Making Water

Total Page:16

File Type:pdf, Size:1020Kb

Making Water MAKING WATER Desalination: option or distraction for a thirsty world? This report was prepared for WWF’s Global Freshwater Programme by Phil Dickie ( www.melaleucamedia.com ) June 2007 Contents Making water................................................................................................................................. 4 Option or distraction for a thirsty world .................................................................................. 4 The Freshwater Crisis................................................................................................................... 9 Water, water everywhere. Nor any drop to drink.................................................................... 9 The revolution in manufactured water ..................................................................................... 11 More and more a matter of membranes ................................................................................. 11 Desalination: The environmental impacts ................................................................................ 13 Processing habitat – intake issues .......................................................................................... 14 The brine issue ....................................................................................................................... 15 Keeping the membranes clean ............................................................................................... 18 Watering the greenhouse: the climate change implications of large scale desalination ........ 19 Flow on effects of large scale desalination ................................................................................ 21 A new lease of life for ageing power stations? ...................................................................... 21 Fuelling the nuclear option..................................................................................................... 21 Desalination: An industry and its economics............................................................................ 23 Looking for the breakthrough technology.............................................................................. 23 Desalination and alternative water supplies........................................................................... 24 The economics of desalinated agriculture.............................................................................. 25 Loading the bases: an inadequate basis for desalination....................................................... 25 The desalination industry ....................................................................................................... 26 Desalination - a world view ........................................................................................................ 26 Full steam ahead in the Middle East ......................................................................................... 27 Saudi Arabia – struggling to keep up with demand ............................................................... 27 Confused outlook on environmental issues............................................................................ 27 Desalination in Israel.............................................................................................................. 28 Desalination for the sake of a dying Dead Sea ...................................................................... 29 Battling over desalination in the USA ....................................................................................... 30 Trouble at Tampa Bay............................................................................................................ 30 Debating desalination in California ....................................................................................... 30 Seeking subsidies in Texas..................................................................................................... 32 Spain – a new way of endlessly chasing supply ........................................................................ 33 Carboneras – highly subsidised water for heavily subsidised agriculture?............................ 34 Watering the golf estates........................................................................................................ 34 Conflicts of interest in Spain's water debate .......................................................................... 35 Explosive growth in India and China........................................................................................ 37 India – desalinating booms as decontamination needs remain unmet ................................... 37 Water short China embraces desalination .............................................................................. 37 Leaks versus desalination in the UK ......................................................................................... 39 “Bottled electricity” under scrutiny in Australia..................................................................... 40 Sydney: On again, off again desalination .............................................................................. 40 Queensland: Desalination in a confused policy context ........................................................ 40 Perth: The thirstiest city embraces desalination..................................................................... 41 Can desalination help not hinder Australian water management? ......................................... 42 Desalination as distraction.......................................................................................................... 