerge and persist in the population in response to drug use. (ii) Use of antimicrobial agents may create an environment in which pre‐existing insensitive strains may have a selective advantage and spread. Background to drug resistant influenza viruses 1 Adamantanes (amantadine, rimantidine) The existence of viruses resistant or insensitive to this class of antiviral agent is well documented. Many of the currently circulating strains of virus (both human and animal) lack sensitivity to these agents, and clinical use of amantadine or rimantadine has been shown to select for resistant viruses in a high proportion of cases, and within 2‐3 days of starting treatmenti. Such rapid emergence of resistance during treatment may explain the reduced efficacy of rimantidine or amantadine prophylaxis when the index cases were also treatedii.
    [Show full text]
  • Membrane Topology of the C. Elegans SEL-12 Presenilin
    Neuron, Vol. 17, 1015±1021, November, 1996, Copyright 1996 by Cell Press Membrane Topology of the C. elegans SEL-12 Presenilin Xiajun Li* and Iva Greenwald*²³ [this issue of Neuron]; Thinakaran et al., 1996). In the *Integrated Program in Cellular, Molecular, Discussion, we examine the amino acid sequence in and Biophysical Studies light of the deduced topology. ² Department of Biochemistry and Molecular Biophysics Results ³ Howard Hughes Medical Institute Columbia University Sequence analysis suggests that SEL-12 and human College of Physicians and Surgeons presenilins have ten hydrophobic regions (Figure 1). In New York, New York 10032 this study, we provide evidence that a total of eight of these hydrophobic regions function as transmembrane domains in vivo. Below, we use the term ªhydrophobic Summary regionº to designate a segment of the protein with the potential to span the membrane, as inferred by hydro- Mutant presenilins cause Alzheimer's disease. Pre- phobicity analysis, and ªtransmembrane domainº to senilins have multiple hydrophobic regions that could designate a hydrophobic region that our data suggest theoretically span a membrane, and a knowledge of actually spans a membrane. the membrane topology is crucial for deducing the mechanism of presenilin function. By analyzing the activity of b-galactosidase hybrid proteins expressed Strategy in C. elegans, we show that the C. elegans SEL-12 We constructed transgenes encoding hybrid SEL- presenilin has eight transmembrane domains and that 12::LacZ proteins, in which LacZ was placed after each there is a cleavage site after the sixth transmembrane of ten hydrophobic regions identified by hydrophobicity domain. We examine the presenilin sequence in view analysis (see Figure 1).
    [Show full text]
  • Cerebrospinal Fluid Biomarkers for Differentiating Between Alzheimer‟S Disease and Vascular Dementia
    Cerebrospinal fluid biomarkers for differentiating between Alzheimer‟s disease and Vascular dementia Maria Bjerke Institute of Neuroscience and Physiology Department of Psychiatry and Neurochemistry The Sahlgrenska Academy Gothenburg University 2011 ISBN 978-91-628-8312-6 © Maria Bjerke Institute of Neuroscience and Physiology Gothenburg University Sweden Printed at Intellecta Infolog Gothenburg Sweden, 2011 To my family ABSTRACT Patients suffering from mild cognitive impairment (MCI) run a higher risk of developing dementia, with Alzheimer‟s disease (AD) being the most common form. Vascular dementia (VaD) is proposed to be the second most common dementia entity, and it includes the clinically relatively homogenous subgroup of subcortical vascular dementia (SVD). Varying degrees of concomitant vascular lesions represent a link between AD and VaD, comprising a state of mixed dementia (MD). Biochemical markers provide important information which may contribute to differentiating between dementias of different etiologies, and in combination with the clinical assessment may improve diagnostic accuracy. The overall aim of this thesis is to provide for better separation between patients suffering from SVD and AD with the aid of biochemical markers. The cerebrospinal fluid (CSF) biomarkers T-tau, P-tau181, and Aβ1-42, have proven useful in distinguishing MCI patients who ultimately develop AD (MCI-AD) at follow-up from those who remain stable. However, less is known about the biomarker pattern in MCI patients who develop SVD (MCI-SVD). An elevated baseline level of NF-L was found in MCI-SVD patients compared with stable MCI patients, while MCI-AD had decreased levels of Aβ1-42 and increased levels of T- tau and P-tau181 compared with MCI-SVD patients and stable MCI patients.
    [Show full text]
  • Differential Gene Expression in Oligodendrocyte Progenitor Cells, Oligodendrocytes and Type II Astrocytes
    Tohoku J. Exp. Med., 2011,Differential 223, 161-176 Gene Expression in OPCs, Oligodendrocytes and Type II Astrocytes 161 Differential Gene Expression in Oligodendrocyte Progenitor Cells, Oligodendrocytes and Type II Astrocytes Jian-Guo Hu,1,2,* Yan-Xia Wang,3,* Jian-Sheng Zhou,2 Chang-Jie Chen,4 Feng-Chao Wang,1 Xing-Wu Li1 and He-Zuo Lü1,2 1Department of Clinical Laboratory Science, The First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China 2Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, P.R. China 3Department of Neurobiology, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China 4Department of Laboratory Medicine, Bengbu Medical College, Bengbu, P.R. China Oligodendrocyte precursor cells (OPCs) are bipotential progenitor cells that can differentiate into myelin-forming oligodendrocytes or functionally undetermined type II astrocytes. Transplantation of OPCs is an attractive therapy for demyelinating diseases. However, due to their bipotential differentiation potential, the majority of OPCs differentiate into astrocytes at transplanted sites. It is therefore important to understand the molecular mechanisms that regulate the transition from OPCs to oligodendrocytes or astrocytes. In this study, we isolated OPCs from the spinal cords of rat embryos (16 days old) and induced them to differentiate into oligodendrocytes or type II astrocytes in the absence or presence of 10% fetal bovine serum, respectively. RNAs were extracted from each cell population and hybridized to GeneChip with 28,700 rat genes. Using the criterion of fold change > 4 in the expression level, we identified 83 genes that were up-regulated and 89 genes that were down-regulated in oligodendrocytes, and 92 genes that were up-regulated and 86 that were down-regulated in type II astrocytes compared with OPCs.
    [Show full text]