Snowstorms in Upstate New York: Synoptics, Spatial Modeling and Temporal Variability

Total Page:16

File Type:pdf, Size:1020Kb

Snowstorms in Upstate New York: Synoptics, Spatial Modeling and Temporal Variability Syracuse University SURFACE Dissertations - ALL SURFACE December 2019 Snowstorms in Upstate New York: synoptics, spatial modeling and temporal variability Justin Joseph Hartnett Syracuse University Follow this and additional works at: https://surface.syr.edu/etd Part of the Social and Behavioral Sciences Commons Recommended Citation Hartnett, Justin Joseph, "Snowstorms in Upstate New York: synoptics, spatial modeling and temporal variability" (2019). Dissertations - ALL. 1120. https://surface.syr.edu/etd/1120 This Dissertation is brought to you for free and open access by the SURFACE at SURFACE. It has been accepted for inclusion in Dissertations - ALL by an authorized administrator of SURFACE. For more information, please contact [email protected]. ABSTRACT This dissertation examines the characteristics of snowstorms that affect Central New York, a subsection of the eastern Great Lakes region, in a series of chapters organized as journal articles. The first article develops a classification scheme to categorize snowstorms in Central New York from the 1985/86 season to the 2014/15 season. Twelve different snowstorm types were classified by their connection to the Great Lakes, the presence or absence of a synoptic low, or their area of cyclogenesis. The second article uses the 2055 classified snowstorms to examine their relative contribution to seasonal snowfall totals. Although lake-effect snowstorms are the dominant snowfall contributor for most of Central New York, their contributions vary considerably across the region. These storms contribute approximately 50% of the seasonal snowfall totals in the Tug Hill, and only about 25% in southeastern Central New York. Instead, Nor’easters are the dominant snowfall contributor in southeastern Central New York. Model results can accurately estimate seasonal snowfall contributions using a location’s latitude, longitude, elevation and distance from the lake, or its latitude, longitude, and 5 km elevation exposure. The third article examines the typical snowfall distributions and synoptic conditions associated with the different snowstorms. Localized snowfall patterns are most common when there is a surface high pressure over the United States and a low over northeastern Canada. This setup combined with cold air (< 20˚C), often initiates the formation of lake- effect or lake-enhanced snow, potentially leading to the localized snowfall patterns. Regional-wide snowfall was most common with cyclonic snowstorms (Nor’easters and Rocky lows). These storms are often associated with an omega-blocking pattern, and heavier snowfall is common when air trajectories pass directly over the long-axis of Lake Ontario. The fourth and fifth articles examine how snowfall totals for the different snowstorm types have changed over time, and potential causes for these changes. This is the first study to directly assess seasonal snowfall trends for individual snowstorm types. Lake-effect snowfall significantly ( ≤ 0.05) increased in areas furthest from the lake from 1985/86 – 2014/15, while snowfall from clippers decreased across the entire region. Snowfall from lake snowstorms also increased in Region 3, but trends were inconsistent. Snowfall significantly increased in the late-1980s and late 1990s, but significantly decreased in the mid-1990s. The variability in trends may be linked to environmental conditions, as air temperatures were incorporated in 21/35 of the significant models. The Great Lakes also influenced seasonal snowfall totals mostly in Regions 1 and 3, while precipitation and average temperatures are the most influential factors in Regions 4 and 5. Teleconnections affect seasonal snowfall the most for Nor’easters, as above normal snowfall often occurs with the positive phases of the AO and PDO and the negative phase of the NAO. Lake-effect snowfall is mostly influenced by the WP, while teleconnections in the Atlantic Ocean and Arctic largely affect snowfall totals from storms originating in western Canada. Together, these articles highlight the importance of examining individual snowstorm types in the Great Lakes region and showcase potential forcings behind seasonal variations. This study also highlights the importance of understanding the seasonal snowfall contribution of different snowstorm types and how it is changing, so that accurate predictions can be made for future climate scenarios. SNOWSTORMS IN UPSTATE NEW YORK: SYNOPTICS, SPATIAL MODELING AND TEMPORAL VARIABILITY by Justin Joseph Hartnett B.S., Coastal Carolina University, 2011 M.S., University of South Florida, 2013 DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Geography Syracuse