California Dimethyl Ether Multimedia Evaluation

Total Page:16

File Type:pdf, Size:1020Kb

California Dimethyl Ether Multimedia Evaluation Dimethyl Ether Multimedia Evaluation Tier I Final Draft Final DRAFT California Dimethyl Ether Multimedia Evaluation Tier I Prepared By The University of California, Davis The University of California, Berkeley For the California Environmental Protection Agency Multimedia Working Group Final DRAFT February 2015 i Dimethyl Ether Multimedia Evaluation Tier I Final Draft Principal Investigators, Authors, Researchers, and Students Involved in the Dimethyl Ether (DME) Tier I Multimedia Evaluation Principal Investigators and Authors of the DME Tier I Multimedia Evaluation (MME) Report: Thomas McKone, University of California, Berkeley David Rice, University of California, Berkeley consultant Lawrence Livermore National Laboratory (retired) Timothy Ginn, University of California, Davis Mehrdad Bastani, University of California, Davis Anna Levy, Oberon Fuels, Inc. Anna Lenhart, Oberon Fuels, Inc. Brittany Applestein Syz, Oberon Fuels, Inc. Rebecca Boudreaux, Oberon Fuels, Inc. Students Involved in the DME Multimedia Evaluation Process Tyler Hatch, University of California, Davis Chris Morrow, University of California, Davis Hanna Breunig, University of California, Berkeley ii Dimethyl Ether Multimedia Evaluation Tier I Final Draft Table of Contents 1. DIMETHYL ETHER BACKGROUND INFORMATION ...................................................1 1.1. INTRODUCTION ................................................................................................................. 1 1.2. HISTORY OF DME ............................................................................................................ 2 1.3. DIFFERENT USES OF DIMETHYL ETHER .......................................................................... 4 1.4. DME ENVIRONMENTAL STANDARDS AND REGULATIONS .............................................. 5 1.5. COMPARISON FUELS ......................................................................................................... 6 1.5.1. Comparison of DME to Diesel Fuel ........................................................................................ 6 1.5.2. Comparison of DME and LPG ................................................................................................ 6 1.5.3. Comparison to LPG for Infrastructure Storage, Distribution, and Use .................................. 6 1.6. PHYSICAL/CHEMICAL PROPERTIES OF DME ................................................................... 8 2. PRODUCTION OF DIMETHYL ETHER ...........................................................................10 2.1. DME PRODUCTION PATHWAYS ..................................................................................... 10 2.2. OVERVIEW OF DME FEEDSTOCKS ................................................................................ 11 2.3. INDIRECT SYNTHESIS TECHNOLOGY ............................................................................. 11 2.4. DIRECT SYNTHESIS TECHNOLOGY................................................................................. 11 2.5. PARTICULAR PRODUCTION PROCESS PROPOSED BY OBERON ..................................... 12 2.5.1. Syngas Production ................................................................................................................. 13 2.5.2. Methanol Synthesis ................................................................................................................ 14 2.5.3. DME Synthesis ....................................................................................................................... 14 2.5.4. Introduction of Additives to DME During Production .......................................................... 14 2.5.5. Trace Impurities .................................................................................................................... 14 2.5.6. Production Plant Fugitive Emissions .................................................................................... 15 2.5.7. Water Resources Used During DME Production .................................................................. 16 2.6. DME PRODUCTION SUMMARY ...................................................................................... 16 3. STORAGE AND DISTRIBUTION OF DIMETHYL ETHER. .........................................17 3.1. FACILITIES AND EQUIPMENT ......................................................................................... 17 3.1.1. Applicability of Existing LPG infrastructure to DME ........................................................... 17 3.2. STORAGE CONTAINERS AND MATERIALS COMPATIBILITY .......................................... 17 3.2.1. Cylinder tanks ........................................................................................................................ 17 3.2.2. Penetration of seals and gaskets ............................................................................................ 18 3.2.3. Filling Valve .......................................................................................................................... 22 3.2.4. Overfill prevention device...................................................................................................... 22 3.2.5. Quick coupling ....................................................................................................................... 22 3.2.6. Fluid level display device ...................................................................................................... 22 3.2.7. Electroconductivity ................................................................................................................ 22 3.3. DME STORAGE AND DISTRIBUTION SUMMARY AND DATA GAPS ................................ 