Newsletter 18
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Biochemical Systematics and Evolutionary Relationships in the Trichoniscus Pusillus Complex (Crustacea, Isopoda, Oniscidea)
Heredity 79 (1997) 463—472 Received 20 August 1996 Biochemical systematics and evolutionary relationships in the Trichoniscus pusillus complex (Crustacea, Isopoda, Oniscidea) MARINA COBOLLI SBORDONI1, VALERIO KETMAIERff, ELVIRA DE MATTHAEIS & STEFANO TAITI Dipartimento di Scienze Ambienta/i, Università di L 'Aquila, V. Vetoio, Local/ta Coppito-67010-L 'Aqu/la, Dipartimento di Biologia An/male e dell'Uomo, Università di Roma La Sap/enza', V./e de/I'Univers/tà 32- 00185-Rome and §Centro di Studio per/a Faunistica ed Eco/ogia Tropicali CNR, V.Romana 17-50125- Florence, Italy Inorder to clarify taxonomic and phylogenetic relationships among Trichoniscus pusillus (Isopoda, Oniscidea) populations, allozyme variation was studied by means of starch gel electrophoresis. The genetic structure of several populations belonging to different subspecies (diploid bisexual, triploid parthenogenetic; epigean, troglophilic and troglobitic) was assessed by investigating 10 enzymatic systems corresponding to 15 putative loci. F-statistics and cluster- ing analysis indicated a high degree of genetic differentiation, corresponding to low levels of gene flow among populations, both epigean and hypogean, still considered to be conspecific. Estimates of divergence times calculated from genetic distance data suggest that the pattern of differentiation and the colonization of cave environments may be related to the palaeoclimatic change of the Messinian and PIio—Pleistocene glaciations. Keywords: allozymes, cave fauna, divergencetimes, genetic polymorphism, phylogeny, Tricho- niscus pusillus. Introduction accepted, is arbitrary and subjective. Thorpe (1987) stressed that most species in natural circumstances Trichoniscuspusillus Brandt, 1833 (Isopoda, Onisci- may have patterns of geographical variation. As dea) is considered to be a polytypic species, widely conventional subspecies are not natural categories, distributed in the Palaearctic region, whose popula- tions have been arranged in several subspecies. -
Crustacea, Oniscidea)
Carina Appel Análise e descrição de estruturas temporárias presentes no período ovígero de isópodos terrestres (Crustacea, Oniscidea). Dissertação de mestrado apresentada ao Programa de Pós-Graduação em Biologia Animal, Instituto de Biociências da Universidade Federal do Rio Grande do Sul, como requisito parcial à obtenção do título de Mestre em Biologia Animal. Área de concentração: Biologia comparada Orientadora: Profª. Drª. Paula Beatriz de Araujo UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL PORTO ALEGRE 2011 Análise e descrição morfológica de estruturas temporárias presentes no período ovígero de isópodos terrestres (Crustacea, Oniscidea). Carina Appel Dissertação de mestrado aprovada em ______ de _______________ de _______. _____________________________________ Drª. Laura Greco Lopes _____________________________________ Drª. Suzana Bencke Amato _____________________________________ Drª. Carolina Coelho Sokolowicz II a Perfeição da Vida “Por que prender a vida em conceitos e normas?... ...Tudo, afinal, são formas...” “A resposta certa, não importa nada: o essencial é que as perguntas estejam certas.” Mário Quintana III Agradecimentos Ao encerrar esta etapa gostaria de lembrar e agradecer as pessoas e instituições que de alguma forma contibuíram para o desenvolvimento desta pesquisa. Assim, agradeço em primeiro lugar à minha orientadora, Profª. Paula, pela orientação, pelo incentivo, pelos ensinamentos compartilhados, pelo apoio nas horas difíceis, enfim por todo o carinho com que sempre me tratou. Obrigada do fundo do coração! À Aline que me auxiliou muitas vezes, obrigada pela paciência e atenção! Ao casal Buckup por toda a atenção, afeto, amizade, conselhos e conhecimentos compartilhados ao longo destes anos. Aos meus colegas e amigos Bianca, Ivan e Kelly, obrigada por todo o apoio, amizade e companheirismo, a amizade de vocês é algo que pretendo cultivar. -
Woodlice in Britain and Ireland: Distribution and Habitat Is out of Date Very Quickly, and That They Will Soon Be Writing the Second Edition