44 Making water – a basis for sound decisions.............................................................................. 45 Beyond desalination............................................................................................................... 45 Making economically and environmentally sound decisions on large scale projects............ 45 Resource planning before infrastructure planning ................................................................. 45 2 Towards an assessment process for large scale desalination plants....................................... 46 Minimising the environmental impact of large scale desalination plants .............................. 47 Making “Bottled electricity” climate neutral ......................................................................... 47 Desalination and subsidies ..................................................................................................... 47 Downstream impacts.............................................................................................................. 48 Further research on environmental impacts ........................................................................... 48 References .................................................................................................................................... 50 3 Making water Option or distraction for a thirsty world Seawater desalination is rapidily emerging as one of the major new sources of freshwater for the developed and some areas of the developing world, raising significantly the overall energy intensity, potential climate impact and cost of water supplies. This dramatic upscaling of the industry is occurring against a backdrop of unresolved questions on the potential environmental impacts of large scale processing of seawater habitat and the discharge of increasing volumes of concentrated brine wastes. WWF is concerned that as large desalination plants become "the new dams" attention is being diverted from less costly and more environmentally benign alternatives – water conservation, water use efficiency improvements and water recycling. WWF believes that better economic and environmental outcomes would flow from improved and consistent processes to assess water needs and the optimum mix of both supply and demand side measures that could be deployed to meet them. Where seawater desalination is established to be a part of meeting a real water need in the most cost effective and least damaging way, desalination plants need to be sited, constructed and operated to best minimise or mitigate their environmental impacts. As the world increasingly comes to the realisation that a combination of population increases, development demands and climate change means that freshwater will be in chronically short supply in rich and poor areas of the world alike, there is increasing interest in desalination as a technique for tapping into the vast and infinitely tempting water supplies of the sea. This is no new dream, and it has been technically possible to separate the salt and the water for centuries. But widespread desalination for the purpose of general water supply for land-based communities has been limited by its great expense and it is notable that the area where desalination currently makes by far the greatest contribution to urban water supplies is in the oil-rich and water poor States around the Persian Gulf. Now, however, improvements in the technology of desalination, coupled with the rising cost and increasing unreliability of traditional water supplies, are bringing desalinated water into more focus as a general water supply option with major plants in operation, in planning or under consideration in Europe, North Africa, North America, Australia, China and India among others. In 2004, it was estimated that seawater desalination capacity would increase 101 per percent by 2015, an addition of an additional
Recommended publications
  • The Feasibility of Atmospheric Water Generators on Small Tropical Islands - a Case Study on Koh Rong Sanloem, Cambodia
    MSc Program Environmental Technology & International Affairs The feasibility of Atmospheric Water Generators on small tropical islands - A case study on Koh Rong Sanloem, Cambodia A Master's Thesis submitted for the degree of “Master of Science” supervised by Dipl.-Ing. Dr. Mario Ortner Tiziano Alessandri, BA BA 01304845 Vienna, 17.06.2021 Affidavit I, TIZIANO ALESSANDRI, BA BA, hereby declare 1. that I am the sole author of the present Master’s Thesis, "THE FEASIBILITY OF ATMOSPHERIC WATER GENERATORS ON SMALL TROPICAL ISLANDS - A CASE STUDY ON KOH RONG SANLOEM, CAMBODIA", 70 pages, bound, and that I have not used any source or tool other than those referenced or any other illicit aid or tool, and 2. that I have not prior to this date submitted the topic of this Master’s Thesis or parts of it in any form for assessment as an examination paper, either in Austria or abroad. Vienna, 17.06.2021 _______________________ Signature Powered by TCPDF (www.tcpdf.org) Abstract Water scarcity is an increasing global issue and the need for clean drinking water is set to increase with a growing global population and the effects of climate change. Small tropical islands, when not having a natural spring, cannot rely on groundwater since the freshwater lenses are merely a very thin layer, floating above the underlying seawater. Due to changes in in sea level as an effect of climate change, these lenses are predicted to further decrease. Often the only source of drinking water on small islands is importing it in bottled form. This is not only inefficient in terms of energy footprint and price, but also creates a waste problem that these islands usually fail to adequately address.