22 iii Dimethyl Ether Multimedia Evaluation Tier I Final Draft 4. USE OF DIMETHYL ETHER AS A TRANSPORTATION FUEL ..................................24 4.1. VEHICLE OPERABILITY ISSUES ...................................................................................... 24 4.1.1. Additives ................................................................................................................................ 24 4.1.2. Aspects special to a DME diesel engine ................................................................................ 26 4.2. DEVELOPMENT OF DME SPECIFICATION ...................................................................... 27 4.2.1. ASTM Standards for DME ..................................................................................................... 27 4.3. DME USE SUMMARY AND DATA GAPS .......................................................................... 27 4.3.1. Conventional Diesel Engine Modifications ........................................................................... 27 4.3.2. DME Additives ....................................................................................................................... 28 4.3.3. Development of Specifications for California Certification Fuel for DME .......................... 28 5. ENVIRONMENTAL TRANSPORT AND FATE OF DIMETHYL ETHER. ..................29 5.1. A MULTIMEDIA FRAMEWORK FOR FATE, TRANSPORT, AND EXPOSURE ..................... 29 5.2. DATA NEEDS FOR MULTIMEDIA TRANSPORT ASSESSMENT ......................................... 30 5.2.1. List of Physical-chemical Properties Impacting DME Fate & Transport ............................. 30 5.2.2. Phase Distribution Assessment and Degradation ................................................................. 31 5.3. PARTITIONING AND PHASE INTERFACE RELATIONSHIPS .............................................. 33 5.3.1. Fate of DME in the Atmosphere ............................................................................................ 33 5.3.2. Fate of DME in Surface Waters ............................................................................................. 37 5.3.3. Fate of DME in Subsurface Soil Environment and Ground waters....................................... 38 5.4. SUMMARY OF DME TRANSPORT AND FATE DATA ........................................................ 41 6. SAFETY AND POTENTIAL RELEASE SCENARIOS FOR DME FUELS ...................43 6.1. SAFETY ............................................................................................................................ 43 6.1.1. Storage and Stability ............................................................................................................. 43 6.1.2. DME Potential Fire and Explosion Hazards ......................................................................... 46 6.1.3. Fire Suppression Technology ................................................................................................ 47 6.1.4. Confined Spaces and Respiratiory Protection ....................................................................... 47 6.1.5. Leak Detection Technology ................................................................................................... 47 6.1.6. Fire Protection Management of DME ................................................................................... 47 6.1.7. Dispenser and Fueling System Certification ......................................................................... 48 6.1.8. Environmental Sampling and Analysis .................................................................................. 48 6.2. DME POTENTIAL RELEASE SCENARIOS ........................................................................ 49 6.2.1. Ruptured High Capacity Tank: DME Vapors Ignited in Unconfined Space ......................... 49 6.2.2. Alternative Release Scenario: Leaking Pipe With
Recommended publications
  • SAFETY DATA SHEET Nonflammable Gas Mixture: Carbon Dioxide / Carbon Monoxide / Nitric Oxide / Nitrogen / Propane Section 1
    SAFETY DATA SHEET Nonflammable Gas Mixture: Carbon Dioxide / Carbon Monoxide / Nitric Oxide / Nitrogen / Propane Section 1. Identification GHS product identifier : Nonflammable Gas Mixture: Carbon Dioxide / Carbon Monoxide / Nitric Oxide / Nitrogen / Propane Other means of : Not available. identification Product type : Gas. Product use : Synthetic/Analytical chemistry. SDS # : 002173 Supplier's details : Airgas USA, LLC and its affiliates 259 North Radnor-Chester Road Suite 100 Radnor, PA 19087-5283 1-610-687-5253 24-hour telephone : 1-866-734-3438 Section 2. Hazards identification OSHA/HCS status : This material is considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200). Classification of the : GASES UNDER PRESSURE - Compressed gas substance or mixture GHS label elements Hazard pictograms : Signal word : Warning Hazard statements : Contains gas under pressure; may explode if heated. May displace oxygen and cause rapid suffocation. May increase respiration and heart rate. Precautionary statements General : Read and follow all Safety Data Sheets (SDS’S) before use. Read label before use. Keep out of reach of children. If medical advice is needed, have product container or label at hand. Close valve after each use and when empty. Use equipment rated for cylinder pressure. Do not open valve until connected to equipment prepared for use. Use a back flow preventative device in the piping. Use only equipment of compatible materials of construction. Prevention : Not applicable. Response : Not applicable. Storage : Protect from sunlight. Store in a well-ventilated place. Disposal : Not applicable. Hazards not otherwise : In addition to any other important health or physical hazards, this product may displace classified oxygen and cause rapid suffocation.