• • • • • • I att,AZ /• •• 21 - • '11 n4I3 - • v., -hi / NT I- r Arty 1 4' I, • • I • A • • • Printed in Great Britain by Lavenham Press NERC Copyright 1985 Published in 1985 by Institute of Terrestrial Ecology Administrative Headquarters Monks Wood Experimental Station Abbots Ripton HUNTINGDON PE17 2LS ISBN 0 904282 85 6 COVER ILLUSTRATIONS Top left: Armadillidium depressum Top right: Philoscia muscorum Bottom left: Androniscus dentiger Bottom right: Porcellio scaber (2 colour forms) The photographs are reproduced by kind permission of R E Jones/Frank Lane The Institute of Terrestrial Ecology (ITE) was established in 1973, from the former Nature Conservancy's research stations and staff, joined later by the Institute of Tree Biology and the Culture Centre of Algae and Protozoa. ITE contributes to, and draws upon, the collective knowledge of the 13 sister institutes which make up the Natural Environment Research Council, spanning all the environmental sciences. The Institute studies the factors determining the structure, composition and processes of land and freshwater systems, and of individual plant and animal species. It is developing a sounder scientific basis for predicting and modelling environmental trends arising from natural or man- made change. The results of this research are available to those responsible for the protection, management and wise use of our natural resources. One quarter of ITE's work is research commissioned by customers, such as the Department of Environment, the European Economic Community, the Nature Conservancy Council and the Overseas Development Administration. The remainder is fundamental research supported by NERC. ITE's expertise is widely used by international organizations in overseas projects and programmes of research. -
Slime Molds: Biology and Diversity
Glime, J. M. 2019. Slime Molds: Biology and Diversity. Chapt. 3-1. In: Glime, J. M. Bryophyte Ecology. Volume 2. Bryological 3-1-1 Interaction. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 18 July 2020 and available at <https://digitalcommons.mtu.edu/bryophyte-ecology/>. CHAPTER 3-1 SLIME MOLDS: BIOLOGY AND DIVERSITY TABLE OF CONTENTS What are Slime Molds? ....................................................................................................................................... 3-1-2 Identification Difficulties ...................................................................................................................................... 3-1- Reproduction and Colonization ........................................................................................................................... 3-1-5 General Life Cycle ....................................................................................................................................... 3-1-6 Seasonal Changes ......................................................................................................................................... 3-1-7 Environmental Stimuli ............................................................................................................................... 3-1-13 Light .................................................................................................................................................... 3-1-13 pH and Volatile Substances -
Role of Arthropods in Maintaining Soil Fertility
Agriculture 2013, 3, 629-659; doi:10.3390/agriculture3040629 OPEN ACCESS agriculture ISSN 2077-0472 www.mdpi.com/journal/agriculture Review Role of Arthropods in Maintaining Soil Fertility Thomas W. Culliney Plant Epidemiology and Risk Analysis Laboratory, Plant Protection and Quarantine, Center for Plant Health Science and Technology, USDA-APHIS, 1730 Varsity Drive, Suite 300, Raleigh, NC 27606, USA; E-Mail: [email protected]; Tel.: +1-919-855-7506; Fax: +1-919-855-7595 Received: 6 August 2013; in revised form: 31 August 2013 / Accepted: 3 September 2013 / Published: 25 September 2013 Abstract: In terms of species richness, arthropods may represent as much as 85% of the soil fauna. They comprise a large proportion of the meso- and macrofauna of the soil. Within the litter/soil system, five groups are chiefly represented: Isopoda, Myriapoda, Insecta, Acari, and Collembola, the latter two being by far the most abundant and diverse. Arthropods function on two of the three broad levels of organization of the soil food web: they are plant litter transformers or ecosystem engineers. Litter transformers fragment, or comminute, and humidify ingested plant debris, which is deposited in feces for further decomposition by micro-organisms, and foster the growth and dispersal of microbial populations. Large quantities of annual litter input may be processed (e.g., up to 60% by termites). The comminuted plant matter in feces presents an increased surface area to attack by micro-organisms, which, through the process of mineralization, convert its organic nutrients into simpler, inorganic compounds available to plants. Ecosystem engineers alter soil structure, mineral and organic matter composition, and hydrology. -