University December 2019 Copyright © Justin J. Hartnett 2019 All Rights Reserved ACKNOWLEDGEMENTS This work has been a long, arduous process, one that could not have been completed without the help from a number of people. First, I would like to thank all the people that have helped mold this work and my education. I would especially like to thank Jennifer Collins for always believing in me and helping me become the successful academic I am today. Your guidance has been invaluable, and I cannot thank you enough for it. To my advisor, Susan Millar, thank you for all the guidance on this work and the countless hours spent reading it and providing feedback. I am proud of this work, and you helped shaped it tremendously. To Wendy Lascell and those at SUNY Oneonta that gave me a chance to thrive as an educator and helped mold my dissertation, I thank you as well. Oneonta has taught me so much on how to be an academic and I cherish all the connections I have made so far. I would also like to thank Jake Bendix who has acted as my second advisor throughout this process. I appreciate all the work that we have done together, but more importantly the mentoring that you provided me. This dissertation has also been enriched immensely by my committee members Adam Burnett, Peng Gao, and Jane Read. I especially want to thank Adam and Art Samel for all of their insights into lake-effect and for taking me under their tutorage. I would like to thank all the people that have supported me through this process. Without each and every one of you, I would not have accomplished this tremendous feat. I could not have asked for better friends to surround myself with, encouraging me and helping me through the process. I especially want to thank Emily Bukowski, Pat Oberle, and Maddy Hamlin for all the conversations, venting sessions, and fun times that we’ve had. I would also like to thank everyone that helped me enjoy my time at Syracuse including Forrest Young, Joe (Philly) Hunter, Alyssa Almeida, Erik and Tori, Maeve Lanning, the Santoferrara family, and many more. All of you helped provide some sanity throughout this process. Lastly, I want to give a special thank you to my family. Thank you to everyone that has supported me through this process, while also helping me enjoy it. Thanks to all my cousins, aunts and uncles, and grandparents. I especially want to thank my parents, Ted and Chrissy, for always supporting me and giving me the tools necessary to succeed in life. Thank you to my brother, Derrick, for always being my inspiration. To Jerry and Sulley, I cannot thank you two enough for putting up with my stress, late-night sessions, and sitting in front of the computer for countless hours. I appreciate everything that you both did for me to keep me sane and I love you more than can be described. I can gladly say that it is now over, and it would not have been possible without any of you. vi TABLE OF CONTENTS List of Tables ........................................................................................................................................... x List of Figures ....................................................................................................................................... xii Chapter 1: Introduction ......................................................................................................... 1 1.1 Purpose of the Research ................................................................................................. 8 1.1.1 Resolving the Percent Contribution of Lake-Effect Snow to Seasonal Snowfall Totals ..................................................................... 8 1.1.2 The Influence of Atmospheric Variability on Snowfall Contributions ............................................................................................. 11 1.1.3 Storm Trajectories .................................................................................... 14 1.1.4 Historical Snowfall Trends .................................................................... 16 1.1.5 The Influence of External on Forcings on Seasonal Snowfall Contributions .......................................................................... 19 1.1.6 The Influence of Internal Forcings on Seasonal Snowfall Contributions .............................................................................................. 22 1.2 Research Objectives ....................................................................................................... 27 Chapter 2: Data and Methods ............................................................................................ 29 2.1 Study Area ......................................................................................................................... 29 2.2 Snowstorm Identification and Magnitude ...........................................................