    [Show full text]
  • Zheng31sympa.Pdf
    Proceedings of the Combustion Institute Proceedings of the Combustion Institute 31 (2007) 1215–1222 www.elsevier.com/locate/proci High temperature ignition and combustion enhancement by dimethyl ether addition to methane–air mixtures q Zheng Chen, Xiao Qin, Yiguang Ju *, Zhenwei Zhao, Marcos Chaos, Frederick L. Dryer Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA Abstract The effects of dimethyl ether (DME) addition on the high temperature ignition and burning properties of methane–air mixtures were studied experimentally and numerically. The results showed that for a homo- geneous system, a small amount of DME addition to methane resulted in a significant reduction in the high temperature ignition delay. The ignition enhancement effect by DME addition was found to exceed that possible with equivalent amounts of hydrogen addition, and it was investigated by using radical pool growth and computational singular perturbation analysis. For a non-premixed methane–air system, it was found that two different ignition enhancement regimes exist: a kinetic limited regime and a transport limited regime. In contrast to the dramatic ignition enhancement in the kinetic limited regime, the ignition enhancement in the transport limited regime was significantly less effective. Furthermore, laminar flame speeds as well as Markstein lengths were experimentally measured for methane–air flames with DME addi- tion. The results showed that the flame speed increases almost linearly with DME addition. However, the Markstein length and the Lewis number of the binary fuel change dramatically at small DME concentra- tions. Moreover, comparison between experiments and numerical simulations showed that only the most recent DME mechanism well reproduced the flame speeds of both DME–air and CH4–air flames.
    [Show full text]
  • Experimental and Analytical Study of Nitric Oxide Formation During Combustion of Propane in a Jet-Stirred Combustor
    NASA Technical Paper 1181 I 1 Experimental and Analytical Study of Nitric Oxide Formation During / Combustion of Propane in a Jet-Stirred Combustor , ' N. T. Wakelyn, Casimir J. Jachimowski, and Charles H. Wilson , TECH LIBRARY KAFB, NM 0134538 NASA Technical Paper 1181 Experimental and Analytical Study of Nitric Oxide Formation During Combustion of Propane in a Jet-Stirred Combustor N. T. Wakelyn, Casimir J. Jachimowski, and Charles H. Wilson Langley Research Center Hampton, Virginia National Aeronautics and Space Administration Scientific and Technical Information Otfice 1978 '8' SUMMARY A jet-stirred combustor, constructed of castable zirconia and with an inconel injector, has been used to study nitric oxide formation in propane-air combustion with residence times in the range from 3.2 to 3.3 msec and equiva­ lence ratios varying from 0.7 to 1.4. The residence time range was character­ istic of that found in the primary zones of aircraft turbines. Premixed propane-air formulations were subjected to intense and turbulent backmixed combustion within the cavity formed between the injector and the hemispherical inner walls of the zirconia shell. The volume of the combustor cavity was 12.7 cm3 and the mass loading was maintained in the range from 0.053 to 0.055 g/cm3-sec. Measurements were made of combustor operating tem­ perature and of nitric oxide concentration. Maximum nitric oxide concentrations of the order of 55 ppm were found in the range of equivalence ratio from 1.0 to 1.1. Nitric oxide concentrations were predicted over the range of equivalence ratio by a computer program which employs a perfectly stirred'reactor (PSR) algorithm with finite-rate kinetics.