Malacostraca, Isopoda, Oniscidea) of Nature Reserves in Poland
B ALTIC COASTAL ZONE Vol. 24 pp. 65–71 2020 ISSN 2083-5485 © Copyright by Institute of Modern Languages of the Pomeranian University in Słupsk Received: 7/04/2021 Original research paper Accepted: 26/05/2021 NEW INFORMATION ON THE WOODLOUSE FAUNA (MALACOSTRACA, ISOPODA, ONISCIDEA) OF NATURE RESERVES IN POLAND Artsiom M. Ostrovsky1, Oleg R. Aleksandrowicz2 1 Gomel State Medical University, Belarus e-mail: [email protected] 2 Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Poland e-mail: [email protected] Abstract This is the fi rst study on the woodlouse fauna of from 5 nature reserves in the Mazowian Lowland (Bukowiec Jabłonowski, Mosty Kalińskie, Łosiowe Błota, Jezioro Kiełpińskie, Klimonty) and from 2 nature reserves in the Pomeranian Lake District (Ustronie, Dolina Huczka) are presented. A total of 8 species of woodlice were found. The number of collected species ranged from 1 (Dolina Chuczka, Mosty Kalińskie, Klimonty) to 5 (Łosiowe Błota). The most common species in the all studied reserves was Trachelipus rathkii. Key words: woodlouse fauna, nature reserves, Poland, Isopoda, species INTRODUCTION Woodlice are key organisms for nutrient cycling in many terrestrial ecosystems; how- ever, knowledge on this invertebrate group is limited as for other soil fauna taxa. By 2004, the world’s woodlouse fauna (Isopoda, Oniscidea) included 3637 valid species (Schmalfuss 2003). The fauna of terrestrial isopods in Europe has been active studied since the beginning of the XX century and is now well studied (Jeff ery et al. 2010). In Poland 37 isopod species inhabiting terrestrial habitats have been recorded so far, including 12 in Mazovia and 16 in Pomerania (Jędryczkowski 1979, 1981, Razowski 1997, Piksa and Farkas 2007, Astrouski and Aleksandrowicz 2018). -
Welford Road Cemetery Bioblitz 2016
WELFORD ROAD CEMETERY BIOBLITZ 2016 Acknowledgements The organisers would like to thank all partners involved in the event; particularly members of the public, surveyors and volunteers who gave their time to take part and without whom the Welford Road Cemetery Leicester BioBlitz 2016 would not have been possible. A total of 316 species were found during the Leicester Bioblitz at Welford Road Cemetery 120 children took part What Is A A BioBlitz is an event varying in length but can last up to one whole day (24-hours) during which intense biological surveys are conducted within a designated area. It aims to record all living species present, from animals and plants, to fungi and algae. A BioBlitz strives to cover as many taxa as possible, with specialist scientists and naturalists from a range of disciplines pooling their identification abilities and knowledge to produce a species record. The term was coined in 1996 by Susan Rudy, a US National Park Service naturalist who helped with the first ever event at Kenilworth Aquatic Gardens, Washington DC. Since then, BioBlitzes have taken place all across the world. BioBlitz events which are held annually/seasonally or in a particular location can help build up a better picture of how the site changes and supports biodiversity over time. Alongside the scientific data gathered, an important component of any BioBlitz is the involvement of the public and encouragement of citizen science. Events like this, which allow local people to engage with the biodiversity in their area, provide people with an excellent opportunity to venture into the world of science and conservation and to better understand the nature world around them. -
The Role of Urban Forest Patches in Maintaining Isopod Diversity (Oniscidea)
