Bacterial Communities in the Rhizosphere and Phyllosphere of Halophytes and Drought-Tolerant Plants in Mediterranean Ecosystems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chapter 1.0: Introduction
CHAPTER 1.0: INTRODUCTION 1.1 Why study Antarctica? The Antarctic includes some of the most extreme terrestrial environments by very low temperature, frequent freeze-thaw and wet-dry cycles, low and transient precipitation, reduced humidity, rapid drainage and limited organic nutrients which are considered as unfavorable condition (Yergeau et al., 2006). Located in the Earth‟s south hemisphere, Antarctica has received considerable amount of attention due to its untapped resources. Renowned for its cold, harsh conditions, there is an abundance of microbial life which has undergone their own adaption and evolutionary processes to survive. Since, Antarctic microbial habitats have remained relatively conserved for many years; there are unique opportunities for studying microbial evolution (Vincent, 2000). Besides that, presence of psychrophiles and other extermophiles in the environment are interesting specimens of nature‟s wonder. Psychrophilic enzymes produced have high potential in biotechnology for example the conservation of energy by reducing the need of heat treatment, the application of eurythermal polar cyanobacteria for wastewater treatment in cold climates (Tang et al., 1997) and the integration of proteases, lipases and cellulases into detergents to improve its mode of action in cold water. 1.2 Antarctic microorganisms Although bacterial researches have been conducted since early 1900s by Ekelof (Boyd and Boyd, 1962), little is known about the presence and characteristics of bacteria in the Antarctica. Microorganisms dominate Antarctic biology compare to other continent (Friedmann, 1993) as well as they are fundamental to the functioning of Antarctic ecosystems. Baseline knowledge of prokaryotic biodiversity in Antarctica is still limited (Bohannan 1 and Hughes, 2003). Among these microorganisms, bacteria are an important part of the soil. -
How Can We Define “Optimal Microbiota?”
REVIEW published: 02 October 2018 doi: 10.3389/fnut.2018.00090 How Can We Define “Optimal Microbiota?”: A Comparative Review of Structure and Functions of Microbiota of Animals, Fish, and Plants in Agriculture Wakako Ikeda-Ohtsubo 1*, Sylvia Brugman 2, Craig H. Warden 3, Johanna M. J. Rebel 4, Gert Folkerts 5 and Corné M. J. Pieterse 6 1 Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan, 2 Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, Netherlands, 3 Departments of Pediatrics, Neurobiology Physiology and Behavior, University of California, Davis, Davis, CA, United States, 4 Wageningen Livestock Research, Wageningen University and Research, Wageningen, Netherlands, 5 Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands, 6 Plant–Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, Netherlands All multicellular organisms benefit from their own microbiota, which play important roles in maintaining the host nutritional health and immunity. Recently, the number of Edited by: studies on the microbiota of animals, fish, and plants of economic importance is rapidly Raquel Hontecillas, expanding and there are increasing expectations that productivity and sustainability Virginia Tech, United States in agricultural management can be improved by microbiota manipulation. However, Reviewed by: Abdel Qawasmeh, optimizing microbiota is still -
Stability and Succession of the Rhizosphere Microbiota Depends Upon Plant Type and Soil Composition
The ISME Journal (2015) 9, 2349–2359 © 2015 International Society for Microbial Ecology All rights reserved 1751-7362/15 www.nature.com/ismej ORIGINAL ARTICLE Stability and succession of the rhizosphere microbiota depends upon plant type and soil composition Andrzej Tkacz1,2, Jitender Cheema1,3, Govind Chandra1, Alastair Grant4 and Philip S Poole1,2 1Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, UK; 2Department of Plant Sciences, Oxford University, Oxford, UK; 3Department of Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich, UK and 4Earth and Life Systems Alliance, The School of Environmental Sciences, University of East Anglia, Norwich, UK We examined succession of the rhizosphere microbiota of three model plants (Arabidopsis, Medicago and Brachypodium) in compost and sand and three crops (Brassica, Pisum and Triticum) in compost alone. We used serial inoculation of 24 independent replicate microcosms over three plant generations for each plant/soil combination. Stochastic variation between replicates was surprisingly weak and by the third generation, replicate microcosms for each plant had communities that were very similar to each other but different to those of other plants or unplanted soil. Microbiota diversity remained high in compost, but declined drastically in sand, with bacterial opportunists and putative autotrophs becoming dominant. These dramatic differences indicate that many microbes cannot thrive on plant exudates alone and presumably also require carbon sources and/or nutrients from soil. Arabidopsis had the weakest influence on its microbiota and in compost replicate microcosms converged on three alternative community compositions rather than a single distinctive community. Organisms selected in rhizospheres can have positive or negative effects. -