    [Show full text]
  • Alternatives to High Propane Prices Interest Expense and the Cost of Utilities Are the Two Largest “Out of Pocket” Expenses Facing Most Broiler Growers
    ThePoultry Engineering, Economics & Management NEWSLETTER Critical Information for Improved Bird Performance Through Better House and Ventilation System Design, Operation and Management Auburn University, in cooperation with the U.S. Poultry & Egg Association Issue No 29, May 2004 Alternatives to High Propane Prices Interest expense and the cost of utilities are the two largest “out of pocket” expenses facing most broiler growers. There is little a grower can do to reduce interest costs, short of major mortgage refinancing. However, costs associated with utilities are another matter. The topics we have addressed in most past issues of this newsletter have all dealt with housing and ventilation factors which can result in improved flock performance and in reduced levels of energy being used, which directly reduces costs to the grower. Electricity rates are typically fixed and are highly regulated. However, the price of heating fuel, specifically propane (liquefied petroleum gas or LPG), has varied widely up and down in most recent years, depending on the time of year and numerous supply and demand conditions. Growers can choose What growers should be aware of is that there are ways to reduce the from several good risk that they will have to buy propane at one of those times when the alternatives to paying price is highest. This newsletter explains several alternative methods consistently high prices growers can use to get lower and more stable propane costs over time. for propane. Understanding the Basics of Propane Pricing The most fundamental factor in propane pricing is that propane is basically a fossil fuel, being derived from raw natural gas during the oil refining process.
    [Show full text]
  • Safety Data Sheet
    SAFETY DATA SHEET 1. Identification Product number 1000007900 Product identifier AUTO GLASS QUICK RELEASE AGENT Company information Sprayway, Inc. 1005 S. Westgate Drive Addison, IL 60101 United States Company phone General Assistance 1-630-628-3000 Emergency telephone US 1-866-836-8855 Emergency telephone outside 1-952-852-4646 US Version # 01 Recommended use Not available. Recommended restrictions None known. 2. Hazard(s) identification Physical hazards Flammable aerosols Category 1 Health hazards Serious eye damage/eye irritation Category 2A Specific target organ toxicity, single exposure Category 3 narcotic effects Aspiration hazard Category 1 Environmental hazards Not classified. OSHA defined hazards Not classified. Label elements Signal word Danger Hazard statement Extremely flammable aerosol. May be fatal if swallowed and enters airways. Causes serious eye irritation. May cause drowsiness or dizziness. Precautionary statement Prevention Keep away from heat/sparks/open flames/hot surfaces. - No smoking. Do not spray on an open flame or other ignition source. Pressurized container: Do not pierce or burn, even after use. Avoid breathing gas. Wash thoroughly after handling. Use only outdoors or in a well-ventilated area. Wear eye/face protection. Response If swallowed: Immediately call a poison center/doctor. If inhaled: Remove person to fresh air and keep comfortable for breathing. If in eyes: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. Call a poison center/doctor if you feel unwell. Do NOT induce vomiting. If eye irritation persists: Get medical advice/attention. Storage Store in a well-ventilated place. Keep container tightly closed. Store locked up.