A peer-reviewed open-access journal ZooKeys 801: 371–388The (2018)role of urban forest patches in maintaining isopod diversity( Oniscidea) 371 doi: 10.3897/zookeys.801.22829 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research The role of urban forest patches in maintaining isopod diversity (Oniscidea) Elisabeth Hornung1, Andrea Kásler1, Zsolt Tóth1 1 Department of Ecology, Institute for Biology, University of Veterinary Medicine Budapest, H-1077 Budapest, Rottenbiller str. 50, Hungary Corresponding author: Elisabeth Hornung ([email protected]) Academic editor: S. Taiti | Received 7 December 2017 | Accepted 26 March 2018 | Published 3 December 2018 http://zoobank.org/314D5EEF-E656-4D6C-AF2F-66938AC229C8 Citation: Hornung E, Kásler A, Tóth Z (2018) The role of urban forest patches in maintaining isopod diversity (Oniscidea). In: Hornung E, Taiti S, Szlavecz K (Eds) Isopods in a Changing World. ZooKeys 801: 371–388. https:// doi.org/10.3897/zookeys.801.22829 Abstract Compositional changes in natural communities associated with anthropogenic influence often lead to lo- calised extinctions and biodiversity loss. Soil invertebrates are also threatened by urbanisation due to habitat fragmentation, vegetation changes and management, soil alteration, degradation, and disappearing shelter sites. The aim was to assess terrestrial isopod (Oniscidea) assemblages in differently degraded urban forest patches of a metropolitan area (Budapest, Hungary). Study sites were compared by their species richness, composition and the relevant background factors (soil properties, dead wood, litter characteristics, and canopy closure). The degree of urban disturbance was expressed using an urbanisation index (UI) based on built-up density and vegetation cover. The isopods were identified to species level, and were qualified by their habitat preference and naturalness index (TINI). -
What Does the Geography of Parthenogenesis Teach Us About Sex? Rstb.Royalsocietypublishing.Org Anaı¨S Tilquin1,2 and Hanna Kokko1,2
Downloaded from http://rstb.royalsocietypublishing.org/ on December 6, 2016 What does the geography of parthenogenesis teach us about sex? rstb.royalsocietypublishing.org Anaı¨s Tilquin1,2 and Hanna Kokko1,2 1Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland 2Centre of Excellence in Biological Interactions, University of Zu¨rich, Winterthurerstrasse 190, 8057 Zu¨rich, Review Switzerland AT, 0000-0003-2628-5086 Cite this article: Tilquin A, Kokko H. 2016 What does the geography of parthenogenesis Theory predicts that sexual reproduction is difficult to maintain if asexuality teach us about sex? Phil. Trans. R. Soc. B 371: is an option, yet sex is very common. To understand why, it is important to 20150538. pay attention to repeatably occurring conditions that favour transitions to, or http://dx.doi.org/10.1098/rstb.2015.0538 persistence of, asexuality. Geographic parthenogenesis is a term that has been applied to describe a large variety of patterns where sexual and related asexual forms differ in their geographic distribution. Often asexuality is Accepted: 16 July 2016 stated to occur in a habitat that is, in some sense, marginal, but the interpret- ation differs across studies: parthenogens might not only predominate near One contribution of 15 to a theme issue ‘Weird the margin of the sexuals’ distribution, but might also extend far beyond the sex: the underappreciated diversity of sexual sexual range; they may be disproportionately found in newly colonizable reproduction’. areas (e.g. areas previously glaciated), or in habitats where abiotic selection pressures are relatively stronger than biotic ones (e.g. -
Millipedes Centipedes and Woodlice
Millipedes Centipedes and ♦ Woodlice of the Sheffield Area Wf Paul Richards | - r w WAKEFIELD HUDDERSFIELD INISTONE MALTBY CASTLETON PEAK DISTRICT BUXTON. BAK EWELL' ,! t \ i/% HARTINGTON >N?'MATLOCK MANSFIELD i £ Sheffield and its surrounding region as studied by the Sorby Natural History Society. The approximate boundaries of the Peak District National Park are also indicated. MILLIPEDES CENTIPEDES AND WOODLGCE OF THE SHEFFIELD AREA J P RICHARDS ********** Published by Sorby Natural History Society, Sheffield Sheffield City Museum ********** Sorby Record Special Series No. 10 1995 ISSN 0260-2032 PREFACE “Of these hideous and angry insects we know little, except the figure and noxious qualities. Though with us there are insects somewhat resembling them in form, we are placed at a happy distance from such as are