Recommended publications
  • Mesoscale Modeling of Lake Effect Snow Over Lake Erie–Sensitivity To
    History of Geo- and Space Open Access Open Sciences 9th EMS Annual Meeting and 9th European Conference on Applications of Meteorology 2009 Adv. Sci. Res., 4, 15–22, 2010 www.adv-sci-res.net/4/15/2010/ Advances in © Author(s) 2010. This work is distributed under Science & Research the Creative Commons Attribution 3.0 License. Open Access Proceedings Drinking Water Mesoscale modeling of lake effect snow over LakeEngineering Erie – sensitivity to convection, microphysics andAccess Open and the Science water temperature Earth System N. E. Theeuwes, G. J. Steeneveld, F. Krikken, and A. A. M. Holtslag Science Wageningen University, Meteorology and Air Quality Section, Wageningen, The Netherlands Received: 30 December 2009 – Revised: 3 March 2010 – Accepted: 5 March 2010 – Published: 17Access Open Data March 2010 Abstract. Lake effect snow is a shallow convection phenomenon during cold air advection over a relatively warm lake. A severe case of lake effect snow over Lake Erie on 24 December 2001 was studied with the MM5 and WRF mesoscale models. This particular case provided over 200 cm of snow in Buffalo (NY), caused three casualties and $10 million of material damage. Hence, the need for a reliable forecast of the lake effect snow phenomenon is evident. MM5 and WRF simulate lake effect snow successfully, although the intensity of the snowbelt is underestimated. It appears that significant differences occur between using a simple and a complex microphysics scheme. In MM5, the use of the simple-ice microphysics scheme results in the triggering of the convection much earlier in time than with the more sophisticated Reisner-Graupel-scheme.
    [Show full text]
  • Downloaded 09/29/21 01:04 PM UTC 938 WEATHER and FORECASTING VOLUME 17 of Subsequent Deep Moist Convection
    VOLUME 17 WEATHER AND FORECASTING OCTOBER 2002 Recognition of Negative Mesoscale Factors for Severe-Weather Potential: A Case Study CHARLES A. DOSWELL III* NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma DONALD V. B AKER NOAA/NWS Weather Forecast Of®ce, Lubbock, Texas CHARLIE A. LILES NOAA/NWS Weather Forecast Of®ce, Albuquerque, New Mexico (Manuscript received 2 November 2001, in ®nal form 23 April 2002) ABSTRACT The case of 7±8 June 1998 in eastern New Mexico and western Texas is used to illustrate the challenge of recognizing possible negative effects created by mesoscale processes. In this case, a region of cloud-covered cool air (which was associated with early thunderstorms) may have limited the tornadic potential of severe convection. Although the tornado potential in the synoptic situation was not highly portentous, supercell storms did eventually form, one of which was persistent for many hours. There were only relatively brief and weak tornadoes reported from this storm early in its life, despite its persistence as a long-lived supercell that produced a long swath of large hail. In this case, the development of thunderstorms east of the threat area early in the day maintained cloudiness that apparently inhibited the destabilization of the surface-based air mass over which the afternoon thunderstorms eventually moved. The persistent supercell formed on the dryline but overrode this mesoscale cool air mass relatively soon after it developed. It was able to persist as an elevated supercell despite the relatively stable near-surface air mass, but its tornadic production may have been limited by its interaction with this mesoscale feature.