    [Show full text]
  • Report on Water Desalination Status TER DESALIN a in the Mediterranean Countries REPORT on W a in the MEDITERRANEAN COUNTRIES (2011) DIVULGACIÓN TÉCNICA SERIE
    PRODUCCIÓN DE BIOENERGÍA EN ZONAS RURALES DIVULGACIÓN TÉCNICA DIVULGACIÓN SERIE 04 AREAS RURAL IN PRODUCTION BIOENERGY SERIE DIVULGACIÓN TÉCNICA BIOENERGY PRODUCTION IN RURAL AREAS 04 PRODUCCIÓN DE BIOENERGÍA EN ZONAS RURALES ZONAS EN BIOENERGÍA DE PRODUCCIÓN PRODUCCIÓN DE BIOENERGÍA EN ZONAS RURALES DIVULGACIÓN TÉCNICA DIVULGACIÓN SERIE 04 AREAS RURAL IN PRODUCTION BIOENERGY SERIE DIVULGACIÓN TÉCNICA BIOENERGY PRODUCTION IN RURAL AREAS 04 PRODUCCIÓN DE BIOENERGÍA EN ZONAS RURALES ZONAS EN BIOENERGÍA DE PRODUCCIÓN Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario www.imida.es TUS TA TION S A Report on water desalination status TER DESALIN A in the Mediterranean countries REPORT ON W IN THE MEDITERRANEAN COUNTRIES (2011) DIVULGACIÓN TÉCNICA SERIE SERIE DIVULGACIÓN TÉCNICA Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario Consejería de Agricultura y Agua de la Región de Murcia REPORT ON WATER DESALINATION STATUS IN THE MEDITERRANEAN COUNTRIES Dr. Juan Cánovas Cuenca Chief of Natural Resources Department Instituto Murciano de Investigación y Desarrollo Agroalimentario (Murcia- Spain) September, 2012 Primera edición: febrero 2013 Edita: © IMIDA. Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario Consejería de Agricultura y Agua de la Región de Murcia Juan Cánovas Cuenca Jefe del Departamento de Recursos Naturales D.L.: MU 1103-2012 Imprime: O.A. BORM Camino Viejo de Monteagudo, s/n 30160 Murcia ACKNOWLEDGMENTS We thank Junta Central de Usuarios Regantes del Segura which funded the publication of this work as a book. Also, Mr. Ian A. Newton Page (The English Centre - Torre Pacheco) for his linguistic support. I N D E X Page ABBREVIATIONS 1 PREFACE 3 CHAPTER I: WATER, A WORLD-WIDE CONCERN 5 CHAPTER II: WATER DESALINATION 7 1.
    [Show full text]
  • An Economic Assessment of the Global Potential for Seawater Desalination to 2050
    water Article An Economic Assessment of the Global Potential for Seawater Desalination to 2050 Lu Gao 1,* ID , Sayaka Yoshikawa 2, Yoshihiko Iseri 2,3, Shinichiro Fujimori 4 ID and Shinjiro Kanae 2 1 Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1-M1-6 Ookayama, Meguro-ku, Tokyo 152-8552, Japan 2 School of Environment and Society, Tokyo Institute of Technology, 2-12-1-M1-6 Ookayama, Meguro-ku, Tokyo 152-8552, Japan; [email protected] (S.Y.); [email protected] (Y.I.); [email protected] (S.K.) 3 Hydrologic Research Laboratory, Department of Civil and Environmental Engineering, University of California, Davis, CA 95616, USA 4 Center for Social and Environmental Systems Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-03-5734-2190 Received: 25 August 2017; Accepted: 2 October 2017; Published: 6 October 2017 Abstract: Seawater desalination is a promising approach to satisfying water demand in coastal countries suffering from water scarcity. To clarify its potential future global scale, we perform a detailed investigation of the economic feasibility of desalination development for different countries using a feasibility index (Fi) that reflects a comparison between the price of water and the cost of production. We consider both past and future time periods. For historical validation, Fi is first evaluated for nine major desalination countries; its variation is in good agreement with the actual historical development of desalination in these countries on both spatial and temporal scales.
