When I Think of Tornadoes, I Think Of…

Total Page:16

File Type:pdf, Size:1020Kb

When I Think of Tornadoes, I Think Of… When I think of tornadoes, I think of… . Twister, the movie In "Twister," the movie opening today, stars Helen Hunt and Bill Paxton stand in an Oklahoma cornfield. Wind whips their hair back and debris flies toward them as the husband and wife tornado chasers, eyes keen, look in awe at a monstrous, growling, on coming tornado. "My God," they say. In a preview screening Wednesday, two real husband and wife tornado chasers, meteorologists Richard and Daphne Thompson of Kansas City, were saying practically the same thing: My... What a bunch of hooey. It's not that the young chasers thought "Twister" was bad. Not at all. The special effects that created the tornadoes were great. "The effects were better than I thought for the tornadoes," Richard Thompson said. And in terms of excitement, Daphne Thompson, 23, who's an Internet WebMaster for the National Weather Service, and Richard Thompson, 29, who tracks storms for the National Storm Prediction Center, thought it was pretty intense, maybe ranking an F3 on the F0 to F5 tornado intensity scale. But as for capturing tornado chasing -- or even to the physics of real tornadoes -- well, as Fred Ostby, chief forecaster for the Storm Prediction Center, said after the movie, "I thought `E.T.' was more believable." Consider: 1. In a real twister, air and debris whooshes in toward the tornado, not out, with debris, 18-wheel oil trucks, farm equipment, cows and houses being flung away. At the least, the stars' hair should have been blowing forward, not back. 2. Lightning and thunder? Check your physics books, Steven Spielberg (producer of the Warner Brothers film). They don't flash and crash at the same time. Light travels faster than sound, so lightning is seen before thunder is heard unless a storm is directly overhead. 3. Yes, tornadoes wander, alter their path and change in intensity, but they don't skitter back and forth across roads like jittery rabbits, take sudden U-turns or drop out of sunny and virtually windless skies. Storms just don't move east, then west, then stop. "That's wrong," Richard Thompson said. They have relatively distinct paths. 4. Chasers don't check radar and whoop "Whooeee! We've got ourselves an F3!" as the movie suggests. Meteorologists do use the Fujita-Pearson Tornado Intensity Scale to rate the power of tornadoes, from F0 (weak with light damage) to F5 (violent with incredible damage). "But we only determine the intensity rating after we look at the damage," Daphne Thompson said. "We can't look at it on Doppler radar and say, `Yes, this is an F3.' " For instance, only after meteorologists viewed damage from the Hesston, Kan., tornado of 1990 and the Andover tornado of 1991 were they rated at F5 intensity. Of course, moviegoers might call this nitpicking. But Ostby and the Thompsons say there's much more. For example, one town in the movie is hit without warning, on TV or otherwise. "That would never happen," Ostby said. "One thing they seemed to have totally ignored is the tornado spotters." Cloud formations also are wrong. And in the movie, storm predictions are constantly being fed from the National Severe Storms Laboratory in Oklahoma, while it's really the Storm Prediction Center in Kansas City that predicts tornadoes. The lab does basic research. In addition, the movie's "new" tornado-predicting technology, which is dubbed "Dorothy" and contains hundreds of tiny plastic sensors to ride up the funnel to feed back data, isn't new. It's based on technology the weather service abandoned 10 years ago. "Anyway, those little tiny plastic sensors would have been shattered by the big boards that were flying through the air," Daphne Thompson said. Today, she said, chasers use "Turtles," squat sensor packs placed in the middle of roads every few hundred yards. They hope they have predicted the tornado's path well enough that the twister will pass right over the devices. Which raises the final point: Chasers don't get in the way of tornadoes, let alone drive a speeding van or stand 50 yards from one, as happens time and again in the movie. "It's insane. Just absolutely unbelievably insane," said Richard Thompson, who has chased down 40 to 50 tornadoes. Daphne Thompson has chased about 30. "You would never even consider living through what they did," he said. "If it was close to real life, you'd be dead in the first 15 minutes of the movie." In "Twister," Paxton and Hunt drive at more than 80 mph only feet away and directly parallel to a twister. When the tornado suddenly turns, they ram their car into a bridge abutment and hold on for dear life as the tornado, spitting debris, passes over them. "I hope people aren't thinking that that's what we do," Richard Thompson said. "No one in their right mind would try to do that." Of