    [Show full text]
  • Fuel Properties Comparison
    Alternative Fuels Data Center Fuel Properties Comparison Compressed Liquefied Low Sulfur Gasoline/E10 Biodiesel Propane (LPG) Natural Gas Natural Gas Ethanol/E100 Methanol Hydrogen Electricity Diesel (CNG) (LNG) Chemical C4 to C12 and C8 to C25 Methyl esters of C3H8 (majority) CH4 (majority), CH4 same as CNG CH3CH2OH CH3OH H2 N/A Structure [1] Ethanol ≤ to C12 to C22 fatty acids and C4H10 C2H6 and inert with inert gasses 10% (minority) gases <0.5% (a) Fuel Material Crude Oil Crude Oil Fats and oils from A by-product of Underground Underground Corn, grains, or Natural gas, coal, Natural gas, Natural gas, coal, (feedstocks) sources such as petroleum reserves and reserves and agricultural waste or woody biomass methanol, and nuclear, wind, soybeans, waste refining or renewable renewable (cellulose) electrolysis of hydro, solar, and cooking oil, animal natural gas biogas biogas water small percentages fats, and rapeseed processing of geothermal and biomass Gasoline or 1 gal = 1.00 1 gal = 1.12 B100 1 gal = 0.74 GGE 1 lb. = 0.18 GGE 1 lb. = 0.19 GGE 1 gal = 0.67 GGE 1 gal = 0.50 GGE 1 lb. = 0.45 1 kWh = 0.030 Diesel Gallon GGE GGE 1 gal = 1.05 GGE 1 gal = 0.66 DGE 1 lb. = 0.16 DGE 1 lb. = 0.17 DGE 1 gal = 0.59 DGE 1 gal = 0.45 DGE GGE GGE Equivalent 1 gal = 0.88 1 gal = 1.00 1 gal = 0.93 DGE 1 lb. = 0.40 1 kWh = 0.027 (GGE or DGE) DGE DGE B20 DGE DGE 1 gal = 1.11 GGE 1 kg = 1 GGE 1 gal = 0.99 DGE 1 kg = 0.9 DGE Energy 1 gallon of 1 gallon of 1 gallon of B100 1 gallon of 5.66 lb., or 5.37 lb.
    [Show full text]
  • Ethylene Glycol Dimethyl Ether.Pdf
    SIGMA-ALDRICH sigma-aldrich.com Material Safety Data Sheet Version 4.0 Revision Date 03/14/2010 Print Date 09/08/2010 1. PRODUCT AND COMPANY IDENTIFICATION Product name : 1,2-Dimethoxyethane Product Number : 259527 Brand : Sigma-Aldrich Company : Sigma-Aldrich 3050 Spruce Street SAINT LOUIS MO 63103 USA Telephone : +18003255832 Fax : +18003255052 Emergency Phone # : (314) 776-6555 2. HAZARDS IDENTIFICATION Emergency Overview OSHA Hazards Flammable liquid, Target Organ Effect, Reproductive hazard Target Organs Liver, Kidney, Blood, Central nervous system, Female reproductive system., Male reproductive system. GHS Label elements, including precautionary statements Pictogram Signal word Danger Hazard statement(s) H225 Highly flammable liquid and vapour. H303 May be harmful if swallowed. H332 Harmful if inhaled. H360 May damage fertility or the unborn child. Precautionary statement(s) P201 Obtain special instructions before use. P210 Keep away from heat/sparks/open flames/hot surfaces. - No smoking. P308 + P313 IF exposed or concerned: Get medical advice/attention. HMIS Classification Health hazard: 1 Chronic Health Hazard: * Flammability: 3 Physical hazards: 0 NFPA Rating Health hazard: 0 Fire: 3 Reactivity Hazard: 0 Potential Health Effects Inhalation May be harmful if inhaled. May cause respiratory tract irritation. Skin May be harmful if absorbed through skin. May cause skin irritation. Eyes May cause eye irritation. Sigma-Aldrich - 259527 Page 1 of 6 Ingestion May be harmful if swallowed. 3. COMPOSITION/INFORMATION ON INGREDIENTS Synonyms : Monoglyme Dimethylglycol mono-Glyme Ethylene glycol dimethyl ether Formula : C4H10O2 Molecular Weight : 90.12 g/mol CAS-No. EC-No. Index-No. Concentration Ethylene glycol dimethyl ether 110-71-4 203-794-9 603-031-00-3 - 4.