    [Show full text]
  • Safety Aspects of the Desalination of Sea Water Using Nuclear Energy*
    XAO102639 Annex V SAFETY ASPECTS OF THE DESALINATION OF SEA WATER USING NUCLEAR ENERGY* A. Carnino, N. Gasparini Division of Nuclear Installation Safety, International Atomic Energy Agency, Vienna Abstract The nuclear plants for desalination to be built in the future will have to meet the standards of safety required for the best nuclear power plants currently in operation or being designed. Some specific characteristics of desalination plants such as siting and coupling require particular consideration from a safety point of view, and further safety studies will be needed when the type and size of the reactor are determined. The current safety approach, based on the defence in depth strategy, has been shown to be a sound foundation for the safety and protection of public health, and gives the plant the capability of dealing with a large variety of sequences, even beyond the design basis. The Department of Nuclear Safety of the IAEA is involved in many activities, the most important of which are to establish safety standards, and to provide various safety services and technical knowledge in many Technical Co-operation assistance projects. The department is also involved in other safety areas, notably in the field of future reactors. The IAEA is carrying out a project on the safety of new generation reactors, including those used for desalination, with the objective of fostering an exchange of information on safety approaches, promoting harmonization among Member States and contributing towards the development and revision of safety standards and guidelines for nuclear power plant design. The safety, regulatory and environmental concerns in nuclear powered desalination are those related directly to nuclear power plants, with due consideration given to the coupling process.
    [Show full text]
  • Desalination Guidelines Development for Drinking Water: Background
    Rolling Revision of the WHO Guidelines for Drinking-Water Quality Draft for review and comments (Not for citation) Desalination Guidelines Development for Drinking Water: Background By Joseph A. Cotruvo World Health Organization August 2004 Introduction More than 11,000 desalination plants are in operation throughout the world producing more than 20 million cubic meters (roughly six billion gallons) of water per day. About 63% of the capacity exists in West Asia and the Middle East. North America has about 11% and North Africa and Europe account for about 7% each of capacity. Plant sizes and designs range from more than 500,000 m3/day to 20 to 100 m3/day. Most desalination plants use sea water or brackish water as their sources. It appears that comprehensive performance, operating and product quality specifications have evolved virtually on a site-by-site basis relative to source and the specific end product water use. Most drinking water applications outside of North America use World Health Organization Drinking Water Guidelines in some way as quality specifications. WHO Drinking Water Guidelines cover a broad spectrum of contaminants from inorganic and synthetic organic chemicals, disinfection byproducts, microbial indicators and radionuclides. They are aimed at typical drinking water sources and technologies. Because desalination is applied to non-typical source waters, and often uses non-typical technologies, existing WHO Guidelines may not fully cover the unique factors that can be encountered during production and distribution of desalinated water. Drinking water production Drinking water production processes can be divided into three broad categories each of which will impact the quality of the finished water received by the consumer.
    [Show full text]
  • Desalination Technology Trends
    Desalination Technology Trends Tom Pankratz1 Abstract Texas’ increased interest in desalination reflects a worldwide trend to include it as a viable alternative water supply option in any long-term water strategy. Recent technological developments and new methods of project delivery are driving this heightened level of interest to the point that desalination is now being seriously evaluated on projects where it would not have been considered ten years ago. The most significant trend in desalination is the increased growth of the reverse osmosis (RO) market. Technological improvements have both dramatically increased the performance of RO membranes. Today’s membranes are more efficient, more durable, and much less expensive. Improvements in membrane technology are complimented by improvements in pretreatment technology, which allow RO membranes to be considered on a much wider range of applications. Energy costs are directly related to the salt content of the water source, and may represent up to 50% of a system’s operational costs. There has been a growing trend to reduce energy costs through improvements in membrane performance and by employing modern, mechanical energy recovery devices that reduce energy requirements by 10-50%. The growing trend to build larger desalination plants recognizes the inherent modularity of RO systems and the fact that the development, design, and permitting costs are somewhat independent of plant size. The result is that larger plants are being constructed to take advantage of economies-of-scale, which reduce the unit cost of desalinated water. Other trends that will be reviewed in more detail include the co-siting of desalination plants with electric power generating plants and other industrial facilities, and the hybridization of distillation and membrane processes.