course, when it comes to scientific or historical accuracy, Hollywood has never pretended to be faithful. What did it matter, for example, that in the movie "Jurassic Park," all the dinosaurs came from the Triassic period? The truth about chasing tornadoes, Ostby said, is that even with the best predictive equipment and training, it's still a matter of luck, timing and patience. The Thompsons sometimes drive 14 hours and hundreds of miles to be where they think a tornado might develop, but then come up empty. "You can easily go out for a week and have nothing happen," Ostby said. The Thompsons hope the public understands that. Because if they have any fears about "Twister," it's that the movie will spawn a migration by would-be tornado chasers who hope to capture some of the movie drama, just as shark hunters took to the seas after the movie "Jaws." Already these days, real chasers have to contend with news crews and thrill-seekers clogging roads on their way to capture footage of tornadoes. With this movie, they can envision a bad situation getting worse. Richard Thompson recalls a set of 1991 storms in Oklahoma that drew a caravan 100 cars long. "It was that bad," he said. And that potentially dangerous: Although the vast majority of tornadoes cause little or no damage, they still can be deadly. If there is one thing the tornado chasers liked about "Twister," it's that the movie also depicts the fierce force of the winds, obliterating barns, houses, even causing several deaths. Storm Chasing Storm chasing is broadly defined as the pursuit of any severe weather condition, regardless of motive, which can be curiosity, adventure, scientific exploration, or for news professions/media coverage. A person who chases storms is known as a storm chaser, or simply a chaser. While witnessing a tornado is the single biggest objective for most chasers, many chase thunderstorms and delight in seeing cumulonimbus cloud structure, watching a barrage of hail and lightning, there are also a smaller number of storm chasers who chase hurricanes. Nature of and motivations for chasing Storm chasing is chiefly a recreational endeavor, with motives usually given toward photographing the storm and for multivariate personal reasons. These can include the artistry and beauty of views afforded by the sky and land, intangible experiences such as feeling one with a much larger and powerful natural world,[3] the challenge of correctly forecasting and intercepting storms with the optimal vantage points, and pure thrill. Pecuniary interests and competition may also be components; in contrast, camaraderie is common. Although scientific work is sometimes cited as a goal, direct participation in such work is almost always impractical except for those collaborating in an organized university or government project. Many chasers also are storm spotters, reporting their observations of hazardous weather to the authorities. These reports greatly benefit real-time warnings with ground truth reports as well as science by increasing the reliability of severe storm databases used in climatology and other research. Additionally, many recreational chasers submit photos and videos to researchers as well as to the National Weather Service for spotter training. Storm chasers are not generally paid to chase, with the exception of television media crews in certain television markets, video stringers and photographers, and researchers such as a handful of graduate meteorologists and professors. An increasing number do sell storm videos and pictures and manage to make a profit, and a few operate "chase tour" services. Storm chasing tours in particular make storm chasing a recently developed niche tourism. Financial returns usually are relatively meager given the expenses with most chasers spending more than they take in and very few making a living solely from chasing. No degree or certification is required to be a storm chaser. The National Weather Service does conduct severe weather workshops oriented toward operational meteorologists and, usually early in the spring, storm spotter training. History The first recognized storm chaser is David Hoadley (1938– ), who began chasing North Dakota storms in 1956; systematically using data from area weather offices. He is widely considered the pioneer storm chaser and was the founder of Storm Track magazine. Bringing research chasing to the forefront was Neil B. Ward (1914-1972) who in the 1950s and 1960s enlisted the help of Oklahoma Highway Patrol to study storms. His work pioneered modern storm spotting and made institutional chasing a reality. In 1972, the University of Oklahoma in cooperation with the National Severe Storms Laboratory began the Tornado Intercept Project, with the first outing taking place on April 19 of that year. This was the first large-scale chase activity sponsored by an institution.