really formidable. With us they seldom grow above an inch long; in the tropical climates they are often found above a quarter of a yard”. Thus were the 'scolopendra' and 'gaily worm’ introduced by Oliver Goldsmith in 1864 in his ‘History of the earth and animated nature, Book 1: Insects of the first order’. Clearly a man of the ‘creepy-crawly’ school of taxonomic description! More recently millipedes and woodlice have been described as “fascinating and, dare I say it, endearing creatures" (Hopkin & Read 1992; Hopkin 1991) and “very interesting animals ... eminently accessible and obliging ... very useful" {Sutton 1972). It has to be said that the animals referred to in this publication do indeed creep, crawl and generally behave in a manner inconsistent with furred and feathered vertebrates. The majority do not possess irridescent courtship embellishments, nor do they display humorous anthropomorphic behaviour. -
Terrestrial Isopods at the UWM Field Station Joan P
University of Wisconsin Milwaukee UWM Digital Commons Field Station Bulletins UWM Field Station Fall 1987 Terrestrial isopods at the UWM Field Station Joan P. Jass Milwaukee Public Museum Barbara Klausineier Milwaukee Public Museum Follow this and additional works at: https://dc.uwm.edu/fieldstation_bulletins Part of the Forest Biology Commons, and the Zoology Commons Recommended Citation Jass, J.P. and B. Klausmeier. 1987. Terrestrial isopods at the UWM Field Station. Field Station Bulletin 20(2): 17-21. This Article is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Field Station Bulletins by an authorized administrator of UWM Digital Commons. For more information, please contact [email protected]. TERRESTRIAL ISOPODS AT THE UWM FIELD STATION JOAN P. JASS and BARBARA KLAUSMEIER Invertebrate Zoology Section, Milwaukee Public Museum, Milwaukee, Wisconsin 53233 ABSTRACT Six species of terrestrial isopods were found in a preliminary survey of appropriate habitats at the UWM Field Station. Each species is characterized briefly with distinctive features of its morphology and life cycle. INTRODUCTION Terrestrial isopods are among the most commonly observed and familiar of all crustaceans. They frequently are found in habitats near our homes and have the unusual distinction (for crustaceans) of numerous common names, among them pill bug, sow bug, potato bug, woodlouse and slater. They have drawn the attention of ecologists and play a major role in some of the classic studies of the dynamics of the forest floor fauna (LaMont Cole's 1946 study of the cryptozoa of an Illinois woodland for example). -
Per Isopoda Ad Astra” - 50 Years of Isopod Recording
Bulletin of the British Myriapod & Isopod Group Volume 30 (2018) “PER ISOPODA AD ASTRA” - 50 YEARS OF ISOPOD RECORDING Paul T. Harding Centre for Ecology and Hydrology Wallingford, Crowmarsh Gifford, OX10 8BB, UK. Email: [email protected] Address for correspondence: 60 Boxworth Road, Elsworth, Cambridge CB23 4JQ, UK. Quite a lot has been written about the origins, history and achievements of the recording scheme covering woodlice and waterlice in Britain and Ireland. Rather than repeat existing information, reference is made to key publications, many of which are available to download or view online. Nevertheless, some stories may be worth repeating or expanding. TO BEGIN AT THE BEGINNING....JANUARY 1968, A COLD EVENING IN CAMBRIDGE Following the winter meeting of the British Ecological Society in Cambridge, Stephen Sutton and John Metcalfe were sitting in a pub, developing ideas for what became the Isopod Survey Scheme (ISS). Unknown to them, Paul Harding was cycling out of the city to nearby Histon for another night-shift at the jam factory, having spent the afternoon in a Cambridge library extracting woodlice records from dusty volumes. The three finally met in the following autumn to develop plans towards launching ISS in December 1968; none of them could have imagined that the successor of the scheme would still exist 50 years later. Sutton and Metcalfe developed a pioneering recording card (for woodlice, waterlice and some, mainly littoral, marine species) which was also aimed at recording broad habitats for the species. The card was intended for recording which species occurred at a single habitat and location on one occasion, rather than summarising records from a large spatial unit such as a 10km square.