Microbial Community Dynamics in the Recirculating Nutrient Solution of Tomato Plug Seedlings Cultivated Under Ebb-And-Fow System
Microbial community dynamics in the recirculating nutrient solution of tomato plug seedlings cultivated under ebb-and-ow system Chun-Juan Dong ( [email protected] ) Chinese Academy of Agricultural Sciences Institute of Vegetables and Flowers https://orcid.org/0000- 0002-8740-6649 Qian Li Chinese Academy of Agricultural Sciences Institute of Vegetables and Flowers Ling-Ling Wang Chinese Academy of Agricultural Sciences Institute of Vegetables and Flowers Qing-Mao Shang Chinese Academy of Agricultural Sciences Institute of Vegetables and Flowers Research article Keywords: Tomato, Bacterial, Fungal, Ebb-and-ow system, Nutrient solution, Illumina sequencing Posted Date: December 2nd, 2019 DOI: https://doi.org/10.21203/rs.2.17978/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/27 Abstract Background: The ebb-and-ow system has ability to recirculate water and nutrients, and offers a good method to control nutrient leaching from greenhouses into the environment. However, the potential for the rapid spread of bacterial and fungal pathogens is the main hindrance for its adoption in vegetable seedlings production. Natural microora has often shown a certain ability to suppress diseases. Results: Here, through 16S rRNA- and ITS1-targeted Illumina sequencing, the dynamic changes in bacterial and fungal communities in the recirculating nutrient solution were characterized for tomato plug seedlings cultivated in an ebb-and-ow system in summer and winter. Both bacterial number and microbial diversity in the nutrient solution increased with recirculating irrigation, and these changes differed between summer and winter. Pseudomonas was among the most predominant bacterial genera in the nutrient solution; its relative abundance gradually increased with recycling in summer but decreased dramatically in winter. -
Plant Growth Promoting Microbiology Opportunities in Aquaponics
fmicb-09-00008 January 18, 2018 Time: 17:54 # 1 PERSPECTIVE published: 22 January 2018 doi: 10.3389/fmicb.2018.00008 Stripping Away the Soil: Plant Growth Promoting Microbiology Opportunities in Aquaponics Ryan P. Bartelme1, Ben O. Oyserman2,3, Jesse E. Blom4, Osvaldo J. Sepulveda-Villet1 and Ryan J. Newton1* 1 School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States, 2 Bioinformatics Group, Wageningen University & Research, Wageningen, Netherlands, 3 Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, Netherlands, 4 Johns Hopkins Center for a Livable Future, Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States As the processes facilitated by plant growth promoting microorganisms (PGPMs) become better characterized, it is evident that PGPMs may be critical for successful sustainable agricultural practices. Microbes enrich plant growth through various mechanisms, such as enhancing resistance to disease and drought, producing beneficial molecules, and supplying nutrients and trace metals to the plant rhizosphere. Previous studies of PGPMs have focused primarily on soil-based crops. In contrast, aquaponics is a water-based agricultural system, in which production relies upon Edited by: Jaime Romero, internal nutrient recycling to co-cultivate plants with fish. This arrangement has Universidad de Chile, Chile management benefits compared to soil-based agriculture, as system components may Reviewed -
Microbial Phyllosphere Populations Are More Complex Than Previously Realized
Microbial phyllosphere populations are more complex than previously realized Ching-Hong Yang*, David E. Crowley†, James Borneman*, and Noel T. Keen*‡ Departments of *Plant Pathology and †Environmental Sciences, University of California, Riverside, CA 92521 Contributed by Noel T. Keen, December 29, 2000 Phyllosphere microbial communities were evaluated on leaves of including fatty acid methyl ester (FAME), phospholipid fatty field-grown plant species by culture-dependent and -independent acid ester (PLFA), C0t1/2 curve analysis, and denaturing gradient methods. Denaturing gradient gel electrophoresis (DGGE) with 16S gel electrophoresis (DGGE) have also been applied to analyze rDNA primers generally indicated that microbial community struc- microbial communities with or without culturing microbes (15– tures were similar on different individuals of the same plant 19). In virtually all cases, culture-independent methods have species, but unique on different plant species. Phyllosphere bac- revealed more complexity in the microbial populations of par- teria were identified from Citrus sinesis (cv. Valencia) by using ticular ecosystems than culture-based methods. Although cul- DGGE analysis followed by cloning and sequencing of the domi- ture-independent methods have been widely used on samples nant rDNA bands. Of the 17 unique sequences obtained, database from soil, water, and the rhizosphere, they have not been used queries showed only four strains that had been described previ- to examine the phyllosphere (8, 12, 20–26). ously as phyllosphere bacteria. Five of the 17 sequences had 16S In this study, phyllosphere communities on seven different similarities lower than 90% to database entries, suggesting that plant species were evaluated with culture-dependent and -inde- they represent previously undescribed species. -