Recommended publications
  • Moore, Oklahoma—Growth Cushions Tornado Impact
    Cover Story Moore, Oklahoma—Growth COVER STORY Cushions Tornado Impact By Sandra Patterson photo courtesy City of Moore Economic Development Department oore, Oklahoma, is a city on the fast track of growth. Straddling I-35 and just 10 miles from Mdowntown Oklahoma City and 8 miles from Norman, home of the University of Oklahoma, Moore is a bedroom community experiencing an unprecedented surge in new home construction and an accompanying growth in retail development. According to Moore’s Economic Development Author- ity, more than 826 new home permits were issued in 2005 and commercial construction was valued at more than $16 million. The commission reports that the town’s assessed valuation has increased an average of 10 percent per year since 2001 to over $200 million in 2005. With a population of 18,781 in 1970, the city had grown to 41,138 by the 2000 census. It is expected to top 49,000 in 2006. Moore is also located in that part of the country known as Tornado Alley. And, of all the tornado-prone areas that comprise Tornado Alley, Moore is situated in one of Figure 1. Path of 1998 tornado (Map from National Weather Service the two that experiences the highest tornado count per Web site) square mile. Six Years, Three Tornadoes Since 1998, three tornadoes have torn through Moore. On October 4, 1998, a tornado struck the southwest side of the city (figure 1). With only F1 strength (see page 9 sidebar on the Fujita Scale), the damage was limited to ripped up vegetation, downed property fences, and torn roof shingles.
    [Show full text]
  • Samantha Santeiu 02-15-09 Sec. 9, Dave Defina Chasing a Storm
    Samantha Santeiu 02-15-09 Sec. 9, Dave DeFina Chasing a Storm Specific Purpose Statement : To inform my audience how meteorologists chase storms and about the importance of storm chasing in meteorological research. Central Idea : Storm chasing requires special tools and software; chases follow a general procedure on the chase day; and chasing has great importance in meteorological research. Pattern of Organization : topical. INTRODUCTION It’s September, 1900, in Galveston, Texas. Isaac Cline, a well-known climatologist, rides his horse and buggy along the beach. He’s here to observe the unusually high, gusting winds and huge waves crashing onshore. He orders the people of Galveston to evacuate. [VISUAL AID] Little did he know, he had just chased the massive Galveston hurricane of 1900 that would proceed to kill at least 6,000 people in the area. According to “A Brief History of Storm Chasing” on the National Association of Storm Chasers and Spotters website, this is one of the first accounts of storm chasing that we have. How about this: how many of you have seen the movie Twister ? [VISUAL AID] The basic storyline is that two people are storm chasers, and in the end they chase an epically huge tornado in the name of research. That is a more modern, albeit a bit inaccurate, account of storm chasing. I would like to inform you today about chasing storms, the way meteorologists do it. I plan to research severe storms as a career, so I have investigated the topic thoroughly and interviewed peers and professors on the subject. While storm chasing may seem like fun, there’s actually a lot involved.
    [Show full text]
  • Riding the Storm
    physicsworld.com Careers Riding the storm out A career in severe-weather research offers flexibility and plenty of opportunities to experience the fascinating physics of the rotating fluid called the atmosphere. Josh Wurman describes the science of storm-chasing and why hurricanes are scarier than tornadoes Take me to the weather Josh Wurman enjoys the freedom that being a freelance meteorologist affords him. I am standing on a bridge near the North thematical, essentially applied fluid dynam- mapped out the winds inside tornadoes, so Carolina coast. There is a light breeze, and I ics, and the real-world effects of these equa- no-one really knew how strong they were. am enjoying some hazy sunshine. But this tions can be seen every day. The equations After reading the relevant literature, I de- calm is an illusion: in a few minutes winds of of motion for the atmosphere cause trees to cided that a more ambitious technological up to 45 m s–1 (100 mph) will sweep in again. be blown down, hail to fall and snowdrifts and logistical approach could push back the The approaches to my section of the bridge to pile up – all things that I could witness veil of ignorance about these fascinating phe- are already drowned under 2.5 m of water, while growing up in Pennsylvania. nomena. So in 1994 I decided to shift focus, and my companions on this island are an I started out as a physics major at the Mas- leaving NCAR for a faculty position at the eclectic mix of traumatized animals, inclu- sachusetts Institute of Technology (MIT), University of Oklahoma, where I developed ding snakes, rats, wounded pelicans and but my real interest was meteorology, in a prototype mobile weather radar system frogs.