    [Show full text]
  • In Numerical Forecasts of Mesoscale Convective Systems
    Meteorol. Atmos. Phys. 49, 93-106 (1992) Meteorology and Atmospheric Physics ~ Springer-Verlag 1992 Printed in Austria 551.515.4 The Pennsylvania State University, University Park, U.S.A. The Role of the Convective "Trigger Function" in Numerical Forecasts of Mesoscale Convective Systems J. S. Kain and J. M. Fritsch With 7 Figures Received November 18, 1991 Revised April 27, 1992 Summary sary to know the location and configuration of active convective cells that comprised mesoscale Three-dimensional numerical model simulations of a meso- convective systems. Consequently, convective scale convective system are performed to evaluate the sensitivity of the simulations to differences in the convective parameterization techniques typically relied on trigger function. The Penn State/NCAR mesoscale model empirically-based relationships between observed with the Kain-Fritsch convective parameterization scheme larger-scale processes and convective activity to is used as the modeling system for the study. All simulations predict when and where convection should occur. are performed on the June 10-11, 1985 squall line from the For example, some parameterizations were designed OK PRE-STORM field experiment. Individual simulations differ only in their specification of the trigger function within to initiate convection when a threshold value of the Kain-Fritsch scheme. Comparison of results from 12 hour mass or moisture convergence was exceeded at a simulations indicates that the position, timing, and intensity grid point where the atmosphere was conditionally
    [Show full text]
  • Assessment of Potential Costs of Declining Water Levels in Great Salt Lake
    Assessment of Potential Costs of Declining Water Levels in Great Salt Lake Revised November 2019 Prepared for: Great Salt Lake Advisory Council KOIN Center 222 SW Columbia Street Suite 1600 Portland, OR 97201 503-222-6060 Salt Lake City, Utah This page intentionally blank ECONorthwest ii Executive Summary The purpose of this report is to assess the potential costs of declining water levels in Great Salt Lake and its wetlands. A multitude of people, systems, and wildlife rely on Great Salt Lake and value the services it provides. Declines in lake levels threaten current uses, imposing risks to livelihoods and lake ecosystems. This report synthesizes information from scientific literature, agency reports, informational interviews, and other sources to detail how and to what extent costs could occur at sustained lower lake levels. Water diversions from the rivers that feed Great Salt Lake have driven historical declines in lake levels. Current and future water stressors, without intervention to protect or enhance water flows to Great Salt Lake, have the potential to deplete water levels even further. Declines in lake levels threaten the business, environmental, and social benefits that Great Salt Lake provides and could result in substantial costs to surrounding local communities and the State of Utah. This report traces the pathways and resulting costs that could arise due to declines in water levels in Great Salt Lake. The potential costs evaluated in this report include those caused by reduced lake effect, increased dust, reduced lake access, increased salinity, habitat loss, new island bridges, and the spread of invasive species. Summary of Costs Each of the effects and resulting costs of declining water levels in Great Salt Lake are described in detail in this report.
    [Show full text]
  • Downloaded 10/10/21 03:43 AM UTC JULY 2013 a L C O T T a N D S T E E N B U R G H 2433
    2432 MONTHLY WEATHER REVIEW VOLUME 141 Orographic Influences on a Great Salt Lake–Effect Snowstorm TREVOR I. ALCOTT National Weather Service, Western Region Headquarters, Salt Lake City, Utah W. JAMES STEENBURGH Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah (Manuscript received 15 November 2012, in final form 1 February 2013) ABSTRACT Although several mountain ranges surround the Great Salt Lake (GSL) of northern Utah, the extent to which orography modifies GSL-effect precipitation remains largely unknown. Here the authors use obser- vational and numerical modeling approaches to examine the influence of orography on the GSL-effect snowstorm of 27 October 2010, which generated 6–10 mm of precipitation (snow-water equivalent) in the Salt Lake Valley and up to 30 cm of snow in the Wasatch Mountains. The authors find that the primary orographic influences on the event are 1) foehnlike flow over the upstream orography that warms and dries the incipient low-level air mass and reduces precipitation coverage and intensity; 2) orographically forced convergence that extends downstream from the upstream orography, is enhanced by blocking windward of the Promontory Mountains, and affects the structure and evolution of the lake-effect precipitation band; and 3) blocking by the Wasatch and Oquirrh Mountains, which funnels the flow into the Salt Lake Valley, reinforces the ther- mally driven convergence generated by the GSL, and strongly enhances precipitation. The latter represents a synergistic interaction between lake and downstream orographic processes that is crucial for precipitation development, with a dramatic decrease in precipitation intensity and coverage evident in simulations in which either the lake or the orography are removed.