    [Show full text]
  • Selective Carbonylation of Dimethyl Ether to Methyl Acetate on Ferrierite
    Catalysis Communications 75 (2016) 28–31 Contents lists available at ScienceDirect Catalysis Communications journal homepage: www.elsevier.com/locate/catcom Short communication Selective carbonylation of dimethyl ether to methyl acetate on Ferrierite So Young Park a, Chae-Ho Shin b,JongWookBaea,⁎ a School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, Gyeonggi-do 440-746, Republic of Korea b Department of Chemical Engineering, Chungbuk National University (CNU), Cheongju, Chungbuk 361-763, Republic of Korea article info abstract Article history: Synthesis of methyl acetate (MA) by carbonylation of dimethyl ether (DME) was investigated using laboratory- Received 19 August 2015 made H-form Ferrierite (FER) zeolite with different Si/Al molar ratios. The synthesized H-FER with a Si/Al ratio of Received in revised form 6 November 2015 12 (FER(12)) revealed a higher DME conversion as well as MA selectivity. The observed higher catalytic perfor- Accepted 9 December 2015 mance on the FER(12) was mainly attributed to a higher ratio of Bronsted to Lewis acid sites as well as the higher Available online 10 December 2015 crystallinity with the less coke formation. The superior properties of the FER(12) having a higher ratio of Bronsted fi Keywords: to Lewis acid sites and crystallinity ef ciently suppressed the formation of inactive coke precursors. Carbonylation © 2015 Elsevier B.V. All rights reserved. Dimethyl ether Methyl acetate Ferrierite Coke formation 1. Introduction can be finally regenerated by forming an adsorbed methyl group [12, 13]. Interestingly, the micropores of the H-form Ferrierite (H-FER), Carbonylation reaction of dimethyl ether (DME) with CO has been which has one-dimensional channels of 8-MR with perpendicularly largely investigated to selectively synthesize an important petrochemi- intersected channels of 10-MR structures, seem to be effective for cal intermediate or alternative clean fuels [1,2].
    [Show full text]
  • The Influence of Residual Sodium on the Catalytic Oxidation of Propane and Toluene Over Co3o4 Catalysts
    catalysts Article The Influence of Residual Sodium on the Catalytic Oxidation of Propane and Toluene over Co3O4 Catalysts Guangtao Chai 1,2, Weidong Zhang 1, Yanglong Guo 2,* , Jose Luis Valverde 3 and Anne Giroir-Fendler 1,* 1 Université Claude Bernard Lyon 1, Université de Lyon, CNRS, IRCELYON, 2 Avenue Albert Einstein, F-69622 Villeurbanne, France; [email protected] (G.C.); [email protected] (W.Z.) 2 Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China 3 Department of Chemical Engineering, University of Castilla La Mancha, Avda. Camilo José Cela 12, 13071 Ciudad Real, Spain; [email protected] * Correspondence: [email protected] (Y.G.); [email protected] (A.G.-F.); Tel.: +86-21-64-25-29-23 (Y.G.); +33-472-431-586 (A.G.-F.) Received: 16 July 2020; Accepted: 30 July 2020; Published: 3 August 2020 Abstract: A series of Co3O4 catalysts with different contents of residual sodium were prepared using a precipitation method with sodium carbonate as a precipitant and tested for the catalytic oxidation 1 1 of 1000 ppm propane and toluene at a weight hourly space velocity of 40,000 mL g− h− , respectively. Several techniques were used to characterize the physicochemical properties of the catalysts. Results showed that residual sodium could be partially inserted into the Co3O4 spinel lattice, inducing distortions and helping to increase the specific surface area of the Co3O4 catalysts. Meanwhile, it could negatively affect the reducibility and the oxygen mobility of the catalysts.