    [Show full text]
  • The Role of Vortex Structure in Tropical Cyclone Motion
    :A 9o943-R00fe NAVAL POSTIiRADUATE SCHOOL Monterey, California DISSERTATION THE ROLE OF VORTEX STRUCTURE IN TROPICAL CYCLONE MOTION by Michael Fiorino December 1987 Dissertation Supervisor: R.L. Elsberry Approved for public release; distribution is unlimited T238908 IJJRITY CLASSIFICATION OF THIS PAGE REPORT DOCUMENTATION PAGE 8REP0RT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS JNCLASSIFIED aSECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT Approved for public release; / : DECLASSIFICATION DOWNGRADING SCHEDULE distribution is unlimited. ERFORMING ORGANIZATION REPORT NUM8ER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S) INAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION (If applicable) uval Postgraduate School 63 Naval Postgraduate School l^DORESS {City, State, and ZIP Code) 7b. ADDRESS {City, State, and ZIP Code) /.mterey, California 93943-5000 Monterey, California 93943-5000 iNAME OF FUNDING /SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER ORGANIZATION (If applicable) :.\DORESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS PROGRAM PROJECT TASK WORK UNIT ELEMENT NO. NO. NO ACCESSION NO. TITLE (Include Security Classification) e Role of Vortex Structure in Tropical Cyclone Motion »ERSONAL AUTHOR(S) Fiorino, Michael TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) IS. PAGE COUNT .D. Dissertation FROM TO 1987 December 371 UPPLEMENTARY NOTATION COSATl CODES 18. SUBJECT TERMS {Continue on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP Tropical cyclone motion, Barotropic model. Tropical cyclones. Circulation analysis, Beta drift ABSTRACT {Continue on reverse if necessary and Identify by block number) The role of vortex structure in tropical cyclone motion is studied using .moving-grid, nondivergent barotropic model on a beta plane in a no-flow vironment.
    [Show full text]
  • Deliverable D-4.01
    WakeNet3-Europe Grant Agreement No.: ACS7-GA-2008-213462 Deliverable D-4.01 Report 1 from Link activities and Trips Prepared by: Elsa FREVILLE (EUROCONTROL) Work Package: .............. 4 Dissemination level: ..... PU Version: ......................... Final Report Issued by: ...................... EUROCONTROL Reference: ..................... v1 Date: .............................. 12th March 2010 Number of pages: ......... 41 Project acronym: .............. WakeNet3-Europe Project full title: ................ European Coordination Action for Aircraft Wake Turbulence Project coordinator: ......... Airbus Operations S.A.S (*) Beneficiaries: A-F Airbus Operations S.A.S (*) TR6 Thales Air Systems THAv Thales Aerospace DLR Deutsches Zentrum für Luft- und Raumfahrt NLR Nationaal Lucht- en Ruimtevaartlaboratorium DFS DFS Deutsche Flugsicherung GmbH ONERA Office National d’Etudes et Recherches Aérospatiale NERL NATS En-Route Plc. UCL Université catholique de Louvain TUB Technische Universität Berlin ECA European Cockpit Association TU-BS Technische Universität Braunschweig A-D Airbus Operations GmbH (*) pending formal change of contract. This document has been produced under EC FP7 project 213462 (WakeNet3-Europe) 12 March 2010 Page 1 of 41 Document Revisions Version Date Modified Modified Comments page(s) section(s) 0.1 5th Feb 2010 Initial draft for review 0.2 22nd Feb 2010 7, 9, 33, 37- 2.1, 3, and Updates from A-D: 44 10 - Minor corrections for sections 2.1 and 3 - Section 10 is replaced by an inserted “pdf” file at the end of section 5.3.