    [Show full text]
  • Status of Design Concepts of Nuclear Desalination Plants
    IAEA-TECDOC-1326 Status of design concepts of nuclear desalination plants November 2002 The originating Section of this publication in the IAEA was: Nuclear Power Technology Development Section International Atomic Energy Agency Wagramer Strasse 5 P.O. Box 100 A-1400 Vienna, Austria STATUS OF DESIGN CONCEPTS OF NUCLEAR DESALINATION PLANTS IAEA, VIENNA, 2002 IAEA-TECDOC-1326 ISBN 92–0–117602–3 ISSN 1011–4289 © IAEA, 2002 Printed by the IAEA in Austria November 2002 FOREWORD Interest in using nuclear energy for producing potable water has been growing worldwide in the past decade. This has been motivated by a variety of factors, including economic competitiveness of nuclear energy, the growing need for worldwide energy supply diversification, the need to conserve limited supplies of fossil fuels, protecting the environment from greenhouse gas emissions, and potentially advantageous spin-off effects of nuclear technology for industrial development. Various studies, and at least one demonstration project, have been considered by Member States with the aim of assessing the feasibility of using nuclear energy for desalination applications under specific conditions. In order to facilitate information exchange on the subject area, the IAEA has been active for a number of years in compiling related technical publications. In 1999, an interregional technical co-operation project on Integrated Nuclear Power and desalination System Design was launched to facilitate international collaboration for the joint development by technology holders and potential end users of an integrated nuclear desalination system. This publication presents material on the current status of nuclear desalination activities and preliminary design concepts of nuclear desalination plants, as made available to the IAEA by various Member States.
    [Show full text]
  • United Nations
    UNITED NATIONS UNEP(DEPI)/ MED WG.417/Inf.17 UNITED NATIONS ENVIRONMENT PROGRAMME MEDITERRANEAN ACTION PLAN 14 May 2015 Original: English MED POL Focal Points Meeting Malta, 16-19 June 2015 Joint Session MED POL and REMPEC Focal Points Meetings Malta, 17 June 2015 Final Report for Activity 1.3.2.1 Assessment of potential cumulative environmental impacts of desalination plants around the Mediterranean Sea For environmental and economic reasons, this document is printed in a limited number. Delegates are kindly requested to bring their copies to meetings and not to request additional copies. UNEP/MAP Athens, 2015 Sustainable Water Integrated Management (SWIM) - Support Mechanism Project funded by the European Union FINAL REPORT FOR ACTIVITY 1.3.2.1 ASSESSMENT OF POTENTIAL CUMULATIVE ENVIRONMENTAL IMPACTS OF DESALINATION PLANTS AROUND THE MEDITERRANEAN SEA Version Document Title Author Review and Clearance 1 Final Report Hosny Stavros ASSESSMENT OF POTENTIAL CUMULATIVE Khordagui Damianidis ENVIRONMENTAL IMPACTS OF DESALINATION and PLANTS AROUND THE MEDITERRANEAN SEA Vangelis Konstantianos ACTIVITY 1.3.2.1 .....Water is too precious to Waste Sustainable Water Integrated Management (SWIM) - Support Mechanism Project funded by the European Union Table of Content Table of Content ................................................................................................. 1 List of Abbreviations ........................................................................................... 3 List of Figures .....................................................................................................