    [Show full text]
  • Climatology of Lake-Effect Precipitation Events Over Lake Champlain
    232 JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY VOLUME 48 Climatology of Lake-Effect Precipitation Events over Lake Champlain NEIL F. LAIRD AND JARED DESROCHERS Department of Geoscience, Hobart and William Smith Colleges, Geneva, New York MELISSA PAYER Chemical, Earth, Atmospheric, and Physical Sciences Department, Plymouth State University, Plymouth, New Hampshire (Manuscript received 29 November 2007, in final form 11 June 2008) ABSTRACT This study provides the first long-term climatological analysis of lake-effect precipitation events that de- veloped in relation to a small lake (having a surface area of #1500 km2). The frequency and environmental conditions favorable for Lake Champlain lake-effect precipitation were examined for the nine winters (October–March) from 1997/98 through 2005/06. Weather Surveillance Radar-1988 Doppler (WSR-88D) data from Burlington, Vermont, were used to identify 67 lake-effect events. Events occurred as 1) well-defined, isolated lake-effect bands over and downwind of the lake, independent of larger-scale precipitating systems (LC events), 2) quasi-stationary lake-effect bands over the lake embedded within extensive regional pre- cipitation from a synoptic weather system (SYNOP events), or 3) a transition from SYNOP and LC lake- effect precipitation. The LC events were found to occur under either a northerly or a southerly wind regime. An examination of the characteristics of these lake-effect events provides several unique findings that are useful for comparison with known lake-effect environments for larger lakes. January was the most active month with an average of nearly four lake-effect events per winter, and approximately one of every four LC events occurred with southerly winds.
    [Show full text]
  • Intense Windstorms in the Northeastern United States Frederick Letson1, Rebecca J
    Intense windstorms in the Northeastern United States Frederick Letson1, Rebecca J. Barthelmie2, Kevin I. Hodges3 and Sara C. Pryor1 1Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York, USA 2Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA 5 3Environmental System Science Centre, University of Reading, Reading, United Kingdom Correspondence to: F. Letson ([email protected]), S.C. Pryor ([email protected]) Abstract. Windstorms are a major natural hazard in many countries. The objective of this study is to identify and characterize iIntense windstorms during the last four decades in the U.S. Northeast are identified and characterizedand determine both the sources of cyclones responsible for these events and the manner in which those cyclones differ 10 from the cyclone climatology. The windstorm detection is based on using the spatial extent of locally extreme wind speeds at 100 m height from the ERA5 reanalysis database. During all the of the top 10 windstorms, wind speeds in excess of their local 99.9th percentile extend over at least one-third of land-based ERA5 grid cells in this high population density region of the U.S.. Maximum sustained wind speeds at 100 m during these windstorms range from 26 to over 43 ms-1, with wind speed return periods exceeding 6.5 to 106 years (considering the top 5% of grid cells 15 during each storm). Property damage associated with these storms, inflation adjusted to January 2020, ranges from $24 million to over $29 billion. Two of these windstorms are linked to decaying tropical cyclones, three are Alberta Clippers and the remaining storms are Colorado Lows.
    [Show full text]
  • Clnclas CSCL O4B G3/47 0133292
    A Multivariate Variational Objective Analysis - Assimilation Method, Part 11: Case Study Results with and without Satellite Data. Gary L. Achtemeier, Stanley Q. Kidder, and Robert W. Scott Climate and Meteorology Section Illinois State Water Survey Champaign, IL 61820 (NASA-CR-182653) A HULTIV ARI ATE VARIATIONAL N 8 8- 2 24 92 0 BJ ECTIVE ANALYSIS- AS SIRILBT ION PIETHO D, PART 2: CASE STUDY RESULTS WITH AND WITHOUT SATELLITE DITA IIllinois State Uater Clnclas Survey) 57 P CSCL O4B G3/47 0133292 ~. .- i' 4 A Multivariate Variational Objective Analysis - Assimilation Method, Part 11: Case Study Results with and without Satellite Data. Gary L. Achtemeier, Stanley Q. Kidder, and Robert W. Scott Climate and Meteorology Section Illinois State Water Survey Champaign, IL 61820 ABSTRACT The variational multivariate assimilation method described in a companion paper by Achtemeier and Ochs is applied to conventional and conventional plus satellite data. Ground-based and space-based meteorological data are weighted according to the respective "measurement" errors and blended into a data set that is a solution of numerical forms of the two nonlinear horizontal momentum equations, the hydrostatic equation, and an integrated continuity equation for a dry atmosphere. The analyses serve first, to evaluate the accuracy of the model, and second, to contrast the analyses with and without satellite data. Evaluation criteria measure the extent to which a) the assimilated fields satisfy the dynamical constraints, b) the assimilated fields depart from the observations, and c) the assimilated fields are judged to be realistic through c I pattern analysis. The last criterion requires that the signs, magnitudes, and patterns of the hypersensitive vertical velocity and local tendencies of the horizontal velocity components be physically consistent with respect to the larger scale weather systems.