    [Show full text]
  • The Birth and Early Years of the Storm Prediction Center
    AUGUST 1999 CORFIDI 507 The Birth and Early Years of the Storm Prediction Center STEPHEN F. C ORFIDI NOAA/NWS/NCEP/Storm Prediction Center, Norman, Oklahoma (Manuscript received 12 August 1998, in ®nal form 15 January 1999) ABSTRACT An overview of the birth and development of the National Weather Service's Storm Prediction Center, formerly known as the National Severe Storms Forecast Center, is presented. While the center's immediate history dates to the middle of the twentieth century, the nation's ®rst centralized severe weather forecast effort actually appeared much earlier with the pioneering work of Army Signal Corps of®cer J. P. Finley in the 1870s. Little progress was made in the understanding or forecasting of severe convective weather after Finley until the nascent aviation industry fostered an interest in meteorology in the 1920s. Despite the increased attention, forecasts for tornadoes remained a rarity until Air Force forecasters E. J. Fawbush and R. C. Miller gained notoriety by correctly forecasting the second tornado to strike Tinker Air Force Base in one week on 25 March 1948. The success of this and later Fawbush and Miller efforts led the Weather Bureau (predecessor to the National Weather Service) to establish its own severe weather unit on a temporary basis in the Weather Bureau± Army±Navy (WBAN) Analysis Center Washington, D.C., in March 1952. The WBAN severe weather unit became a permanent, ®ve-man operation under the direction of K. M. Barnett on 21 May 1952. The group was responsible for the issuance of ``bulletins'' (watches) for tornadoes, high winds, and/or damaging hail; outlooks for severe convective weather were inaugurated in January 1953.
    [Show full text]
  • FEMA Tornadoes Fact Sheet
    adoes Torn Tornadoes are nature’s most violent storms. They come from powerful thunderstorms. They appear as a funnel- or cone-shaped cloud with winds that can reach up to 300 miles per hour. They cause damage when they touch down on the ground. They can damage an area one mile wide and 50 miles long. Before tornadoes hit, the wind may die down, and the air may become very still. They may also strike quickly, with little or no warning. Am I at risk? Fact Check 1. Where is the safest place in a home? Tornadoes are most common between March and August, but they can occur at any time. They 2. True or False? If you see a funnel cloud, seek can happen anywhere but are shelter immediately. most common in Arkansas, Iowa, 3. Which of the following weather signs mean a Kansas, Louisiana, Minnesota, tornado may be approaching? Nebraska, North Dakota, Ohio, a. A dark or green-colored sky. Oklahoma, South Dakota, and b. A large, dark, low-lying cloud. Texas - an area commonly called c. A rainbow. “Tornado Alley.” They are also d. Large hail. more likely to occur between 3pm e. A loud roar that sounds like a freight train. and 9pm but can occur at any time. All except for C (a rainbow) can be signs for a tornado. a for signs be can rainbow) (a C for except All (3) unpredictable and can move in any direction. any in move can and unpredictable True! Do not watch it or try to outrun it.