    [Show full text]
  • Assessment of Potential Cumulative Environmental Impacts of Desalination Plants Around the Mediterranean Sea
    Sustainable Water Integrated Management (SWIM) - Support Mechanism Project funded by the European Union FINAL REPORT FOR ACTIVITY 1.3.2.1 ASSESSMENT OF POTENTIAL CUMULATIVE ENVIRONMENTAL IMPACTS OF DESALINATION PLANTS AROUND THE MEDITERRANEAN SEA Version Document Title Author Review and Clearance 1 Final Report Hosny Stavros ASSESSMENT OF POTENTIAL CUMULATIVE Khordagui Damianidis ENVIRONMENTAL IMPACTS OF DESALINATION and PLANTS AROUND THE MEDITERRANEAN SEA Vangelis Konstantianos ACTIVITY 1.3.2.1 .....Water is too precious to Waste Sustainable Water Integrated Management (SWIM) - Support Mechanism Project funded by the European Union Table of Content Table of Content ................................................................................................. 1 List of Abbreviations ........................................................................................... 3 List of Figures ...................................................................................................... 6 List of Tables ....................................................................................................... 8 1 Executive Summary .......................................................................................... 9 2 Introduction ................................................................................................... 16 3 Water Scarcity and Need for Seawater Desalination in the Mediterranean Region .............................................................................................................. 18 4
    [Show full text]
  • Introduction to Desalination Technologies
    Introduction to Desalination Technologies Hari J. Krishna1 Definition and brief history Desalination can be defined as any process that removes salts from water. Desalination processes may be used in municipal, industrial, or commercial applications. With improvements in technology, desalination processes are becoming cost-competitive with other methods of producing usable water for our growing needs. During World War II, it was felt that desalination technology - ‘desalting’ as it was called then - should be developed to convert saline water into usable water, where fresh water supplies were limited. Subsequently, “The Saline Water Act” was passed by Congress in 1952 to provide federal support for desalination. The U.S. Department of the Interior, through the Office of Saline Water (OSW) provided funding during the 1950s and 60s for initial development of desalination technology, and for construction of demonstration plants. Desalination is a relatively new science that has developed to a large extent during the latter half of the 20th century, and continues to undergo technological improvements even at the present time. It is interesting to note that one of the first seawater desalination demonstration plants to be built in the United States was at Freeport, Texas in 1961. Dow, in cooperation with the U.S. Department of the Interior built a 1 million gallons per day (mgd) long tube vertical distillation (LTV) plant at a cost of $1.2 million, that produced water for the City of Freeport and for Dow operations. The plant was officially opened on June 21, 1961 by then President John F. Kennedy, by pressing a button from the White House.
    [Show full text]
  • Desalination Plant Who Is Charles E
    CITY OF SANTA BARBARA DESALINATION FAQs About Santa Barbara’s Desalination Plant Who is Charles E. Meyer and why is the plant named after him? Charles E. Meyer served as a Water Commissioner for the City of Santa Barbara for 17 years and as chairman of the Water Commission for 5 years. The plant is named after him for his passionate dedication to the development of more resilient water supplies for the City and his instrumental role in the selection, siting, and completion of the initial desal facility. How does desalination work? Seawater enters the City’s desalination facility from 2,500 feet offshore, passing through wedge wire screens with 1 mm openings (see photo on page 2) at velocities of less than half a foot per second, which is less than typical ocean currents. Once onshore, the seawater passes through a series of filters that remove sediment, bacteria, viruses, and minerals from the water. The water is then pushed at a high pressure through reverse osmosis membranes to remove salt and other minerals. Before the finished water is ready to be distributed to customers, natural minerals are reintroduced into the water to make it compatible with the City’s other water supplies. The waste product from the desalination process, referred to as brine, is about twice as salty as normal seawater. The brine is blended with the City’s treated wastewater and is discharged into the ocean over a mile and a half offshore. Discharge flow rates of brine and treated wastewater leaving the City's outfall pipe are controlled to protect sea life and comply with state regulations.
    [Show full text]
  • Desalination During Drought: Solutions to a Growing Demand for Water Table of Contents
    Desalination During Drought: Solutions to a Growing Demand for Water Table of Contents Executive Summary..................................................................................................................................................................................................3 Introduction................................................................................................................................................................................................................4 California Drought: A Brief History........................................................................................................................................................................5 Why Desalination?...................................................................................................................................................................................................6 How Desalination Works..........................................................................................................................................................................................7 How Energy Recovery Fits In..................................................................................................................................................................................8 Desalination During Drought: The Cases of Australia, Israel, Spain, and California....................................................................................9 Carlsbad and New Plants......................................................................................................................................................................................10
    [Show full text]