Engineering the Microbiome for Animal Health and Conservation
Minireview Engineering the microbiome for animal health and conservation Se Jin Song1 , Douglas C Woodhams2,3, Cameron Martino4, Celeste Allaband5, Andre Mu6,7, Sandrine Javorschi-Miller-Montgomery8,9, Jan S Suchodolski10 and Rob Knight1,8,9,11 1Department of Pediatrics, University of California, San Diego, CA 92093, USA; 2Biology Department, University of Massachusetts Boston, Boston, MA 02125, USA; 3Smithsonian Tropical Research Institute, Panama city 0843-03092, Panama; 4Bioinformatics and Systems Biology Program, University of California, San Diego, CA 92093, USA; 5Biomedical Sciences Graduate Program, University of California, San Diego, CA 92093, USA; 6Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville 3010, Australia; 7Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne, Parkville 3010, Australia; 8Department of Bioengineering, University of California, San Diego, CA 92093, USA; 9Center for Microbiome Innovation, University of California, San Diego, CA 92093, USA; 10Gastrointestinal Laboratory, Texas A&M University, College Station, TX 77843, USA; 11Department of Computer Science and Engineering, University of California, San Diego, CA 92093, USA Corresponding authors: Se Jin Song. Email: [email protected]; Rob Knight. Email: [email protected] Impact statement Abstract Considering the clear effects of microbiota Interest in animal microbiomes as therapeutics is rapidly expanding, -
Root Microbiota Assembly and Adaptive Differentiation Among European
bioRxiv preprint doi: https://doi.org/10.1101/640623; this version posted May 17, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Root microbiota assembly and adaptive differentiation among European 2 Arabidopsis populations 3 4 Thorsten Thiergart1,7, Paloma Durán1,7, Thomas Ellis2, Ruben Garrido-Oter1,3, Eric Kemen4, Fabrice 5 Roux5, Carlos Alonso-Blanco6, Jon Ågren2,*, Paul Schulze-Lefert1,3,*, Stéphane Hacquard1,*. 6 7 1Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany 8 2Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, SE‐752 36 9 Uppsala, Sweden 10 3Cluster of Excellence on Plant Sciences (CEPLAS), Max Planck Institute for Plant Breeding Research, 11 50829 Cologne, Germany 12 4Department of Microbial Interactions, IMIT/ZMBP, University of Tübingen, 72076 Tübingen, 13 Germany 14 5LIPM, INRA, CNRS, Université de Toulouse, 31326 Castanet-Tolosan, France 15 6Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo 16 Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain 17 7These authors contributed equally: Thorsten Thiergart, Paloma Durán 18 *e-mail: [email protected], [email protected], [email protected] 19 20 Summary 21 Factors that drive continental-scale variation in root microbiota and plant adaptation are poorly 22 understood. We monitored root-associated microbial communities in Arabidopsis thaliana and co- 23 occurring grasses at 17 European sites across three years. -
Plant Phenology Influences Rhizosphere Microbial Community and Is Accelerated by Serpentine 2 Microorganisms in Plantago Erecta
bioRxiv preprint doi: https://doi.org/10.1101/2021.03.29.437500; this version posted March 29, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Plant phenology influences rhizosphere microbial community and is accelerated by serpentine 2 microorganisms in Plantago erecta. 3 4 Authors: Alexandria N. Igwe1, Bibi Quasem2, Naomi Liu2, Rachel L. Vannette2 5 6 Address: 7 1. University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146, United States 8 2. University of California - Davis, One Shields Ave, Davis, CA 95616, United States 9 10 Corresponding Author: Alexandria N. Igwe, [email protected] 11 12 Keywords: serpentine; plant-microbe interaction; rhizosphere; plant development; Plantago 13 erecta 14 15 16 1 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.29.437500; this version posted March 29, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 17 ABSTRACT 18 Serpentine soils are drought-prone and rich in heavy metals, and plants growing on serpentine 19 soils host distinct microbial communities that may affect plant survival and phenotype. However, 20 whether the rhizosphere communities of plants from different soil chemistries are initially 21 distinct or diverge over time may help us understand drivers of microbial community structure 22 and function in stressful soils. -
How Your Body Decides If Bacteria Are Friends Or Foes § Would You