    [Show full text]
  • Combustion and Emissions Characteristics of a Compression-Ignition Engine Using Ammonia-DME Mixtures Christopher Wolfgang Gross Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2012 Combustion and emissions characteristics of a compression-ignition engine using ammonia-DME mixtures Christopher Wolfgang Gross Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Mechanical Engineering Commons Recommended Citation Gross, Christopher Wolfgang, "Combustion and emissions characteristics of a compression-ignition engine using ammonia-DME mixtures" (2012). Graduate Theses and Dissertations. 12589. https://lib.dr.iastate.edu/etd/12589 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Combustion and emissions characteristics of a compression- ignition engine using ammonia-DME mixtures by Christopher W. Gross A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Mechanical Engineering Program of Study Committee: Song-Charng Kong, Major Professor Terrence Meyer Stuart Birrell Iowa State University Ames, Iowa 2012 Copyright © Christopher W. Gross, 2012. All rights reserved. ii Table of Contents List of Figures ........................................................................................................................
    [Show full text]
  • CO2 Recycling to Dimethyl Ether: State-Of-The-Art and Perspectives
    molecules Review CO2 Recycling to Dimethyl Ether: State-of-the-Art and Perspectives Enrico Catizzone 1,* ID , Giuseppe Bonura 2 ID , Massimo Migliori 1, Francesco Frusteri 2 and Girolamo Giordano 1 1 Department of Environmental and Chemical Engineering, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy; [email protected] (M.M.); [email protected] (G.G.) 2 CNR-ITAE “Nicola Giordano”, Via S. Lucia Sopra Contesse 5, 98126 Messina, Italy; [email protected] (G.B.); [email protected] (F.F.) * Correspondence: [email protected]; Tel.: +39-098-449-6669 Received: 13 November 2017; Accepted: 22 December 2017; Published: 24 December 2017 Abstract: This review reports recent achievements in dimethyl ether (DME) synthesis via CO2 hydrogenation. This gas-phase process could be considered as a promising alternative for carbon dioxide recycling toward a (bio)fuel as DME. In this view, the production of DME from catalytic hydrogenation of CO2 appears as a technology able to face also the ever-increasing demand for alternative, environmentally-friendly fuels and energy carriers. Basic considerations on thermodynamic aspects controlling DME production from CO2 are presented along with a survey of the most innovative catalytic systems developed in this field. During the last years, special attention has been paid to the role of zeolite-based catalysts, either in the methanol-to-DME dehydration step or in the one-pot CO2-to-DME hydrogenation. Overall, the productivity of DME was shown to be dependent on several catalyst features, related not only to the metal-oxide phase—responsible for CO2 activation/hydrogenation—but also to specific properties of the zeolites (i.e., topology, porosity, specific surface area, acidity, interaction with active metals, distributions of metal particles, .
    [Show full text]
  • Comparing Properties of Isomers
    COMPARING PROPERTIES OF ISOMERS Sometimes there is more than one way to connect a given group of atoms into a molecular structure. Given the formula C2H6O, two different isomers are possible: methyl ether and ethanol. They have the same formula but different structures. The word, "isomer", is from the Greek, meaning "same things", referring to their identical content. However, isomers often have very different physical and biological properties. These two compounds have different physical properties, as you can see in the table below. compound melting pt, ° C boiling pt, ° C dimethyl ether -138 -25 ethanol -117 78 Remember, typical room temperature is about 25 °C. That means that at room temperature, dimethyl ether is a gas, because it is above its boiling point. Ethanol, on the other hand, is a liquid at room temperature. Ethanol at that temperature is well above its freezing point but has not yet reached its boiling point. Why is that? What is the origin for the differences in physical properties between these two, similar compounds, one of which is a gas at room temperature while the other is a liquid? Both contain carbon-hydrogen and carbon-oxygen bonds. The ethanol also contains a carbon-carbon bond and an oxygen-hydrogen bond. Certain bonds, or groups of bonds, confer specific behaviors on the compounds in which they are found. For instance, when an OH group is found in an organic compound, it can make the compound moderately acidic. It also makes the compound a little more likely to be a solid or liquid rather than a gas.
    [Show full text]