Flops and Fibral Geometry of E7-models Mboyo Esole♠ and Sabrina Pasterski† ♠ Department of Mathematics, Northeastern University 360 Huntington Avenue, Boston, MA 02115, USA Email:
[email protected] † Princeton Center for Theoretical Science, Jadwin Hall, Princeton, NJ 08544, USA Email:
[email protected] Abstract: An E7-Weierstrass model is conjectured to have eight distinct crepant resolutions whose flop diagram is a Dynkin diagram of type E8. In previous work, we explicitly constructed four distinct resolutions, for which the flop diagram formed a D4 sub-diagram. The goal of this paper is to explore those properties of a resolved E7-model which are not invariant under flops. In particular, we examine the fiber degenerations, identify the fibral divisors up to isomorphism, and study violation of flatness appearing over certain codimension-three loci in the base, where a component of the fiber grows in dimension from a rational curve to a rational surface. For each crepant resolution, we compute the triple intersection polynomial and the linear form induced by the second Chern class, as well as the arXiv:submit/3129258 [hep-th] 13 Apr 2020 holomorphic and ordinary Euler characteristics, and the signature of each fibral divisor. We identify the isomorphism classes of the rational surfaces that break the flatness of the fibration. Moreover, we explicitly show that the D4 flops correspond to the crepant resolutions of the orbifold given by C3 quotiented by the Klein four-group. Keywords: Elliptic fibrations, Crepant morphisms, Resolution of singularities, Weierstrass models Contents 1 Introduction and summary 2 2 Preliminaries 4 2.1 Defining the E7-model ..................................