    [Show full text]
  • A Background Investigation of Tornado Activity Across the Southern Cumberland Plateau Terrain System of Northeastern Alabama
    DECEMBER 2018 L Y Z A A N D K N U P P 4261 A Background Investigation of Tornado Activity across the Southern Cumberland Plateau Terrain System of Northeastern Alabama ANTHONY W. LYZA AND KEVIN R. KNUPP Department of Atmospheric Science, Severe Weather Institute–Radar and Lightning Laboratories, Downloaded from http://journals.ametsoc.org/mwr/article-pdf/146/12/4261/4367919/mwr-d-18-0300_1.pdf by NOAA Central Library user on 29 July 2020 University of Alabama in Huntsville, Huntsville, Alabama (Manuscript received 23 August 2018, in final form 5 October 2018) ABSTRACT The effects of terrain on tornadoes are poorly understood. Efforts to understand terrain effects on tornadoes have been limited in scope, typically examining a small number of cases with limited observa- tions or idealized numerical simulations. This study evaluates an apparent tornado activity maximum across the Sand Mountain and Lookout Mountain plateaus of northeastern Alabama. These plateaus, separated by the narrow Wills Valley, span ;5000 km2 and were impacted by 79 tornadoes from 1992 to 2016. This area represents a relative regional statistical maximum in tornadogenesis, with a particular tendency for tornadogenesis on the northwestern side of Sand Mountain. This exploratory paper investigates storm behavior and possible physical explanations for this density of tornadogenesis events and tornadoes. Long-term surface observation datasets indicate that surface winds tend to be stronger and more backed atop Sand Mountain than over the adjacent Tennessee Valley, potentially indicative of changes in the low-level wind profile supportive to storm rotation. The surface data additionally indicate potentially lower lifting condensation levels over the plateaus versus the adjacent valleys, an attribute previously shown to be favorable for tornadogenesis.
    [Show full text]
  • Storm Spotting – Solidifying the Basics PROFESSOR PAUL SIRVATKA COLLEGE of DUPAGE METEOROLOGY Focus on Anticipating and Spotting
    Storm Spotting – Solidifying the Basics PROFESSOR PAUL SIRVATKA COLLEGE OF DUPAGE METEOROLOGY HTTP://WEATHER.COD.EDU Focus on Anticipating and Spotting • What do you look for? • What will you actually see? • Can you identify what is going on with the storm? Is Gilbert married? Hmmmmm….rumor has it….. Its all about the updraft! Not that easy! • Various types of storms and storm structures. • A tornado is a “big sucky • Obscuration of important thing” and underneath the features make spotting updraft is where it forms. difficult. • So find the updraft! • The closer you are to a storm the more difficult it becomes to make these identifications. Conceptual models Reality is much harder. Basic Conceptual Model Sometimes its easy! North Central Illinois, 2-28-17 (Courtesy of Matt Piechota) Other times, not so much. Reality usually is far more complicated than our perfect pictures Rain Free Base Dusty Outflow More like reality SCUD Scattered Cumulus Under Deck Sigh...wall clouds! • Wall clouds help spotters identify where the updraft of a storm is • Wall clouds may or may not be present with tornadic storms • Wall clouds may be seen with any storm with an updraft • Wall clouds may or may not be rotating • Wall clouds may or may not result in tornadoes • Wall clouds should not be reported unless there is strong and easily observable rotation noted • When a clear slot is observed, a well written or transmitted report should say as much Characteristics of a Tornadic Wall Cloud • Surface-based inflow • Rapid vertical motion (scud-sucking) • Persistent • Persistent rotation Clear Slot • The key, however, is the development of a clear slot Prof.
    [Show full text]
  • Explaining the Trends and Variability in the United States Tornado Records
    www.nature.com/scientificreports OPEN Explaining the trends and variability in the United States tornado records using climate teleconnections and shifts in observational practices Niloufar Nouri1*, Naresh Devineni1,2*, Valerie Were2 & Reza Khanbilvardi1,2 The annual frequency of tornadoes during 1950–2018 across the major tornado-impacted states were examined and modeled using anthropogenic and large-scale climate covariates in a hierarchical Bayesian inference framework. Anthropogenic factors include increases in population density and better detection systems since the mid-1990s. Large-scale climate variables include El Niño Southern Oscillation (ENSO), Southern Oscillation Index (SOI), North Atlantic Oscillation (NAO), Pacifc Decadal Oscillation (PDO), Arctic Oscillation (AO), and Atlantic Multi-decadal Oscillation (AMO). The model provides a robust way of estimating the response coefcients by considering pooling of information across groups of states that belong to Tornado Alley, Dixie Alley, and Other States, thereby reducing their uncertainty. The infuence of the anthropogenic factors and the large-scale climate variables are modeled in a nested framework to unravel secular trend from cyclical variability. Population density explains the long-term trend in Dixie Alley. The step-increase induced due to the installation of the Doppler Radar systems explains the long-term trend in Tornado Alley. NAO and the interplay between NAO and ENSO explained the interannual to multi-decadal variability in Tornado Alley. PDO and AMO are also contributing to this multi-time scale variability. SOI and AO explain the cyclical variability in Dixie Alley. This improved understanding of the variability and trends in tornadoes should be of immense value to public planners, businesses, and insurance-based risk management agencies.