§How your body decides if bacteria are friends or foes § Would you: • Let you child eat food that dropped on the ground? • Let your child suck their thumbs? • Take antibiotics without knowing the true reason you are feeling sick? Humans and Microbes • Leeuwenhoek’s discovery of microorganisms in 17th century led people to suspect they might cause diseases • Robert Koch (1876) offered proof of what is now considered germ theory of disease; showed Bacillus anthracis causes anthrax • Today, we now know that most of the bacteria we associate with are not pathogens, and many are critical for our health. Bacteria Are Ubiquitous § We contact numerous microorganisms daily • Every surface on earth is covered! • Even clouds have microbes – Could play a role in seeding rain.. • Some have tremendous commercial value • Yogurts, wine, cheese, vinegar, pickles, etc. • Our bodies: • Breathe in, ingest, pick up on skin • Vast majority do not make us sick, or cause infections • Some colonize body surfaces; or slough off with dead epithelial cells • Most that are swallowed die in stomach or are eliminated in feces • Relatively few are pathogens that cause damage Microbes, Health, and Disease § Most microbes are harmless • Many are beneficial • Normal microbiota (normal flora) are organisms that routinely reside on body’s surfaces • Relationship is a balance, and some can cause disease under certain conditions-- opportunistic infections • Weaknesses in innate or adaptive defenses can leave individuals vulnerable to invasion – malnutrition, cancer, AIDS or -
The Neuroprotective Effect of Tea Polyphenols on the Regulation of Intestinal Flora
molecules Review The Neuroprotective Effect of Tea Polyphenols on the Regulation of Intestinal Flora Zhicheng Zhang 1,2,3, Yuting Zhang 4, Junmin Li 2,3,*, Chengxin Fu 1,* and Xin Zhang 4,* 1 Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; [email protected] 2 Taizhou Biomedical Industry Research Institute Co., Ltd., Taizhou 317000, China 3 College of Life Sciences, Taizhou University, Taizhou 317000, China 4 Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; [email protected] * Correspondence: [email protected] (J.L.); [email protected] (C.F.); [email protected] (X.Z.) Abstract: Tea polyphenols (TPs) are the general compounds of natural polyhydroxyphenols extracted in tea. Although a large number of studies have shown that TPs have obvious neuroprotective and neuro repair effects, they are limited due to the low bioavailability in vivo. However, TPs can act indirectly on the central nervous system by affecting the “microflora–gut–brain axis”, in which the microbiota and its composition represent a factor that determines brain health. Bidirectional communication between the intestinal microflora and the brain (microbe–gut–brain axis) occurs through a variety of pathways, including the vagus nerve, immune system, neuroendocrine pathways, and bacteria-derived metabolites. This axis has been shown to influence neurotransmission and behavior, which is usually associated with neuropsychiatric disorders. In this review, we discuss that TPs and their metabolites may provide benefits by restoring the imbalance of intestinal microbiota and Citation: Zhang, Z.; Zhang, Y.; Li, J.; that TPs are metabolized by intestinal flora, to provide a new idea for TPs to play a neuroprotective Fu, C.; Zhang, X. -
Rapport Nederlands
Moleculaire detectie van bacteriën in dekaarde Dr. J.J.P. Baars & dr. G. Straatsma Plant Research International B.V., Wageningen December 2007 Rapport nummer 2007-10 © 2007 Wageningen, Plant Research International B.V. Alle rechten voorbehouden. Niets uit deze uitgave mag worden verveelvoudigd, opgeslagen in een geautomatiseerd gegevensbestand, of openbaar gemaakt, in enige vorm of op enige wijze, hetzij elektronisch, mechanisch, door fotokopieën, opnamen of enige andere manier zonder voorafgaande schriftelijke toestemming van Plant Research International B.V. Exemplaren van dit rapport kunnen bij de (eerste) auteur worden besteld. Bij toezending wordt een factuur toegevoegd; de kosten (incl. verzend- en administratiekosten) bedragen € 50 per exemplaar. Plant Research International B.V. Adres : Droevendaalsesteeg 1, Wageningen : Postbus 16, 6700 AA Wageningen Tel. : 0317 - 47 70 00 Fax : 0317 - 41 80 94 E-mail : [email protected] Internet : www.pri.wur.nl Inhoudsopgave pagina 1. Samenvatting 1 2. Inleiding 3 3. Methodiek 8 Algemene werkwijze 8 Bestudeerde monsters 8 Monsters uit praktijkteelten 8 Monsters uit proefteelten 9 Alternatieve analyse m.b.v. DGGE 10 Vaststellen van verschillen tussen de bacterie-gemeenschappen op myceliumstrengen en in de omringende dekaarde. 11 4. Resultaten 13 Monsters uit praktijkteelten 13 Monsters uit proefteelten 16 Alternatieve analyse m.b.v. DGGE 23 Vaststellen van verschillen tussen de bacterie-gemeenschappen op myceliumstrengen en in de omringende dekaarde. 25 5. Discussie 28 6. Conclusies 33 7. Suggesties voor verder onderzoek 35 8. Gebruikte literatuur. 37 Bijlage I. Bacteriesoorten geïsoleerd uit dekaarde en van mycelium uit commerciële teelten I-1 Bijlage II. Bacteriesoorten geïsoleerd uit dekaarde en van mycelium uit experimentele teelten II-1 1 1.