    [Show full text]
  • The Evolution of Lake-Effect Convection During Landfall and Orographic Uplift As Observed by Profiling Radars
    4422 MONTHLY WEATHER REVIEW VOLUME 143 The Evolution of Lake-Effect Convection during Landfall and Orographic Uplift as Observed by Profiling Radars JUSTIN R. MINDER AND THEODORE W. LETCHER University at Albany, State University of New York, Albany, New York LEAH S. CAMPBELL,PETER G. VEALS, AND W. JAMES STEENBURGH University of Utah, Salt Lake City, Utah (Manuscript received 27 March 2015, in final form 15 July 2015) ABSTRACT A pronounced snowfall maximum occurs about 30 km downwind of Lake Ontario over the 600-m-high Tug Hill Plateau (hereafter Tug Hill), a region where lake-effect convection is affected by mesoscale forcing associated with landfall and orographic uplift. Profiling radar data from the Ontario Winter Lake-effect Systems field campaign are used to characterize the inland evolution of lake-effect convection that produces the Tug Hill snowfall maximum. Four K-band profiling Micro Rain Radars (MRRs) were aligned in a transect from the Ontario coast onto Tug Hill. Additional observations were provided by an X-band profiling radar (XPR). Analysis is presented of a major lake-effect storm that produced 6.4-cm liquid precipitation equiv- alent (LPE) snowfall over Tug Hill. This event exhibited strong inland enhancement, with LPE increasing by a factor of 1.9 over 15-km horizontal distance. MRR profiles reveal that this enhancement was not due to increases in the depth or intensity of lake-effect convection. With increasing inland distance, echoes transi- tioned from a convective toward a stratiform morphology, becoming less intense, more uniform, more fre- quent, and less turbulent. An inland increase in echo frequency (possibly orographically forced) contributes somewhat to snowfall enhancement.
    [Show full text]
  • MET 3502 Synoptic Meteorology
    MET 3502 Synoptic Meteorology Lecture 19: Life Cycle of the Mid-Latitude Cyclone and Forecasting Mid-Latitude Cyclone What is a mid-latitude cyclone? The mid-latitude cyclone is a synoptic scale low pressure system that has cyclonic (counter-clockwise in northern hemisphere) flow that is found in the middle latitudes (i.e., 30ºN-55ºN) IT IS NOT A HURRICANE OR TROPICAL STORM 1) There is a location (tropics vs. mid-latitudes) and size difference between hurricane and mid-latitude cyclone 2) Typical size of mid-latitude cyclone = 1500-5000km in diameter 3) Typical size of a hurricane or tropical storm = 200- 1000km in diameter Here is a picture of a typical mid-latitude cyclone and hurricane. Notice the size difference. How does the mid-latitude cyclone form? History: Polar front theory: developed by Univ. of Bergen in Norway after the end of World War I Norway Cyclone Model (NCM): About the structure and life cycle of mid-latitude cyclone Explained evolution of midlatitude cyclones in terms of surface patterns Suffered from lack of knowledge of upper atmospheric patterns Provided a good description of how surface patterns evolve, but couldn't explain why Classical Model 1. Background State: There is boundary between cP and mT airmass in mid-latitude (Baroclinic Zone). 2. Perturbation Stage: Along this boundary a counter-clockwise circulation can set up at the surface, which acts to take warm air up from the south and cold air down from the north. This is called cyclogenesis. Classical Model 3. Mature Stage: If the upper levels are favorable, then the mid- latitude cyclone will continue to develop and bring up mT air in the warm sector and bring down cP air in the cold sector.