    [Show full text]
  • Storms Are Thunderstorms That Produce Tornadoes, Large Hail Or Are Accompanied by High Winds
    From February 17 to 19, a severe storm blasted the Lebanese coast with 100- kilometer (60-mile) winds and dropped as much as 2 meters (7 feet) of snow on parts of the country, news sources said. Temperatures dropped to near freezing along the coast, while snowplows struggled to clear the main roadway between Beirut and Damascus. The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite captured this natural-color image on February 20, 2012. Snow covers much of Lebanon, and extends across the border with Syria. Another expanse of snow occurs just north of the Syria-Jordan border. Snow in Lebanon is not uncommon, and the country is home to ski resorts. Still, this fierce storm may have been part of a larger pattern of cold weather in Europe and North Africa. References The Daily Star. (2012, February 18). Lebanon hit by extreme weather conditions. Accessed February 21, 2012. Naharnet. (2012, February 19). Storm subsides after coating Lebanon in snow. Accessed February 21, 2012. NASA image courtesy LANCE/EOSDIS MODIS Rapid Response Team at NASA GSFC. Caption by Michon Scott. Instrument: Terra - MODIS Flooding is the most common of all natural hazards. Each year, more deaths are caused by flooding than any other thunderstorm related hazard. We think this is because people tend to underestimate the force and power of water. Six inches of fast-moving water can knock you off your feet. Water 24 inches deep can carry away most automobiles. Nearly half of all flash flood deaths occur in automobiles as they are swept downstream.
    [Show full text]
  • Massachusetts Tropical Cyclone Profile August 2021
    Commonwealth of Massachusetts Tropical Cyclone Profile August 2021 Commonwealth of Massachusetts Tropical Cyclone Profile Description Tropical cyclones, a general term for tropical storms and hurricanes, are low pressure systems that usually form over the tropics. These storms are referred to as “cyclones” due to their rotation. Tropical cyclones are among the most powerful and destructive meteorological systems on earth. Their destructive phenomena include storm surge, high winds, heavy rain, tornadoes, and rip currents. As tropical storms move inland, they can cause severe flooding, downed trees and power lines, and structural damage. Once a tropical cyclone no longer has tropical characteristics, it is then classified as a post-tropical system. The National Hurricane Center (NHC) has classified four stages of tropical cyclones: • Tropical Depression: A tropical cyclone with maximum sustained winds of 38 mph (33 knots) or less. • Tropical Storm: A tropical cyclone with maximum sustained winds of 39 to 73 mph (34 to 63 knots). • Hurricane: A tropical cyclone with maximum sustained winds of 74 mph (64 knots) or higher. • Major Hurricane: A tropical cyclone with maximum sustained winds of 111 mph (96 knots) or higher, corresponding to a Category 3, 4 or 5 on the Saffir-Simpson Hurricane Wind Scale. Primary Hazards Storm Surge and Storm Tide Storm surge is an abnormal rise of water generated by a storm, over and above the predicted astronomical tide. Storm surge and large waves produced by hurricanes pose the greatest threat to life and property along the coast. They also pose a significant risk for drowning. Storm tide is the total water level rise during a storm due to the combination of storm surge and the astronomical tide.
    [Show full text]