    [Show full text]
  • Colorado Climate Center Professor and State Climatologist Department of Atmospheric Science Fort Collins, CO 80523-1371 Nolan J
    Table of Contents Lightning in Colorado . .1 Lightning Safety Outdoors . .3 Lightning Safety Rules . .4 Colorado Climate in Review . .5 January 2002 . .5 Colorado February 2002 . .6 Climate March 2002 . .8 Spring 2002 Water Year 2002 in Review through March 2002 . .9 Vol. 3, No. 2 Blizzards in Northeastern Colorado . .10 Cooperative Weather Observer at Sedgwick Receives Benjamin Franklin Award . .13 National Weather Observer Length-of-Service Awards . .13 Cover Photo: Cormorants in the fog during an early spring rain at Barber Lakes, off I-25. Photo by Ken Driese Roger A. Pielke, Sr. Colorado Climate Center Professor and State Climatologist Department of Atmospheric Science Fort Collins, CO 80523-1371 Nolan J. Doesken Research Associate Phone: (970) 491-8545 Phone and fax: (970) 491-8293 Odilia Bliss, Technical Editor Colorado Climate publication (ISSN 1529-6059) is published four times per year, Winter, Spring, If you have a photo or slide that you Summer, and Fall. Subscription rates are $15.00 for four issues or $7.50 for a single issue. would like considered for the cover of Colorado Climate, please submit The Colorado Climate Center is supported by the Colorado Agricultural Experiment Station it to the address at right. Enclose a note describing the contents and through the College of Engineering. circumstances including loca- tion and date it was taken. Digital Production Staff: Clara Chaffin and Tara Green, Colorado Climate Center photographs can also be considered. Barbara Dennis and Jeannine Kline, Publications and Printing Submit digital imagery via attached files to: [email protected]. An earlier publication with the same name, Colorado Climate, was published monthly from 1977 through 1996 with the Unless otherwise arranged in support of the Colorado Agricultural Experiment Station and the Colorado State University College of Engineering.
    [Show full text]
  • Again, the Air Mass Thunderstorm Is the “Garden Variety” One… to Get More the More Organized, Longer Lived Severe Thunders
    Again, the air mass thunderstorm is the “garden variety” one… To get more the more organized, longer lived severe thunderstorms, we need a combination of more ingredients Ingredients for severe thunderstorms INGREDIENT 1: CONDITIONAL INSTABILITY Needs to be through the depth of the troposphere Make the atmosphere more conditionally unstable by: Warming and moistening near the surface Cooling and drying aloft INGREDIENT 2: WIND SHEAR Change in horizontal wind speed through a vertical depth. If the wind speed changes direction as well that’s even better! Why is wind shear a necessary ingredient for severe thunderstorms? CUMULUS STAGE MATURE STAGE Updraft only Updraft + downdraft NO WIND SHEAR MOST WITH FAVORABLE WIND FOR GROWTH SHEAR (Bluestein) Wind shear allows the updraft to be maintained in the cloud and not get choked off by the downdraft—so the thunderstorm keeps receiving the warm, moist air it needs to keep growing. Where to look for severe thunderstorms (in central and eastern U.S.) In the vicinity of a mid-latitude cyclone Strong upper level winds from the north and west Surface winds from the south to southeast (a low-level jet) Fronts, particularly in front of and at a cold front in the warm sector Drylines: transition zone between dry cT air and moist mT air Very common in the southern Great Plains. THESE CAN ENHANCE: 1. THE VERTICAL WIND SHEAR 2. CONDITIONAL INSTABILITY (i.e. CAPE) More Organized Severe Thunderstorm Types In approximate order of severity Multicell thunderstorms Less severe Squall lines Mesoscale Convective Complexes Supercells Most severe Multicell Thunderstorms In moderate shear, thunderstorms can get a bit more organized, numerous and have longer lifetimes.
    [Show full text]